铝合金熔炼及铸轧基础知识

合集下载

铝合金熔炼与铸造

铝合金熔炼与铸造

铝合金熔炼与铸造 铝合金的熔炼与浇注是铸造生产中主要环节。

严格控制熔炼与浇铸的全过程,对防止针孔、夹杂、欠铸、裂纹、气孔以及缩松等铸造缺陷起着重要的作用。

由于铝熔体吸收氢倾向大,氧化能力强,易溶解铁,在熔炼与浇铸过程中必须采取简易而又谨慎的预防措施,以获得优质铸件。

1、铝合金炉料配制及质量控制 为了熔炼出优质铝熔体,首先应选用合格的原材料。

须对原材料进行科学管理和适当处理,否则就会严重影响合金的质量,生产实践证明,原材料(包括金属材料及辅助材料)控制不严会使铸件成批报废。

(一)原材料必须有合格的化学成分及组织,具体要求如下: 入厂的合金锭除分析主要成分及杂质含量外,尚就检查低陪组织及断口。

实践证明,使用了含有严重缩孔、针孔、以及气泡的铝液,就难以获得致密的铸件,甚至会造成整炉、整批的铸件报废。

有人在研究铝硅合金锭对铝合金针孔的影响时发现,用熔融的纯浇铸砂型试块时并不出现针孔,当加入低组织和不合格的铝硅合金锭后,试块针孔严重,且晶粒大。

其原因为材料的遗传性所致。

铝硅系合金和遗传性随着含量的提高面增大,硅量达到7%时,遗传显著。

继续提高硅含量到共晶成分,遗传性又稍减小。

为解决炉料遗传性引起的铸件缺陷,必须选用冶金质量高的铝锭、中间合金及其它炉料。

具体标准如下: (1)断口上不应有针孔、气孔 针孔应在三级以内,局部(不超过受检面积的25%)不应超过三级,超过三级者必须采取重熔炼的办法以减少针孔度。

重熔精炼方法与一般铝合金熔炼相同,浇铸温度不宜超过660℃,对于那些原始晶粒大的铝锭、合金锭等,应先用较低的锭模温度,使它们快速凝固,细化晶粒。

2、炉料处理 炉料使用前应经吹砂处理,以去除表面的锈蚀、油脂等污物。

放置时间不长,表面较干净的铝合金锭及金属型回炉料可以不经吹砂处理,但应消除混在炉料内的铁质过滤网及镶嵌件等,所有的炉料在入炉前均应预热,以去除表面附的水分,缩短熔炼时间在3小时以上。

3、炉料的管理及存放 炉料的合理保存及管理对确保合金质量有重要意义。

铝合金熔炼与铸造 (2)

铝合金熔炼与铸造 (2)

铝合金熔炼与铸造1.铝合金是一种重要的金属材料,具有优异的物理性能和机械性能,广泛应用于航天航空、汽车制造、建筑工程等领域。

铝合金熔炼与铸造是生产铝合金制品的关键步骤,本文将介绍铝合金熔炼与铸造的基本原理、常用工艺和注意事项。

2. 铝合金熔炼铝合金熔炼是将铝合金原料加热至熔点,并以一定方式进行熔炼的过程。

铝合金原料可以是铝锭、废铝或铝合金碎料,在熔炼过程中需要加入一定比例的熔剂和合金元素。

铝合金熔炼的目的是将原料熔化并混合均匀,以获得符合要求的铝合金液态材料。

2.1 熔炼设备铝合金熔炼通常使用电阻炉、感应炉或电弧炉等熔炼设备。

其中,电阻炉是最常用的熔炼设备之一。

电阻炉通过电流通过导体产生的电阻热进行熔炼,具有加热速度快、操作方便等优点。

感应炉则利用电磁感应的原理进行加热,加热效率高,适用于熔炼大批量的铝合金。

电弧炉则利用电弧的高温进行熔炼,适用于熔炼高温合金。

2.2 熔炼工艺铝合金熔炼的工艺通常包括预热、熔炼和保温三个阶段。

将熔炼设备预热至一定温度,然后将铝合金原料和熔剂放入炉中,并控制加热温度和时间,使原料熔化并混合均匀。

,保持一定温度,使铝合金保持液态状态,以备后续的铸造工艺使用。

2.3 熔炼注意事项在铝合金熔炼过程中需要注意以下几点:•安全操作:熔炼过程中需要戴上防护设备,避免接触高温液态金属和有害气体。

•熔化温度控制:严格控制熔化温度,过高的温度会导致铝合金组织不稳定,影响机械性能。

•熔炼时间控制:合适的熔炼时间可以保证原料充分熔化和混合均匀。

•熔剂和合金元素的添加:根据铝合金的要求添加适当比例的熔剂和合金元素,以调整铝合金的成分和性能。

3. 铸造过程铸造是将铝合金液态材料倒入铸型中,并经过凝固和冷却形成所需的铝合金制品的过程。

铸造过程可以分为压铸、重力铸造和砂型铸造等不同的铸造方法。

3.1 压铸压铸是一种通过高压将铝合金液态材料注入金属模具中,并经过快速凝固形成制品的铸造方法。

压铸具有生产效率高、制品精度高等优点,适用于生产复杂形状的铝合金制品。

铸造合金及其熔炼_铸造铝合金的熔炼

铸造合金及其熔炼_铸造铝合金的熔炼

由式(13-25)可见,氢分压和铝液温度越高,扩散热 越小,扩散系数越大,即氢的溶解速度越大。
铝液中的合金元素及氧化夹杂物对氢的扩散系数有很 大的影响,通常降低氢的扩散速。
四、氧化铝的形态、性能对吸氢的影响
根据结构分析,铝及其合金中存在着三种不同形态的 无水氧化铝:γ 、η 和α ,它们各自的特性列于表13-2中。
五、合金元素对铝液吸氢的影响
1、对溶解度的影响 在pH2 =0. 1MPa的条件下,测得硅、铜、镁对溶解
度影响,按公式(13-21)算得常数A、B值列于表13-3中。 从表中可见、含镁量越高,氢的溶解度越高;反之,
硅、铜含量越高,氢的溶解度越低。
2、对氧化膜性能的影响
Mg、Na、Ca等氧的亲和力比铝大,是表面活性元 素,密度又比铝小,富集于铝液表面,熔炼时,优先被炉 气氧化。铝液中含镁量高于1%,表面氧化膜即全部由 MgO所组成,这层MgO组织疏松,对铝液不起保护作用, 故Al-Mg类合金必须在熔剂覆盖下进行熔炼。
2、皮下气孔 气孔位于铸件表皮下面,因铝液和铸型中水分反应产
生气体所造成,一般和铝液质量无 关口
3、单个大气孔 这种气孔产生的原因是由于铸件工艺设计不合理,如
铸型或型芯排气不畅,或者是由于操作不小心,如浇注时 堵死气眼,型腔中的气体被憋在铸件中所引起,也和铝液 纯净度无关。
二、铝铸件中氧化夹杂物形态及对性能的影响
第十三章 铸造铝合金的熔炼
概述
熔炼工艺是铸件生产过程中的一个有机组成。一个 优质铝铸件的获得,需要有一整套优化的铸造方法、铸造 工艺、熔炼工艺及浇注工艺相配合。
铝合金熔炼的内容包括配料计算,炉料处理,熔炼 设备选用,熔炼工具处理及熔炼工艺过程控制。
熔炼工艺过程控制的内容包括正确的加料次序。严格 控制熔炼温度和时间、实现快速熔炼、效果显著的铝液净 化处理和变质处理及掌握可靠的铝液炉前质量检测手段等。

铝合金的熔炼与铸造

铝合金的熔炼与铸造

第二章铝合金的冶炼1.金属铝的制取金属铝最初是用化学法制取的。

1825年丹麦化学家H.C.Örested和1827年德国Wöhler F.分别用钾汞齐和钾还原无水氯化铝,都得到少量金属粉末。

1854年Wöhler F.还用氯化铝气体通过熔融钾的表面,得到了金属铝珠,每颗重约10~15mg,因而能够初步测定铝的密度,并认识到铝的熔点不高,且具有延展性。

后来,法国S.G。

Deville用钠代替钾还原熔融的氯化钠_氯化铝络盐,也制取金属铝。

1854年他在法国巴黎附近建立了一座小型炼铝厂。

1865年俄国 H.H.BeKeTOB 提议用镁来置换冰晶石中的铝,这一方案被德国Gmelingen Aluminium und Magnesium Fabrik 采用。

由于电解法兴起,化学法便渐渐被淘汰。

在整个化学法炼铝阶段中(1854~1895年),大约总共生产了200Ton铝。

电解法熔炼铝起源与1854年。

当时德国R.W.Bunsen和法国S.C.Deville分别电解氯化钠_氯化铝络盐,得到金属铝。

1883年美国S.Bradley申请了电解熔融冰晶石的专利。

1886年美国的C.M.Hall 和法国的L.T.Héroult同时发明了冰晶石_氧化铝融盐电解法并申请到专利。

此法便是一百年来全世界炼铝工业上采用的唯一方法,统称为霍尔_埃鲁法。

中国的炼铝试验工作起始自1934年天津的黄海化学工业社,用800A预焙阳极电解槽炼出金属铝。

抚顺铝厂开始兴建于1937年,电解槽为自焙阳极式,电解强度为2400 A,最高年产铝量达到8000Ton。

台湾省高雄铝厂亦兴建于1937年。

从南阳 Bintan岛运来三水铝土矿,在厂内用拜耳法生产氧化铝,用24000A 和30000A自焙阳极电解槽生产铝,最高年产量达到10KTon。

新中国成立后,铝合金工业得到迅速的发展。

我国的铝冶炼工业经过几十年的发展,取得了前所未有的成绩,2000年氧化铝产量达429万Ton,铝锭283万Ton,我国已成为世界铝生产和消费的大国。

铝合金熔炼与铸造技术

铝合金熔炼与铸造技术

铝合金熔炼与铸造技术一、引言铝合金是一种重要的结构材料,具有轻质、高强度和良好的耐腐蚀性能,在航空航天、汽车制造、建筑工程等领域广泛应用。

铝合金的制备过程中,熔炼与铸造技术起到关键作用,本文将对铝合金熔炼与铸造技术进行详细探讨。

二、铝合金熔炼技术2.1 熔炼原料准备熔炼铝合金的原料主要包括铝、合金元素和辅助材料。

铝采用高纯度的铝锭,合金元素可以通过添加铝合金粉末或其他化合物来实现。

辅助材料包括熔剂、脱气剂等。

这些原料的准备对于保证铝合金的成分和质量非常重要。

2.2 熔炼设备和工艺熔炼铝合金的常用设备有电阻加热炉、感应加热炉和气体燃烧炉等。

其中,感应加热炉在铝合金熔炼中应用最广泛,具有加热速度快、能耗低和温度控制准确等优点。

熔炼工艺包括预热、熔化、调温和净化等步骤,其中净化技术对于铝合金的纯净度和性能起到重要作用。

2.3 熔炼过程控制与优化熔炼过程中,熔体温度、保温时间、搅拌方式等因素对铝合金的成分和组织结构有重要影响。

熔炼过程需要进行温度控制、气氛控制和搅拌控制等,以确保铝合金的成分均匀、杂质含量低。

三、铝合金铸造技术3.1 铸造方法铝合金的常用铸造方法包括压铸、重力铸造、低压铸造和砂型铸造等。

压铸是最常用的铸造方法,适用于生产复杂形状和尺寸精度要求高的铝合金件。

重力铸造适用于大型铝合金零部件的生产,低压铸造适用于长条状和壳状铝合金件的生产,砂型铸造适用于非常大型和特殊形状的铝合金件的生产。

3.2 铝合金铸造过程铝合金的铸造过程主要包括熔炼、准备模具、浇注、冷却和后处理等步骤。

熔炼过程中,需要根据具体合金配方和要求,控制熔体温度、浇注温度和浇注速度等参数。

准备模具是确保铸造件尺寸和表面质量的重要环节。

浇注过程需要保证熔体充分填充模腔,并避免气孔和缺陷的产生。

冷却过程中需控制冷却速率,以避免铝合金件出现应力和变形。

3.3 铝合金铸造工艺改进为了提高铝合金铸造件的质量和效率,可以采取一些工艺改进措施。

铝合金熔炼与铸造

铝合金熔炼与铸造

1. FILD法(无烟在线脱气法)
在耐火坩埚或耐火砖衬里 的容器中,用耐火隔板将容 器分成两个室。从静置炉中 流出的铝液,经倾斜流槽进 入第一室,在熔剂覆盖下进 行吹氮脱气和除渣,然后通 过涂有熔剂的氧化铝球滤床 除去夹渣,再流到第二室, 通过氧化铝球滤床,以除去 铝液夹带的熔剂和夹渣。
2. SNIF法(旋转喷气净化法)
2.组合式结晶器:一般用于Cu、Al及其合金 圆锭,Al及其合金扁锭上。
圆锭用结晶器,组成:内套— Cu : T2、铜 合金、石墨,Al : LD5、LY11 。外壳— 铸 铁、钢、锻Al。
易大常细量形硬加化的AA系成脆入晶lT-熔li-C熔来粗 相 少 粒C炼u炼u-技-M技首 先 原 材 料 的 清 洁 度 要 高 然 后 加 强 对 熔 体 的 精 炼 除 气 最 每 个 熔 次 后 要 彻 底 大 清 炉其 次 操 作 时 避 免 频 繁 搅 动 熔 体M术g术g-特-F特FSF量 下e点eei-点系、控 限N/NiN制 并i=i在 使含1
续直接水冷铸锭法。其中包括可调液流的中间包 或炉头箱、漏斗、结晶器、引锭托座和铸造机等 部分。
特点
优点:
1.液流平稳、减少了吸气和夹渣。
2.直接水冷,冷却强度大,结晶速度快, 组织致密
3.自下而上连续结晶,有利于排气和补缩。
4. 生产连续进行,几何废料少,成品率 高。
5.易实现机械化、自功化,铸坯质量较好。
• 由美国联合碳化物公司开发的,是一 种最新的、效率最高的、最易操作的 在线式精练工艺。
• 特点:省时节能;无环境污染;战地 面积小;熔体质量高等。
影响熔剂除渣精炼效果的因素
➢精炼温度:一般先用高温进行除渣精 炼,然后在较低的温度下进行脱气, 最后保温静置。

铸轧专业知识

铸轧专业知识

以镁为主要合金元素的铝合金
5xxx
以镁和硅为主要合金元素并以 Mg2Si 相为强化相的铝合金
6xxx
以锌为主要合金元素的铝合金
7xxx
以其它元素为主要合金元素的铝合金
8xxx
备用合金组
9xxx
2
2.铝及铝合金标准
⑴铝锭标准及代号:GB/T 1196-93 重熔用铝锭的化学成分,见表 2。 表2
化学成分,%
(4) 变形铝及铝合金化学成份标准:
详见企业技术标准汇编 Q/HN104-1998
每块重量 (%)
660±10 660±10
表3 包装颜色
绿色 灰色
二、熔炼的基本原理
1.熔炼的热力学过程概述固体金属在炉内加热熔化所需要的能量,要由熔炼炉的 热源所供给。由于采用的能源不同,其加热方式也不一样,目前,基本炉型是火焰炉。
波动较大,通常在以下范围内变化:
炉气成份 N2
O2
CO2 CO
H20
熔炼炉% 62~83 8~15 3~9 2 30~100(g/m3)
静置炉% 80~85 6~7 4~5 -- 40~60(g/m3)
铝液与各种气体反应生成物主要是 AL2O3 和 H2。
★铝氧反应
铝与氧的亲和力大,易氧化,反应式为:
2.炉子准备
无论是熔炼炉还是静置炉,尽管它们采用的加热方式不同,炉子的准备工作都是 非常重要的,它对产品的质量、生产的安全以及炉子的寿命都有很大的影响,因此, 对于烘炉、洗炉、清炉等工序都要严格按规程进行。
★烘炉 炉子在开炉生产前必须要进行烘炉。烘炉的目的,就是使炉体干燥与予热,排除 炉体(砖及砌料)、炉床的潮气,并使炉体耐火材料缓缓伸胀,防止加热过快而致使砌 体崩裂。尤其是新修或大修后的炉子,烘炉时必须保证足够的时间,并按一定的制度 进行(具体烘炉制度参见工艺规程)。否则,炉内潮气不能除尽,将使熔炼时熔体的含 氢量大大增加,造成铸锭严重的气孔与疏松等缺陷。 ★洗炉 在实际生产中由一种合金改变为生产另一种合金时,往往需要洗炉。洗炉的目的 是将残留在熔池内各处的金属和炉渣清除出炉外,以免污染另一种合金,确保产品的 化学成份;另外,对新修的炉子,可清出大量的非金属夹杂物。 洗炉时一般按下述原则进行: ①新修、中修或大修后的炉子生产前应进行洗炉。 ②前一炉的合金元素为后一炉的杂质时应该洗炉。 ③由杂质高的合金转换熔炼纯度高的合金需要洗炉。 ④洗炉料一般为重熔铝锭,其用量不少于炉子容量的 40%。 ⑤装洗炉料前和洗炉后都必须放干,大清炉。 ⑥洗炉温度应控制在 800℃~850℃,在达到此温度时,应彻底搅动熔体,其次数 不少于三次,每次搅拌间隔约半小时。 ★清炉 清炉就是将炉内残存的结渣彻底清除出炉外,每当金属出炉后,都要进行一次清 炉。当合金转换或一般制品连续生产 515 炉时,特殊制品每生产一炉,都要进行大清 炉。大清炉时,最好向均匀向炉内撒一层粉状熔剂,并将炉膛温度升至 800℃以上,

铝合金熔炼与铸造

铝合金熔炼与铸造

铝合金熔炼与铸造铝合金是一种常见且广泛使用的金属材料,具有较低的密度、良好的导热性和耐腐蚀性,因此在许多行业中得到了广泛的应用。

铝合金的熔炼和铸造是制造铝合金制品的关键步骤。

本文将介绍铝合金熔炼和铸造的基本原理、工艺和注意事项。

一、铝合金熔炼1.1 熔炼原理铝合金熔炼的主要原理是将铝及其他合金元素加热至其熔点,使其融化成液态,以便进行后续的铸造工艺。

铝的熔点较低,约为660°C,因此相对较容易熔化。

而其他合金元素的加入可以改变铝合金的性质,例如提高其强度、耐腐蚀性或者改善加工性能。

1.2 熔炼工艺铝合金熔炼工艺一般分为两种:批量熔炼和连续熔炼。

批量熔炼是将一定量的铝和其他合金元素加入炉内,通过加热熔化成液态,并进行充分混合。

这种方法适用于小规模生产,常用的炉型有电阻炉和燃气炉。

而连续熔炼是将铝合金材料加入熔炉的顶部,通过炉内的加热和熔化过程,使得底部的液态铝合金不断流出。

这种方法适用于大规模生产,常用的炉型有回转炉和隧道炉。

1.3 熔炼注意事项在铝合金的熔炼过程中,需要注意以下几个方面。

首先,炉内的温度需要控制在适当的范围内,以避免过度燃烧或者过度冷却。

其次,需要保持良好的熔炼环境,防止氧气、水分或杂质等对炉内材料的影响。

最后,在加入其他合金元素时,需要根据配比和工艺要求进行准确的添加,以保证最终铝合金的性能。

二、铝合金铸造2.1 铸型设计铝合金铸造的第一步是进行铸型设计。

铸型设计的目的是根据最终产品的形状和要求,确定合适的铸造方法和材料,以及适当的铸型结构。

常见的铸型结构有砂型、金属型和陶瓷型等。

其中砂型是最常用的铸造方法,可以应用于各种形状和尺寸的产品。

2.2 铸造工艺铝合金的铸造工艺可以分为传统铸造和压铸两种。

传统铸造是将熔融的铝合金液体倒入铸型中,并通过自然冷却形成最终产品。

这种方法适用于小批量生产,但精度和表面光滑度相对较低。

压铸是将高压液压机将铝合金液体注入铸型中,通过压力传递和快速冷却,实现快速成型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
当 180完全不润湿 f ( ) 1,则 G** G*
当 90部分润湿
当 0完全润湿
f ( ) 1,则
2
f ( ) 0,则
G** 1 G* 2
G** 0
一般情况下,质点(c)与新相(s)或多或少润湿,即
0 180 ,这时总存在:
G** G*
异质形核与均质形核相比,其特点是: 形核过冷度小; 形核功小。
2
形核功:
G
16
3
3 SL
Tm LmT
r* 与ΔT 成反比,即过冷度ΔT 越大,r* 越小; ΔG*与ΔT2成反比,过冷度ΔT 越大,ΔG* 越小。
临界晶核的表面能为:
A
SL
4
(r )2
SL
16
3 SL
VSTm H m T
2
形核功为:G
16
3
3 SL
VS Tm H m T
2
所以:
界面的溶质分布规律不遵循状态图。其理论
尚未完全建立。
2.2 微重力凝固 即失重状态下的凝固,重力加速度g<9.8m/s2(如
太空中的凝固)。获得微重力环境的主要方法有:落塔、 落管;飞机、火箭的下降;太空轨道飞行。 2.3超重力凝固
重力加速度g>9.8m/s2环境下凝固。此条件下加速了 质量、动量及能量的传递。实现超重力的手段有:离心 机;飞机、火箭的加速上升等。
铝合金的熔炼及铸轧
主要内容
一、超级铝 二、金属的凝固 三、铝合金熔炼 四、铝合金铸轧
一、超级铝
1.1 超级铝 在现有金属装备基础上将金属合 金性能提高50%-80%。
1.2 实现的途径 (1)熔炼 (2)铸造 (3)变形 (4)热处理
1.3 合金特征 (1)超净 a 无夹渣(≤5μm);b 氢含量少 (2)超细 a 晶粒细;b 第二相细 (3)超匀 a 成分均匀;b 组织均匀
为异质形核的临界晶核半径。
均质和异质形核功图
dG

dr |rr 0
,得异质形核的临界晶核半径:
r 2 SlTm
LmT
异质形核的临界晶核半径在形式上与均质形核临界晶核半径完
全相同,它们的区别在于:
均质形核临界晶核是球体,而异质形核的晶核为球体的一 部分(球冠),因而异质晶核中所含原子数目少,这样的晶坯 易形成。
合金液体中存在的大量高熔点微小固相杂质,可作为非均 质形核的基底。晶核依附于夹杂物的界面上形成。这不需要形 成类似于球体的晶核,只需在界面上形成一定体积的球冠便可
成核。非均质形核过冷度ΔT**比均质形核临界过冷度ΔT*小
得多时就大量成核。
如果液相中存在固相质点,且液相又能润湿质 表面,则液体能在固相质点表面形成新相晶核。
异质形核:依靠外来质点或型壁界面提供的衬底进行 生核过程,亦称“非均质形核”或“非自发形核”。
2-1均质形核
G V GV A SL
G
4 3
r
3GV
4r 2 SL
图3.4 液相中形成球形晶胚时自由能变化
令:
dG
得临界晶核半径 r*:
r 2 SL
GV
2 SL Tm
Lm T
设生核衬底的质点表 面为一平面,在其上生 成一球冠的新相(见右 图)。则系统自由能的 变化为:
G V Gv ( A )
r 3
3
(2 3 cos
cos3 ) Gv
r 2 LS (2 3 cos
cos3 )
得到类似于均质形核的系统自由能变化曲线(见下
图),曲线有一最大值,该值对应的半径用 r** 表示,称
ΔHm )
Tm及ΔHm对一特定金属或合金为定值,所以过冷度 ΔT是影响相变驱动力的决定因素。过冷度ΔT 越
大,凝固相变驱动力ΔGV 越大。
2.形核类型 均质形核 :形核前液相金属或合金中无外来固相质点 而从液相自身发生形核的过程,所以也称“自发形核”
(实际生产中均质形核是不太可能的,即使是在区域精炼的条 件下,每1cm3的液相中也有约106个边长为103个原子的立方体 的微小杂质颗粒)。
2.4 金属凝固理论的应用
金属制品(粉末冶金和电铸法除外)
经过 凝固过程 影响
控制
金属凝固过程基本理论 金属凝固过程基本规律
金属制品内在/外在质量
研究 掌握
2.5 形核 1.液-固相变驱动力
图3.2 液-固体积自由能的变化
GV H m T Tm
(式中:ΔHm—固-液 焓变,结晶潜热L =
G
1 3
A SL
即:临界形核功ΔG*的大小为临界晶核表面能 0
的三分之一, 它是均质形核所必须克服的能量障
碍。形核功其中一部分由熔体中的“能量起伏”
提供,但不能保证形核。因此,必须在过冷条件
下克服这部分能量,才能克服能量障碍。因此,
均质形核的过程在过冷条件下借助 “能量起伏”
形成新相晶核的过程。
2-2 异质形核
1 2 3
3.1
凝固过程包括:形核过程和晶体长大过程。凝固后的宏观组织由晶粒和 晶界组成
三、铝合金的熔炼
3.1
演讲完毕
二、金属的凝固
2.1 金属凝固的分类 1.重力条件下的凝固 平衡凝固—冷却速度很慢的凝固。固-液界面完全 平衡,即界面处的固相、液相成分由 合金状态图确定。
准平衡凝固—冷却速度较快,但固-液界面局部平 衡,界面的溶质分布仍遵循合金状态 图的规律。
非平衡凝固—冷却速度很大(≥106℃/s),界面不平衡,
润湿角 与均质形核无关,而影响异质晶核的体积。杂质 质点(c)被新相(s)润湿能力越好,则 越小,固相的曲
率半径即球径越大,换句话说,同一半径的临界晶核(球冠) 的体积越小,所含原子数越少,因而在更小的过冷度下就能形 核。
同理可推导得异质形核的形核功:
G** f ( ) G*
f ( ) (2 cos )(1 cos )2
相关文档
最新文档