基于扭矩的发动机控制策略.
基于扭矩模型的汽油机电控系统怠速控制

()<0时亦然。因此,通过积分控制器,可以逐步减小 目标怠速转速设定值与发动机实际转速的偏差,实现
当自变量 ()发生突然的变化,比例微分控制器 怠速转速的精确控制。这里需要注意, 不能设置过 通过乘以不同的放大系数输出 (),对 ()进行控制。 大,否者将会使输出扭矩变化太大,从而导致发动机转
图 ! 比例#微分控制逻辑图
火;发动机怠速转速波动在合理范围且要避免转速波 动频率对驾驶员及乘客造成不适的影响;发动机从高 转速进入怠速工况,及时将发动机转速平稳控制在目
根据图 1,可以推导出: ()=P()+D""( )
(1)
- -
2第01192(期12)
技术聚焦
>?2-.16-@ #$% &'()*+, -./0*12 '3 1$% %+,*+% /1 *"0% 45%%" $/4 / ,(%/1 *+30.%+6% '+ 1$% 5%(3'(7/+6% '3 1$% 8%$*60%9 4' *1 *4 5/(1*6.0/(02 *75'(1/+1 1' 6'+1('0 1$% *"0% 45%%" '3 1$% %+,*+%: ;+ 1$% %+,*+% 4241%7 6'+1('00%" <2 =>; </4%" '+ 1'(-.% 7'"%09 5('5'(1*'+/0 ?*+1%,(/0 !"*33%(%+1*/0 6'+1('09 1'(-.% (%4%(8% 6'+1('0 /+" *"0% 45%%" 4%03 !0%/(+*+, /(% .4%" 1' 6'+1('0 1$% '.15.1 1'(-.% '3 1$% %+,*+%9 &$*6$ 6/+ 7/)% 1$% %+,*+% (.+ &%00 .+"%( *"0% 45%%" 6'+"*1*'+ /+" ,%1 1$% 41/<*0*12 3('7 $*,$ 45%%" 1' *"0% 45%%": @$*4 5/5%( *+1('".6%4 1$% </4*6 7%1$'" /+" 5(*+6*50% '3 *"0% 45%%" 6'+1('0 '3 ,/4'0*+% %+,*+% %0%61('+*6 6'+1('0 4241%7 </4%" '+ 1'(-.% 7'"%09 *+ '("%( 1' 5('8*"% ,.*"/+6% 3'( 1$% 6'+1('0 '3 %0%61('+*6/002 6'+1('00%" ,/4'0*+% *+A%61*'+ %+,*+%: A'7 B+.%2:012+&3,' ',53,'C $%&' 2)''% 6+,-.+&C D$E *+,-.+&C :+.;<' .'2'.F' 6+,-.+&C $%&' 2)''% 2'&/#&'1.,3,5
扭矩控制法的原理是

扭矩控制法的原理是扭矩控制法是一种用于电气驱动系统的控制方法,它通过直接控制电机的输出扭矩来实现精确的速度和位置控制。
相比于传统的速度或位置控制,扭矩控制法在许多应用场景下具有更好的性能和适用性。
扭矩控制法的基本原理是根据系统的控制需求,实时地计算出电机所需的扭矩指令,并通过控制器将这个指令转化为电流指令,最终驱动电机。
在实现扭矩控制的过程中,需要注意以下几个关键步骤。
首先,需要对电机进行扭矩建模和参数辨识。
电机的扭矩响应是由电流和磁场之间的相互作用决定的,因此需要获得电机的电流和磁场方程。
通过对电机进行实验和辨识,可以确定电机的参数,包括转子惯量、电感、阻抗等。
这些参数将在后续的控制器设计中发挥重要作用。
其次,需要设计合适的扭矩控制器。
扭矩控制器的设计通常基于电流环和速度环的结构。
电流环用于实时跟踪电机电流的指令值,并控制电机输出所需的电流。
而速度环用于基于电机的速度误差来调整电流环的指令,从而实现期望的扭矩控制。
在扭矩控制器的设计中,通常使用反馈线性化、模型预测控制或自适应控制等高级控制算法,以提高控制性能和系统稳定性。
在扭矩控制过程中,还需要考虑到电机的非线性特性和干扰影响。
由于电机的非线性特性,例如饱和效应、电流-磁场非线性等,可能会导致控制误差和性能下降。
因此,在扭矩控制中需要加入补偿措施,例如使用非线性观测器或反馈线性化控制器,以提高控制精度和鲁棒性。
此外,扭矩控制法还可以结合其他控制策略,如预测控制、自适应控制和优化控制等,以进一步提高控制性能。
预测控制可以基于电机模型来预测未来的扭矩需求,并通过控制器进行实时调整,以满足系统的要求。
自适应控制利用在线辨识技术来实时更新电机参数,并根据参数变化来调整控制器的参数。
优化控制通过优化算法来寻找最优的控制策略,使系统性能最大化。
综上所述,扭矩控制法通过直接控制电机的输出扭矩来实现精确的速度和位置控制。
它的原理在于实时计算电机所需的扭矩指令,并通过合适的控制器将其转化为电流指令。
德尔福基于扭矩的发动机控制策略课件

03
基于扭矩的发动机控制策略的优 势与挑 战
基于扭矩的发动机控制策略的优势
01
02
03
优化动力输出
通过控制扭矩,发动机可 以更精确地匹配车辆行驶 需求,提高动力输出效率。
降低油耗
通过对扭矩的精确控制, 发动机可以减少不必要的 燃油消耗,提高燃油经济 性。
减少排放
优化扭矩输出有助于减少 发动机燃烧不充分所产生 的排放,降低对环境的影 响。
05
基于扭矩的发动机控制策略的发 展趋势与展望
基于扭矩的发动机控制策略的发展趋势
高压化
随着排放法规的日益严格,发动 机控制策略正朝着高压化的方向 发展,以降低排放和提高燃油经
济性。
智能化
随着人工智能和传感器技术的发展, 发动机控制策略正朝着智能化的方 向发展,以实现更精准的控制和优 化。
电动化
随着新能源汽车市场的不断扩大, 发动机控制策略正朝着电动化的方 向发展,以实现更高效、更环保的 动力输出。
发动机控制策略是指通过控制发动机的运转,实现汽车的动力、经济、排放等 性能的有效调节和优化。
发动机控制策略的重要性
随着汽车工业的发展,发动机控制策略已成为汽车制造商核心竞争力的重要组 成部分。优秀的控制策略可以提高汽车的性能、降低油耗、减少排放,同时满 足日益严格的环保要求。
发动机控制策略的分类与特点
高速公路驾驶、山区驾驶等。
德尔福基于扭矩的发动机控制策略的前景展望
德尔福作为全球领先的汽车零部 件供应商,其基于扭矩的发动机 控制策略在市场上具有较高的竞
争力。
随着排放法规的日益严格和新能 源汽车市场的不断扩大,基于扭 矩的发动机控制策略的市场需求
将不断增加。
扭矩控制策略

扭矩控制策略1. 引言扭矩控制策略是一种用于控制机械系统中扭矩输出的方法。
在许多机械应用中,如电动机驱动、机器人运动控制等,扭矩的精确控制是非常重要的。
扭矩控制策略可以通过调整电流、电压或其他参数来实现对扭矩输出的精确控制。
本文将介绍几种常见的扭矩控制策略,包括直接扭矩控制、间接扭矩控制和预测性扭矩控制。
我们将分析每种策略的原理、优点和缺点,并比较它们在不同应用场景下的适用性。
2. 直接扭矩控制直接扭矩控制(Direct Torque Control,DTC)是一种基于电机模型和误差反馈的方法。
它通过测量电机转子位置和速度,计算出所需的转子电流,并将其与实际电流进行比较,从而实现对扭矩输出的闭环控制。
直接扭矩控制具有以下优点: - 响应速度快:直接扭矩控制不需要传统的速度环,可以直接根据电机转子位置和速度进行控制,响应速度更快。
- 精确性高:通过精确测量电机参数和实时反馈,直接扭矩控制可以实现对扭矩输出的精确控制。
然而,直接扭矩控制也存在一些缺点: - 复杂性高:直接扭矩控制需要准确建立电机模型,并且需要对多个参数进行精确测量。
这增加了系统设计和调试的复杂性。
- 高频噪声:由于直接扭矩控制的工作原理,它可能会在高频段产生噪声。
这可能会对系统稳定性和可靠性造成一定影响。
3. 间接扭矩控制间接扭矩控制(Indirect Torque Control,ITC)是一种基于电流和转子位置反馈的方法。
它通过测量电机相电流和转子位置,计算出所需的转子电流,并将其与实际电流进行比较,从而实现对扭矩输出的闭环控制。
间接扭矩控制具有以下优点: - 稳定性好:间接扭矩控制基于电流和转子位置反馈,可以提供较好的稳定性和鲁棒性。
- 系统设计简单:相对于直接扭矩控制,间接扭矩控制的系统设计相对简单,不需要准确建立电机模型。
然而,间接扭矩控制也存在一些缺点: - 响应速度较慢:由于间接扭矩控制需要通过测量电流和转子位置来计算所需的转子电流,响应速度相对较慢。
基于扭矩的发动机控制策略

关键技术
基于扭矩的发动机控制策略涉及的关键技术包括扭 矩估计、优化算法、发动机工作点优化和控制等。
实施方案
通过采集车辆运行状态信息,如车速、发动 机转速、油门踏板位置等,计算并控制发动 机的扭矩输出。
扭矩估计与优化算法
扭矩估计
利用车辆运行状态信息,通过建立数学模型或使用机器学习算法,对发动机的 扭矩进行估计。
将基于扭矩的发动机控制策略应用于不同类型和型号的 发动机,以扩大其应用范围。
多领域应用
将基于扭矩的发动机控制策略应用于其他领域,如车辆 、船舶、航空航天等领域,以拓展其应用领域。
06
结论与展望
研究成果总结
总结了基于扭矩的发动机控制策略的研究成果,包括 控制策略的设计、实现和应用效果。
指出了研究过程中遇到的主要问题和解决方法,以及 未来研究方向。
优化算法
根据车辆动力学特性和控制目标,设计优化算法,如遗传算法、粒子群算法等 ,优化发动机的扭矩输出。
发动机工作点优化与控制
工作点优化
通过优化算法,将发动机的工作点调整到最优区域,以提高燃油经济性、动力性和排放性能。
控制策略
根据车辆运行状态和驾驶员需求,通过调整油门踏板位置、喷油量等参数,实现对发动机扭矩的精确 控制。
效果评估
通过各项性能指标的检测和分析,评估控制 策略的实际应用效果,并进行优化和改进。
05
基于扭矩的发动机控制 策略优化一步改进控制算法,提高算法的精度和效 率,可以采用更先进的优化算法,如遗传算 法、粒子群优化算法等。
模型预测
建立发动机的数学模型,利用模型预测发动 机的扭矩输出,并以此为依据进行控制策略
基于扭矩的发动机控制策略是一种更为直接和高效的控制方法,通过控制发动机扭矩来实现对车辆行驶 性能的精确控制。
基于扭矩的发动机控制策略

Percentage of Indicated MBT Torque [%]
100%
90% 80%
Extrapolated Portion of Curve
70%
60%
50%
40%
30% 20%
KtTRQC_Pct_TorqLossFromSprkRtd
10%
0% 0
5 10 15 20 25 30 35 40 45 50
5
4
3
2
13
12
11
10
21
20
19
18
29
28
27
26
37
36
35
34
45
44
43
43
53
52
51
50
61
60
59
58
TCM
Receive Receive Transmit
Bit1 Bit0
1
0
9
8
17
16
25
24
33
32
41
40
49
48
57
56
并行通讯
占空比(PWM) 开关讯号 (ON/OFF) 频率
T P MA S P
PN
Engine
loTaRd
RDTR
ECM
ATR
TCM
IUR IDL E RP M
Tachometer in Instrument
Panel
自动变速箱与发动机的通讯
CAN总线串行通讯 高速CAN总线, 500k bit/sec
未经控制扭矩(Unmanaged torque) 当未实施扭矩控制, 例如车辆驱动力控制时的扭矩值
发动机电喷系统控制策略

发动机电喷系统控制策略发动机电喷系统控制策略是指通过对发动机喷油、点火、进气和排放等参数进行控制,以达到提高燃烧效率、降低排放、保证发动机稳定运行的目的。
下面将从电喷系统的基本原理、控制策略以及相关技术发展等方面进行阐述。
电喷系统是一种现代化的发动机燃油供给系统,它通过电子控制单元(ECU)对各个喷油嘴进行精确的控制,实现精确的燃油喷射。
其基本原理是通过测量和分析发动机工况、车速、负荷和环境温度等数据,然后根据预先设定的燃油喷射曲线,将适量的燃油喷射到气缸内,以满足发动机所需的燃油量。
在控制策略方面,发动机电喷系统主要是基于以下几个主要参数进行控制:1.扭矩和负荷控制:根据发动机负荷大小和旋转矩阵的变化,控制ECU输出的燃油量和喷油时间,以保证发动机正常运行。
2.点火时机控制:根据发动机的工作特性和当前工况,控制点火时机的提前或延后,以优化燃烧效率,减少排放。
3.空燃比控制:根据发动机工况和氧气传感器的反馈信号,控制燃油和空气的混合比,使其接近理论空燃比,从而提高燃烧效率。
4.发动机启动和预热控制:根据发动机启动的工作特性和环境温度,控制燃油喷射和点火时机,以尽快使发动机达到正常工作状态。
此外,在技术发展方面,发动机电喷系统的控制策略也在不断更新和优化。
例如,采用了闭环控制技术,通过氧气传感器等传感器的反馈信号,实现对燃油喷射、点火时机等参数的实时调整,以更好地适应不同的工况和环境条件。
同时,也引入了智能控制算法,通过对大量的数据进行分析和学习,使控制策略更加精确和自适应。
总之,发动机电喷系统控制策略的优化和发展是提高发动机性能、降低排放和提高燃油经济性的关键。
通过不断引入新的控制策略和技术手段,可以实现对发动机各个参数的精确控制,使发动机在不同工况下都能获得最佳的工作状态。
基于扭矩的发动机控制策略ppt

结果分析
数据分析
通过对实验数据进行分析,发现发动机扭矩与转速、喷油量、点火时刻等因 素密切相关。
结论
基于扭矩的控制策略可以有效调节发动机性能,通过调节进气门开度和持续 时间、喷油量和点火时刻等参数,可以实现发动机扭矩的优化控制。
研究限制和未来研究方向
研究限制
本次实验仅针对四缸发动机进行实验和分析,未来可以研究更多缸数和不同类型 的发动机,以验证控制策略的普适性和有效性。
控制器是用来接收传感器输出的信号,并根 据控制规律对信号进行处理,产生控制指令 ,控制被控对象的运行状态。
被控对象
执行器
被控对象是指控制系统所要控制的设备或装 置,是控制系统的主要组成部分。
执行器是根据控制器发出的指令来调节被控 对象的运行状态,常见的执行器有电动机、 电磁阀、调节阀等。
03
发动机扭矩控制策略
市场需求
随着汽车工业的发展,消费者对车辆性能和质 量的要求越来越高,因此需要研究更好的发动 机控制策略。
技术发展
随着电子技术和控制理论的进步,为基于扭矩 的发动机控制策略提供了更好的实现条件和可 能性。
研究问题和目标
研究问题
如何设计一个有效的基于扭矩的发动机控制策略,以提高发 动机性能和燃油经济性?
发动机排放控制
发动机排放控制是通过对排放物的成分、流量、温度等进行监测和控 制,以降低排放对环境的影响。
03
发动机燃烧控制
发动机燃烧控制是通过对燃烧室内燃油喷射、空气流动、燃烧时间等
参数进行精确控制,以提高发动机的动力和经济性能。
控制理论基本知识
线性控制系统
线性控制系统是指系统的输入和输出之间存在线性关系,系统 的输出可以表示为输入的究结论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接收处理多项扭矩请求
– 核实每项扭矩请求 – 快速(点火提前角控制)或慢速(进气, 燃油控制)减扭请求 – 增扭请求(进气控制)
Delphi Confidential
1
白彬毅, 5/15/2005
扭矩控制的优点
全时扭矩控制的优越性
–
– –
扭矩是发动机对车辆的基本输出量 使得进排气相位控制更易实现并且性能更优 驾驶性 » “自动” 补偿由于变速箱,进排气相位变化, 空燃比变化, 催 化器起燃控制引起的扭矩变化 » 减少加速踏板快速运动引起的冲击 » 为实现对应加速踏板的车辆响应可调性提供了更多空间(除 油门全开时) » 更精确的发动机附件及摩擦扭矩补偿
扭矩控制策略的目标
根据驾驶员意图实现最佳车辆响应
– 调整发动机扭矩输出以实现驾驶性目标 » 对应加速踏板输入的最佳响应 – 协调各控制装置以降低油耗 – 协调并充分发挥电子节气门, 进排气门正时及自动变速箱对动力 总成性能的改善 – 在发动机硬件性能允许范围内给予空燃比, 点火提前角, EGR, 进排相位及自动变速箱档位以灵活变化的空间, 同时不影响发动 机扭矩输出
» 在当前燃油, 点火提前角和进气量情况下, 包括由于扭矩控制引起的上述 量变化情况下的扭矩值
– 慢速控制扭矩(Slow Torque)
» 用于进气或燃油控制的目标扭矩
– 快速控制扭矩(Fast Torque)
» 用于点火提前角控制的目标扭矩 » 用于满足车辆驱动力或变速箱要求的扭矩控制
Delphi Confidential
» 用于克服发动机运动阻力, 泵气损失和附件阻力的扭矩
– 净扭矩(Net torque)
» 从发动机输出至变速箱的扭矩 - 不考虑发动机惯性矩 » 也称发动机制动力矩或飞轮力矩
– 未经控制扭矩(Unmanaged torque)
» 当未实施扭矩控制, 例如车辆驱动力控制时的扭矩值
– 经控制扭矩(Managed torque)
–
» »
限速 – 发动机转速及车速 …
Delphi Confidential
6
白彬毅, 5/15/2005
扭矩控制的原理结构
4)扭矩控制
根据期望指示平均压力(IMEP)计算期望燃油质量 在燃油量基础上计算其它参数(气量, 点火提前角) 缸内燃烧状况控制要求计算指示平均压力(IMEP)
– 进气量:计算调节所需节气门开度及进排气门相位, 以实现期望扭矩值(慢 速扭矩控制目标值) – 推迟点火提前角以满足快速扭矩控制目标值 – 如电子节气门失灵则断油以减扭以满足慢速扭矩控制目标值
5
白彬毅, 5/15/2005
扭矩控制的原理结构
3)扭矩请求源的选择
–
增扭源选择 (最小期望扭矩) » 加速踏板,,,, 发动机倒拖控制, 限速控制等 » 怠速控制 » 定速巡航控制 » 车辆稳定性控制 减扭源选择 (最大期望扭矩) » 车辆驱动力控制 » 变速箱控制
保证换档质量及防破坏性驾驶
Delphi Confidential
7
白彬毅, 5/15/2005
扭矩估测流程扭矩估Fra bibliotek逻辑概要燃油/进气量变 + 空燃比
计算最佳点火提前角
(MBT)
计算发动机热效率
计算最佳点火提前角
(MBT)的延迟
计算最佳点火提前角 (MBT)下扭矩值
计算由于点火提前角 延迟引起的扭矩损失
计算发动机摩擦扭矩
计算发动机净扭矩
–
–
100%
Percentage of Indicated MBT Torque [%]
90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0 5 10 15 20 25
Extrapolated Portion of Curve
KtTRQC_Pct_TorqLossFromSprkRtd
Delphi Confidential
2
白彬毅, 5/15/2005
常用的扭矩概念
– 驾驶员意图扭矩(Driver intent torque)
» 基于驾驶员的意图请求(来自加速踏板)
– 最大发动机扭矩(Maximum engine torque)
» 在当前发动机转速及环境调件下节气们全开时的发动机净 扭矩
– 所需指示平均压力(IMEP)
» 希望发动机产出的指示平均压力, 此量与发动机指示扭矩成 正比, 单位为千帕(kPa)
Delphi Confidential
3
白彬毅, 5/15/2005
常用的扭矩概念
– 指示扭矩(Indicated torque)
» 由混合汽燃烧产生的扭矩
– 摩擦扭矩(Friction torque)
30
35
40
45
50
Delta Spark Retard from MBT [CA deg.]
Delphi Confidential
8
白彬毅, 5/15/2005
扭矩估测简介
指示扭矩计算: – 模型计算从燃油化学能到动能的转
–
燃油化学能 =燃油质量*燃油热值 » 燃油质量计算是基于燃油喷射量
在最佳点火提前角(MBT)时的指示扭矩 = 燃油化学能*发动机热效率*转化常数 » 发动机热效率 = f(RPM, A/F Ratio) - 指示效率 » 在最佳点火提前角(MBT)时和理想空燃比条件下的指示效率近乎不变 根据实际点火提前角调整指示扭矩 » 最佳点火提前角(MBT) = f(RPM, Load) + EGR Spark {for VVT, based on cam angle} » 扭矩损失 = f(spark delta from MBT)
4
白彬毅, 5/15/2005
扭矩控制的原理结构
1) 发动机扭矩估测
– 根据EMS传感器及发动机数据估测指示扭矩, 净扭矩, 摩擦扭矩, 发动机附件阻力扭矩
2) 期望扭矩计算
– 期望净扭矩的计算是基于: » 加速踏板位置 » 发动机转速 » 变速箱档位 » 进气温度和压力 » 电子节气门工作状况
Delphi Confidential
– 最大发动机负扭矩(Maximum negative engine torque)
» 在当前发动机转速及环境调件下断油时的发动机净扭矩
– 扭矩请求源(Torque command source)
» 可能发出扭矩请求的EMS控制模块: 加速踏板, 定速巡航, 变速箱, 车辆驱动力控制, 发动机倒拖控制, 限速控制等