八年级数学竞赛讲座整体的方法附答案

合集下载

八年级数学竞赛题及答案解析(K12教育文档)

八年级数学竞赛题及答案解析(K12教育文档)

八年级数学竞赛题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学竞赛题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学竞赛题及答案解析(word版可编辑修改)的全部内容。

八年级数学竞赛题(本检测题满分:120分,时间:120分钟)班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .4 2。

下列各式中计算正确的是( )A 。

9)9(2-=- B.525±= C.3311()-=- D.2)2(2-=-3。

若901k k <<+ (k 是整数),则k =( )A. 6B. 7C.8D. 9 4。

下列计算正确的是( ) A 。

ab ·ab =2abC.3—=3(a ≥0) D 。

·=(a ≥0,b ≥0)5。

满足下列条件的三角形中,不是直角三角形的是( ) A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C 。

三边长之比为3∶4∶5 D 。

三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对7。

将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h 的取值范围是( ) A .h ≤17 B .h ≥8 C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A.(4, -3) B 。

初中数学竞赛辅导讲义及习题解答 第17讲 解直角三角形

初中数学竞赛辅导讲义及习题解答 第17讲  解直角三角形

第十七讲解直角三角形利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用:1.为线段、角的计算提供新的途径.解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限.2.解实际问题.测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形.【例题求解】【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(24-)m,则电线杆AB62的长为.思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件.【例2】如图,在四边形ABCD中,AB=24-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( )A.60°B.67.5°C.75°D.无法确定思路点拨通过对内分割或向外补形,构造直角三角形.注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】如图,在△ABC中,∠=90°,∠BAC=30°,BC=l,D为BC边上一点,tan∠ADC 是方程2)1(5)1(322=+-+x x x x 的一个较大的根?求CD 的长. 思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米)思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可.注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.学历训练1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 .2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =34,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为 .3.如图,旗杆AB ,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m ,达到D ,在D 处测得A 的仰角为45°,则旗杆的高为 .4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DCAD = .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC ,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l ,若∠B 是锐角,则∠C 的度数是 .12.已知等腰三角形的三边长为 a 、b 、c ,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC ,CE=31BC ,则∠1和∠2的大小关系是( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF ,点E 在CB 的延长线上,EF 交AB 于点G .(1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C 处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示.测角器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).参考答案。

【八年级数学代数培优竞赛专题】专题8 分式的运算技巧【含答案】

【八年级数学代数培优竞赛专题】专题8 分式的运算技巧【含答案】

专题8 分式的运算技巧知识引入一天,数学家觉得自己受够了数学,于是他跑到消防队去宣布他想当消防员。

消防队长说:“您看上去不错,可是我得先给您一个测试.”消防队长带数学家到消防队后院小巷,巷子里有一个货栈,一只消防栓和一卷软管.消防队长问:“假设货栈起火,您怎么办?”数学家回答:“我把消防栓接到软管上,打开水龙,把火浇灭.”消防队长说:“完全正确!最后一个问题:假设您走进小巷,而货栈没有起火,您怎么办?”数学家疑惑地思索了半天,终于答道:“我就把货栈点着.”消防队长大叫起来:“什么?太可怕了!您为什么要把货栈点着?”数学家回答:“这样我就把问题化简为一个我已经解决过的问题了。

”这则笑话看起来很荒谬,但却道出了解决数学问题的重要思想,那就是转化思想,转化思想在数学中有着广泛的应用,比如在进行分式除法运算的时候,首先要运用除法法则,将除法运算转化为乘法运算,然后再解决。

知识解读1.分式乘除法运算的一般步骤:(1)利用除法法则,先将除法运算转化为乘法运算;(2)运用分式的乘法法则,用分子的积作为积的分子,用分母的积作为积的分母;(3)把分式的分子、分母分别写成它们的公因式与另一因式的积的形式,如果分式的分子、分母为多项式时,先要进行因式分解;(4)约分,得到最后的结果.2.异分母分式加减法的步骤:(1)正确地找出各分式的最简公分母;(2)准确地得出各分式的分子、分母应乘的因式;(3)通分后,进行同分母分式的加减运算;(4)公分母保持积的形式,将各分子展开;(5)将得到的结果化成最简分式。

3.正确进行分式的混合运算,需弄清以下各要点:(1)分清运算级别,按照“从高到低,从左到右,括号从小到大”的运算顺序进行;(2)将各分式的分子、分母分解因式后再进行运算;(3)遇到除法运算时,可以先化成乘法运算;(4)注意处理好每一步运算中遇到的符号;(5)最后结果要注意化简;(6)在运算过程中,每进行一步都要检验一下,不要到最后才检验。

初中数学竞赛讲座——数论部分1(进位制)

初中数学竞赛讲座——数论部分1(进位制)

第一讲正整数的表示及进位制一、基础知识:1.我们通常接触的整数都是“十进制”整数,十进制计数法就是用0,1,2…9十个数码,采用“逢十进一”的法则进行计数的方法。

例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为:1999=1×1000+9×100+9×10+9底数为10的各整数次幂,恰好是十进制数的各个位数:100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1位上的数)故1999=1×103+9×102+9×101+9×1003na记作:3na=10n-1+…+102a n-2+10其中最高位a1≠0,即,其它则是0≤a1,a.各位上的数字相同的正整数记法:999=1000-1104-1,∴999n个=10n-1111n个=1019n-,333n个=103n555n个=5(101)9n-解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据示0到9的整数这一性质进行讨论。

.二进制及其它进制二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。

例如二进制中的111记为(111)2111=1×22+1×2+1=73na )2记作:3na=2n-1××a3+…+22×a其中最高位a1≠0,,其它则是0≤a1,a2,位数(n为正整数3na )b记作:3na=b n-1××a3+…+b2×a其中最高位a1≠0,,其它则是0≤a1,(一)十进制转二进制(整数部分)辗转相除直到结果为,将余数和最后的60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。

八年级数学竞赛培优专题及答案 28 整体与完形

八年级数学竞赛培优专题及答案 28 整体与完形

专题28 整体与完形阅读与思考许多几何问题,常因图形复杂、不规则而给解题带来困难,这些复杂、不规则的图形,从整体考虑,可看作某种图形的一部分,如果将它们补充完整,就可得到常见的特殊图形,那么就能利用特殊图形的特殊性质转化问题,这就是解几何问题的补形法,常见的补形方法有:1.将原图形补形为最能体现相关定理、推论、公理的基本图形;2.将原图形补形为等腰三角形、等边三角形、直角三角形等特殊三角形;3.将原图形补形为平行四边形、矩形、正方形、梯形等特殊四熟悉以下图形:例题与求解【例1】如图,已知CD∥AF,∠CDE=∠BAF,AB⊥BC,∠E=080,∠C=0124,则∠AFE=_________度. (北京市竞赛试题) 解题思路:有平行的条件,不妨将六边形补形为较为规整的平行四边形.B【例2】设,,a b c分别是△ABC的三边长,且满足a a bb a b c+=++,则它的内角∠A、∠B的关系是().A.∠B>2∠AB.∠B=2∠AC.∠B<2∠AD.不确定(全国初中数学竞赛试题)解题思路:从化简已知等式入手,并补出相应的图形.【例3】 如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥CE ,垂足分别为F ,G ,连结FG ,延长AF ,AG ,与直线BC 相交,易证()12FG AB BC AC =++. 若(1)BD ,CE 分别是△ABC 的内角平分线(如图2);(2)BD 为∠ABC 的内角平分线;(3)CE 为△ABC 的外角平分线(如图3),则在图2、图3两种情况下,线段FG 与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.(黑龙江省中考试题)解题思路:既有平分线又有垂线,联想到等腰三角形性质,考虑将图形补成等腰三角形.图3图2图1【例4】 如图,四边形ABCD 中,∠ABC =0135,∠BCD =0120,AB ,BC =5 CD =6,求AD 的长.(全国初中数学竞赛试题)解题思路:由于四边形ABCD 是一般四边形,所以直接求AD 比较困难,应设法将AD 转化为特殊三角形的边.A23A 54例4题图 例5题图 【例5】 如图,凸八边形1238...A A A A 中,∠1A =∠5A ,∠2A =∠6A ,∠3A =∠7A ,∠4A =∠8A ,试证明:该凸八边形内任意一点到8条边的距离之和是一个定值.(山东省竞赛试题)解题思路:本例是一个几何定值证明问题,关键是将八边形问题转化为三角形或四边形问题来解决,若连结对角线,则会破坏一些已知条件,应当考虑向外补形.【例6】 如图,在△ABC 中,∠ABC =045,点D 在边BC 上,∠ADC =060,且12BD CD =.将△ACD 以直线AD 为轴作轴对称变换,得到△AC D ',连结BC '. (1) 证明:BC '⊥BC ; (2) 求∠C 的大小.(全国初中数学竞赛天津赛区初赛试题)解题思路:本题分别考查了等边三角形的性质与判定、全等三角形的性质与判定及轴对称的性质,解题的关键是利用角平分线的性质与判定构造全等三角形,然后利用全等三角形的性质即可解决问题.D能力训练1.如图,在四边形ABCD 中,∠A =∠C =090,AB =AD ,若这个四边形的面积为12,则BC +CD =_____________. (山东省竞赛试题) 2. 如图,凸五边形ABCDE 中,∠A =∠B =0120,EA =AB =BC =2,CD =DE =4,则这个五边形的面积为_______________.(美国AHSME 试题)3. 如图,一个凸六边形六个内角都是0120,其中连续四条边的长依次为1,9,9,5,则该六边形的周长为______________.第1题图第2题图第3题图B4. 如图,ABCDEF 是正六边形,M ,N 分别是边CD ,DE 的中点,线段AM 与BN 相交于P ,则BPPN=_________. (浙江省竞赛试题)5. 如图,长为2的三条线段,,AA BB CC '''交于O 点,并且∠B OA '=∠C OB '=∠A OC '=060,则三个三角形的面积和123S S S ++,“=”,或“>”).(“希望杯”邀请赛试题)6. 如图,在四边形ABCD 中,∠A =060,∠B =∠D =090,BC =2,CD =3,则AB = ( ). A. 4 B. 5C.D.(广西壮族自治区中考试题)第6题图第5题图第4题图DB7. 如图,在△ABC 中,M 为BC 中点,AN 平分∠A ,AN ⊥BN 于N ,且AB =10,AC =16,则MN 等于( ).A. 2B. 2.5C. 3D. 3.58. 如图,在四边形ABCD 中,AB =BC ,∠ABC =∠CDA =090,BE ⊥AD 于E ,8ABCD S =四边形,则BE 的长为( )A. 2B. 3C.D.第7题图第8题图第9题图AA9. 如图,在四边形ABCD 中,AB =4-BC =1,CD =3,∠B =0135,∠C =090,则∠D 等于( )A. 060 B. 067.5 C. 075 D.条件不够,无法求出(重庆市竞赛试题)10. 如图,在△ABC 中,E 是AC 中点,D 是BC 边上一点,若BC =1,∠ABC =060,∠BAC =0100,∠CED =080,求2ABC CDE S S ∆∆+的值.CB11. 如图,设c 是Rt ABC ∆的斜边长,,a b是直角边,求证:a b +≤.(加拿大中学生竞赛试题)a CA12. 如图,已知八边形ABCDEFGH 所有的内角都相等,而且边长都是整数.求证:这个八边形的对边相等.FB C13. 如图,设P 为△ABC 的中位线DE 上的一点,BP 交AC 于N ,CP 交AB 于M ,求证:1AN AMNC MB+=. (齐齐哈尔市竞赛试题)B14. 一个圆内接八边形相邻的四条边长是1,另四条边长是2,求八边形的面积.专题28 整体与完形——补形法例1 134 例2 B 提示:由已知得b a ca b+=例 3 (1)()12FG AB AC BC =+-,分别延长AG 、AF 交BC 于H ,K ,则AF=KF ,AB=KB,AG=HG,AC=HC.()()111222FG HK BK BH AB AC BC ==-=+-.(2)()12FG BC AC AB =+-例4 提示:作DG ⊥BC 交BC 延长线于Q ,AM ⊥CB 交CB 延长线于M ,DN ⊥MA 于N ,则MNDQ 为矩形,19AD =例5 延长A 8A 1,A 3A 2相交于M ,延长A 2A 3,A 5A 4相交于N ,延长A 4A 5、A 7A 6相交于P ,延长A 6A 7、A 1A 8相交于Q.∵∠A 1=∠A 5, ∠A 2=∠A 6,∴∠MA 1A 2=∠PA 5A 6, ∠MA 2A 1=∠PA 6A 5, ∴∠M=∠P ,同理可证:∠N=∠Q 。

人教版数学八年级竞赛教程之如何做几何证明题附答案

人教版数学八年级竞赛教程之如何做几何证明题附答案

人教版数学八年级竞赛教程之如何做几何证明题附答案如何做几何证明题几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

为了解决几何问题,我们需要掌握常用的分析和证明方法。

其中,综合法是一种从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决的方法。

分析法则是从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止。

两头凑法则是将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

掌握构造基本图形的方法也是解决几何问题的关键。

复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

其中,证明线段相等或角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

举个例子,已知如图1所示,$\triangle ABC$中,$\angleC=90^\circ$,$AC=BC$,$AD=DB$,$AE=CF$。

求证:$DE=DF$。

分析:由$\triangle ABC$是等腰直角三角形可知,$\angleA=\angle B=45^\circ$,由$D$是$AB$中点,可考虑连结$CD$,易得$CD=AD$,$\angle DCF=45^\circ$。

从而不难发现XXX。

证明:连结$CD$,可得$AC=BC$,$\angle A=\angle B$,$\angle ACB=90^\circ$,$AD=DB$,$CD=BD=AD$,$\angle DCB=\angle B=\angle A$,$AE=CF$,$\angle A=\angle DCB$,$AD=CD$。

初中数学竞赛讲座数论的方法技巧(上)附答案

初中数学竞赛讲座数论的方法技巧(上)附答案

数学竞赛讲座数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=a n10n+a n-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

八年级数学竞赛讲座多边形的边角与对角线附答案

八年级数学竞赛讲座多边形的边角与对角线附答案

第十四讲多边形的边角与对角线边、角、对角线是多边形中最基本的概念,求多边形的边数、内外角度数、对角线条数是解与多边形相关的基本问题,常用到三角形内角和、多边形内、外角和定理、不等式、方程等知识.多边形的内角和定理反映出一定的规律性:(n —2)X 180°随n的变化而变化;而多边形的外角和定理反映出更本质的规律;360。

是一个常数,把内角问题转化为外角问题,以静制动是解多边形有关问题的常用技巧.将多边形问题转化为三角形问题来处理是解多边形问题的基本策略,连对角线或向外补形、对内分割是转化的常用方法,从凸n边形的一个顶点引出的对角线把凸n边形分成(n_2)个多角形,凸n边形一共可引出n(n—3)对角线.2例题求解【例1】在一个多边形中,除了两个内角外,其余内角之和为2002° ,则这个多边形的边数是______________ (江苏省竞赛题)思路点拨设除去的角为。

,y°,多边形的边数为n,可建立关于x、y的不定方程;又0° <x<180° , 0°<y<180。

,又可得到关于n的不等式•故有两种解题途径,注意n为自然数的隐含条件.链接世界上的万事万物是一个不断地聚合和分裂的过程,点是几何学最原始的概念,点生线、线生面、面生体,几何元素的聚合不断产生新的图形,另一方面,不断地分割已有的图形可得到新的几何图形,发现新的几何性质,多边形可分成三角形,三角形可以合成其他一些几何图形.【例2】在凸10边形的所有内角中,锐角的个数最多是()A . 0B . 1C . 3D . 5(全国初中数学竞赛题)思路点拨多边形的内角和是随着多边形的边数变化而变化的,而外角和却总是不变的,因此,可把内角为锐角的个数讨论转化为外角为钝角的个数的探讨.【例3】如图,已知在厶ABC中,AB= AC AD丄BC于D,且AD=BC=4若将此三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中直角),并分别写出所拼四边形的对角线的长.(乌鲁木齐市中考题)A思路点拨把动手操作与合情想象相结合,解题的关键是能注意到重合的边作为四边形对角线有不同情形.注教学建模是当今教学教育、考试改革最热门的一个话题,简单地说,“数学建模”就是通过数学化(引元、画图等)把实际问题特化为一个数学问题,再运用相应的数学知识方法(模型)解决问题.本例通过设元,把“没有重叠、没有空隙”转译成等式,通过不定方程求解.【例4】在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360 ° )时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正四边形,正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.(陕西省中考题)止多边形边数3 \—1 —5 6 ]…- --- -------- - -- - ------ U --- ----- ----- i ----------思路点拨本例主要研究两个问题:①如果限用一种正多边形镶嵌,可选哪些正多边形;②选用两种正多边形镶嵌,既具有开放性,又具有探索性•假定正n边形满足铺砌要求,那么在它的顶点接合的地方,n 个内角的和为360 °,这样,将问题的讨论转化为求不定方程的正整数解.【例5】如图,五边形ABCDE的每条边所在直线沿该边垂直方向向外平移4个单位,得到新的五边形A'B'C'D'E'(1)图中5块阴影部分即四边形AHA'G BFB'P、COC'N DMD'L EKE'I能拼成一个五边形吗?说明理由.(2)证明五边形A'B'C'D'E'的周长比五边形ABCD正的周长至少增加25个单位.(江苏省竞赛题)学力训练1 •如图,用硬纸片剪一个长为16cm 宽为12cm 的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是 __________ cm,周长最小的是cm•( 选6《荚国中小学数学课程标准》)2. ______________________________________ 如图,/ 1 + Z 2+Z 3+Z 4+Z 5+Z 6=3. _____________________________________________________________________ 如图,ABCD 是凸四边形,AB=2, BC=4 CD=7则线段AD 的取值范围是 ___________________________________ 4•用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案: (1) 第4个图案中有白色地面砖 _______ 块; (2) 第n 个图案中有白色地面砖 _______ 块. (江西省中考题)思路点拨(1)5 块阴影部分要能拼成一个五边形须满足条件: ,A'GB' ; B'PC' ; C'ND' ; D'LE' ; E'lA'点分别共线; /1+ / 2+ / 3+ / 4+ / 5=360;(2)增加的周长等于A'H+A'G+B'F+B'P+C'0+C'N+D'M+D'L+E'K+E'l ,用圆的周长逼近估算.A . 4笹V 命C . 6 个7第3个(“希望杯”邀请赛试题)6. —个凸多边 形的每一内角都等于 140°,那么,从这个多边形的一个顶点出发的对角线的条数是 ()A. 9条 B . 8条 C . 7条 D . 6条7 •有一个边长为 4m 的正六边形客厅,用边长为 50cm 的正三角形瓷砖铺满,则需要这种瓷砖()A . 216 块B . 288 块C . 384 块D . 512 块 (“希望杯”邀请赛试题)&已知△ ABC 是边长为2的等边三角形,△ ACD 是一个含有30°角的直角三角形,现将△ ABC 和△ ACD 拼 成一个凸四边形 ABCD (1))画出四边形ABCD⑵ 求出四边形 ABCD 的对角线BD 的长.(上海市闵行区中考题)9 .如图,四边形 ABCD 中, AB= BC = CD / ABC=90,/ BCD= 150°,求/ BAD 的度数. (北京市竞赛题)10. 如图,在五边形 A 1A 2AAA 中,B 是A 的对边AA 4的中点,连结 A 1B 1,我们称 A 1B 1是这个五边形的一条 中对线,如果五边形的每条中对线都将五边形的面积分成相等的两部分,求证:五边形的每条边都有一条11. _______________________ 如图,凸四边形有 _________________________ 个;/ A+Z B+Z C+Z D+Z E+Z F+Z G ___________________(重庆市竞赛题)12. ________________________________________________________________________________________ 如对角线和它平行.(安徽省中考|第勺魁)(% 11题」【第12题》图,延长凸五边形A1AAA4A的各边相交得到5个角,Z B,Z B, Z B3, Z B,Z B s,它们的和等于___________________若延长凸n 边形(n > 5)的各边相交,则得到的 n 个角的和等于 ________ . (“希望杯”邀请赛试题)13•设有一个边长为1的正三角形,记作 A (图a ),将每条边三等分,在中间的线段上向外作正三角形, 去掉中间的线段后所得到的图形记作A 2(图b ),再将每条边三等分,并重复上述过程,所得到的图形记作A 3(图C );再将每条边三 等分,并重复上述过程,所得到的图形记作A 4,那么,A 的周长是 _________ ; A 这个多边形的面积是原三角形面积的 __________ 倍. (全国初中数学联赛题)14 .如图,六边形 ABCDEF 中, Z A=Z B=Z C=Z D=Z E=Z F,且 AB+BC=11FA — CD=3 贝U BC+DC __ •( 北 京市竞赛题)15.在一个n 边形中,除了一个内角外,其余 (n 一 1)个内角的和为2750°,则这个内角的度数为()A . 130°D . 140°C . 105 °D . 120°16.如图,四边形 ABCD 中,Z BAD=90 , AB=BC=23 , AC=6 AD=3,贝U CD 的长为() A. 4 B . 4、2 C . 3 .2 D . 3注 按题中的方法’不断地做下去,就会成为下图那样的图形,它的边界有一个美丽的名称一一雪花曲 线或科克曲线(瑞典数学家),这类图形称为“分形”,大量的物理、生物与数学现象都导致分形,分形是 新兴学科“混沌”的重要分支.17.如图,设Z CGE a ,则Z A+Z B+Z C+Z D+Z C+Z F=()l 第 \3.3(江苏省竞赛题)D AH(第20题」ACA. 360° 一 a B . 270° — a C. 180 ° +a D . 2a (山东省竞赛题) 18.平面上有 A 、B, C D 四点,其中任何三点都不在一直线上,求证:在△ 中至少有一个三角形的内角不超过 45 °.19. 一块地能被n 块相同的正方形地砖所覆盖,如果用较小的相同正方形地砖,那么需 n+76块这样的地砖才能覆盖该块地,已知 n 及地砖的边长都是整数,求n .(上海市竞赛题)20. 如图,凸八边形 ABCDEFG 的8个内角都相等,边 AB BC CD DE EF 、FG 的长分别为7, 4, 2, 5, 6, 2,求该八边形的周长.21•如图I 是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床 头部分被折到了床面之下(这里的A B C 、D 各点都是活动的),活动床头是根据三角形的稳定性和四边 形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形 ABCD 中, AB=6, CD=15那么BC AD 取多长时,才能实现上述的折叠变化 ?的大小,并画出这样的凸 n 边形的草图.ABC △ ABD △ ACD △ BDC(淄博市中考题)22.—个凸n 边形由若干个边长为1的正方形或正三角形无重叠、无间隙地拼成,求此凸 n 边形各个内角C A S09 14-1ns raM的边角馬对角ti【例IE求解】fl 1 "或脂由逢伽2002*<(B-2>X180*<2Q02' + 360MJW 13«2 3C外幣中範懈的个疲不舗超过3忙•又内划与内掛中盥驚羅多不16亀it 3牛+优3屋过适当携合可以组戍以下网种不同理弑的囚边離*时角拔民井JH为K *72*2和2 帀4巽和”芈+4)正三用需、正四边厢I或正方幣)、正珀边幣、假定在樓合处一冀有*块正”边序地砖.由于正n边曙的所有肉希那相誓禺―初X180■羽°JTW 人・;^ = 2 +不±・S 故<-2|4t rt-2-U2,4 碍用=氛4 販6曲此可S1.只有三ff正参边形的瓷砖■可戲檢豪束傭地、暫正三曲幣、正方腦《1圧六边麻一(3>如1正方砸稍iEA边旌■覃圈如右「设在一牛IB点周屈有抽亍正方带的用f d正人边形的魁,犀幺,叭”扈是方程曲・M'4-n • 135*-360-的畫数11.即2m + 3ii-8的整敢歸.f m" 1 •「这牛方程的BftHRW“一胡・・=杆舍条件的ffiJBR有「种.I 片■-£9fS(D ffl中5块祈番部舟电拼虐一牛水五边彰BF-»AG-^H-E/-£K»DL-=DM-CN^<;O«flP=4ZBF/T « Z AGA'^ZCTX* - Z.BPH'匸£DMIY^^CNC■/£!<『■£ DLD* = “ HA r -ZEf^-90*A(ZA +ZB J+ ZC + Zi/■+*Zf/)+ <Zl + Z2 + Z3±Z4 + Z5) = 5X 180', lffJZA H+ ziB,+ZC/+Z£X+ZE'=(5-2)Xiao*-3X 180" A Zl+Z2 + Z3+Z4 + Z5-360D⑵爹边带増加的腾长等于A'H + A^ + B'F + B'P + ro+rt + DM+^L^^K+n.Xffllfr^ffl中阴童,但草构戍的五边矗的隔长"谨五边弼存在一个tS* i的最大囿•其周KS>MfllK#«.S>Bx>aX3J J4-25. 12>25.【学力训练】1.72.56 2- 360* J.设AD-<r.J|i| 7-(4+2)<j<7 + 4 + 2t得]Vi<13 4. (DlBi(2)4ff+2.窕ii |•边理外拒申3个角为惋盘"即内桶申星多碑3牛下是|ft命+褂M€3+2N5t. D 7. C»>■取儿為的中点Bt'ft為曲人為Si A, 4A* •因力AjBy-BtA^SfU ■釦,・片・又因为四边曲為冷儿& 与四边昭4民儿息的面积相积所以鬼屮幵=S A7入.同理艮内“丹-S^y 所以亀**九=3厶22,所以厶為乩儿与△凡九久的益其边A.A,上的髙相算俪联几凡"A.A”同理可证五边带.4//]儿起的邯条边分閘与一斎対角线平行.11* 7,540" 13+180*T(w —2) * IfiO*—n * 180*+(jf —2) * 180*=(w —4) * 180"IX (D3X (-^- J1=^ I(t)S+3X yS+ax 4 X ^S+31X4X ^S-M. 14向外补幣得正三祐坯IS. A 16. D HD作DE丄于E 17. D1乩假谡从四点中(fiS出的三点构赋的三竟幣的三牛内瀚AH大于45J当九BCD构成&四边形时*可碍各角和大于前丁・舟四<1 )108* *120", “一^小単*«. ttl图,可井和得BD“7冶皿・2拧». 75*11边誓内坤*1为閔3矛盾1肖4BCD 构虚凹四边梅时+可側各坤和大于18^,与三输带内角和为180D Jffi.1・ 设丈小正方序边悅分别为才寸.则"P = J + 76〉*,若(x.y) = J,记j- = dxi ・_/・曲必*5 ,y t )=1*则JIJ -? = (M + 76)^I解榕 (Ji + >i )<j| '->])«* 76j^ 3! X 19 X .20.取向延长AB.CD.EF.GH 暂呼边MNPQ,原人边形内谢祁相爭.英邯一牛內角为n 損阳.毎一个外爲为45".因此MNP Q 为快方形,△HPC\ADQE,AFMG* iANHfl 是等眾直命三肃惑.设GH=r.HA = y ・由MQ-NP,得MF+FE+EQ-M4 +AB+BP,即血+6 + 滲 =%十7 + 2応解得$ = 3亠庄•同理由MN^QP.m 工=3十2 72.^BEA 边带周怏为32+A21.由图2的第一舎图形得MO+CD 4 H AD 2.即W + + W = ①又由图2的第三和第0M 个图旳得AB+AD=CD+BC,即6+AD=lS+BC ②解由①、③联立的方程堀得BC-30,AD=39.tt BC\AD^»j^ 30和39时"才能賓现上述的折畏蜚代.12,因为凸十一边矗是由正三储舷和正方幣擠嵐的,所以.各内轴的大小只可能是60\90M2Q*,l50*.设这4牛角个敷分别为 J j ■十 _y+z+ u*・]13\$、*、越■剧 I,\60x+90>+ 120r+ l50ui= (11 -2) X 180化简冉3z 十2y+w ・l*正豐数解为x = ^=0,s=l.w-10,ii 说明.所求凸十一边形一个角毘120笃它由两牛正三您形 的内角拼琥•其余10个角都是150*,*由一牛iE 三m 矗的内帝和i 片正方形的内角携成.草用略.j-t = 10>! =94* J -324. (8-2) X 1B0'。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十五讲 整体的方法
我们知道成语“一叶障目”和“只见树木,不见森林”,它们的意思是说,如果过分关注细节,而忽视全局,我们就不会真正理解一个问题.
解数学题也是这样,在加强对局部的研究与分析的基础上,从整体上把握问题.所谓整体方法就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.
整体方法在代数式的化简与求值、解方程(组)、几何解证等方面有广泛的应用,整体代人、叠加叠乘处理、整体运算、整体设元、整体处理、设而不求、几何中的补形等都是整体方法在解数学问题中的具体运用.
例题求解
【例1】 若x 、y 、z 满足3x+7y+z=1和4x+10y+z=2001,则分式y
x z
y x 3200020002000+++的值为 .(安
庆市竞赛题) 思路点拨 原式=
y
x z y x 3)
(2000+++,视x+3 y 与x+y+z 为两个整体,对方程组进行整体改造.
【例2】 若△ABC 的三边长是a 、b 、c 且满足22444c b c b a -+=,22444c a a c b -+=,22444b a b a c -+=,则△ABC 是( )
A .钝角三角形
B .直角三角形
C .等腰直角三角形
D .等边三角形 ( “希望杯”邀请赛试题)
思路点拨 三个等式结构一样,孤立地从一个等式入手,都导不出a 、b 、c 的关系,不妨从整体叠加入手.
【例3】 已知2
1994
1+=
x ,求多项式20023)199419974(--x x 的值. 思路点拨 直接代入计算繁难,由已知条件得199412=-x ,两边平方有理化,可得到零值多项式,整体代入求值.
【例4】如图,凸八边形A l A 2A 3A 4A 5A 6A 7A 8中,∠A l =∠A 5,∠A 2 =∠A 6 ,∠A 3 =∠A 7 ,∠A 4=∠A 8,试证明:该凸八边形内任意一点到8条边的距离之和是一个定值.
(山东省竞赛题)
思路点拨 将八边形问题转化为熟悉的图形来解决,想象完整四边形截去4个角就得到八边形,就可知向外作辅助线,关键是证明对边平行.
【例5】已知4×4的数表,如果把它的任一行或一列中的所有数同时变号,称为一次变换,试问能否经过有限次变换,使表中的数全变为正数?
思路点拔 若按要求去实验,则实验次数不能穷尽,每次变换只改变表中一行(或一列)中4个数的符号,但并不改变这4个数乘积的符号,这是解本例的关键.
注 由“残部”想“整体”,修残补缺,向外补形,恢复原形,将其拓展为范围更广的、其特征更为明显,更为熟悉的几何图形,这是解复杂几何问题的常用技巧.
从整体上考察问题的数量性质、表现形式是对整体上不变性质、不变量的特性的把握.
学历训练
1.如果012=-+x x ,则3223++x x = .
( “希望杯”邀请赛试题) 2.已知
2
3112
22--=
-x x ,那么)1
()1111(
2x x x
x x +-÷+--= . (2001年武汉市中考题) 3.已知x 是实数,且满足222322=--+x x x
x ,那么x x 22+的值是 .
(河南省竞赛题)
4.如图,六边形ABCDEF 中,AB ∥DE 且AB=DE ,BC ∥EF 且BC=EF ,AF ∥CD 且AF=CD ,∠ABC=∠DEF=120°,∠AFE=∠BCD=90°,AB=2,BC=1,CD=3,则该六边形ABCDEF 的面积是 . 5.已知2
51-=
a ,2
51+=
b ,则722++b a 的值为( )
A .3 D .4 C . 5 D .6 (2003年杭州市中考题)
6.买20支铅笔、3块橡皮、2本日记本需32元;买39支铅笔、5块橡皮、3本日记本需58元;则买5支铅笔、5块橡皮、5本日记本需( ) A .20元 B .25元 C .30元 D .35元 (江苏省竞赛题)
7.已知a 1,a 2,…a 2002均为正数,且满足M=( a 1+ a 2+…+ a 2001)( a 2+ a 3+…+ a 2001-a 2002),N =(a 1+ a 2+…+ a 2001-a 2002) (a 2+ a 3+…+ a 2001),则M 与N 之间的关系是( ) A .M>N B .M<N C .M =N D .无法确定 (2002年绍兴市竞赛题)
8.已知5=-b a ,且10=-b c ,则ac bc ab c b a ---++222等于( ) A .105 D .100 C .75 D .50 (北京市竞赛题)
9.将2,3,4,5,6,7,8,9,10,11这10个自然数填到图中10个格子里,每个格子只 填一个数,使得“田”字形的4个格子中所填数字之和都等于P ,求户的最大值.
(江苏省竞赛题)
10.如图,CD ∥AF ,∠CDE=∠BAF ,AB ⊥BC ,∠C=124°,∠E=80°,求∠F 的度数.
11.设2122+=-b a ,2122-=-c b ,则222222444a c c b b a c b a ---++的值等于 . ( “希望杯”邀请赛试题)
12.已知32=+xy x ,22-=+y xy ,则2232y xy x --2= . (湖北省数学竞赛题)
13.若22+=x ,22-=y ,则66y x +的值是 . 14.正数x 1、x 2、x 3、x 4、x 5、x 6同时满足
1165432=x x x x x x ,2265431=x x x x x x ,3365421=x x x x x x ,44
65321=x x
x x x x ,
6564321=x x x x x x ,96
54321=x x
x x x x ,则x 1+x 2+x 3+x 4+x 5+x 6z 的值为 .
(上海市竞赛题)
15. 已知实数x ,y 满足xy+x+y= 9,2022=+xy y x z ,则22y x +的值为( ) A .6 B .17 C .1 D .6或17
16.如图,在四边形ABCD 中,AB=4-2,BC =1,CD=3,∠B=135°,∠C =90°,则∠D 等于( )
A .60°
B .67.5°
C .75°
D .无法确定 (重庆市竞赛题)
17.若实数a 、b 满足0582=+-a a ,0582=+-b b ,则1
1
11--+
--b a a b 的值为( ) A -20 B .2 C .2或-20 D .2或20 18.设 a 、b 、c 为实数,3
22π+
-=b a x ,6
22π+
-=c b y ,2
22π
+
-=a c z ,则x 、y 、z 中至少有一个( )
A .大于零
B .等于零
C .不大于零
D .小于零
(全国初中数学竞赛题)
19.如图,四边形ABCD 中,∠ABC=135°,∠BCD=120°,AB=6,BC=5-3,CD=6,求AD 的长. 20.如图,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使 任意连续相邻的5个圆圈内的数的和均不大于某一个整数M ,求M 的最小值并完成你的填图.
21.求系数a 、b 、c 间的关系式,使方程⎪⎩

⎨⎧=++=++=++000222b ax cx a cx bx c bx ax 有实数解.
22.有三种物品,每件的价格分别为2元、4元和6元,现在用60元买这三种物品,总数共16件,而钱要恰好用完,则价格为6元的物品最多买几件?价格为2元的物品最少买几件?
(河南省竞赛题)。

相关文档
最新文档