八年级数学竞赛讲座三角形的有关概念
初二三角形讲义

初二三角形讲义三角形是初中数学中非常重要的一个几何图形,从初二开始,我们将对三角形进行深入的学习和研究。
这不仅是为了应对考试,更是为了培养我们的逻辑思维和空间想象能力。
一、三角形的定义和基本元素三角形是由不在同一直线上的三条线段首尾顺次相接所组成的封闭图形。
这三条线段叫做三角形的边,它们的交点叫做三角形的顶点,相邻两边所组成的角叫做三角形的内角,简称角。
三角形有三个顶点、三条边和三个角。
在表示三角形时,我们通常用三个大写字母来表示顶点,如△ABC。
二、三角形的分类1、按角分类(1)锐角三角形:三个角都小于 90 度的三角形。
(2)直角三角形:有一个角等于 90 度的三角形。
(3)钝角三角形:有一个角大于 90 度小于 180 度的三角形。
2、按边分类(1)不等边三角形:三条边都不相等的三角形。
(2)等腰三角形:有两条边相等的三角形。
其中,相等的两条边叫做腰,另一条边叫做底边。
两腰的夹角叫做顶角,腰与底边的夹角叫做底角。
(3)等边三角形:三条边都相等的三角形,也叫正三角形。
三、三角形的三边关系三角形的任意两边之和大于第三边,任意两边之差小于第三边。
这是判断三条线段能否组成三角形的重要依据。
例如,有三条线段 a、b、c,如果 a + b > c,a + c > b,b + c > a 同时成立,那么这三条线段可以组成三角形;反之,如果存在 a +b ≤ c,a +c ≤ b 或者 b +c ≤ a 中的任何一种情况,那么这三条线段就不能组成三角形。
同时,我们还可以利用三边关系来确定第三边的取值范围。
如果已知三角形的两条边分别为 a 和 b,那么第三边 c 的取值范围是|a b| <c < a + b 。
四、三角形的内角和三角形的内角和是 180 度。
这是一个非常重要且常用的定理。
我们可以通过多种方法来证明这个定理,比如将三角形的三个角剪下来拼在一起,会发现正好组成一个平角,也就是 180 度。
利用内角和定理,我们可以求出三角形中未知角的度数。
三角形的基本概念和性质

三角形的基本概念和性质三角形是几何学中最基本的图形之一,它由三条线段相连而成。
本文将介绍三角形的基本概念和性质,帮助读者更好地理解和应用三角形。
一、基本概念1. 三角形定义:三角形是由三条线段组成的图形,三条线段分别称为三角形的边。
三个顶点将边相连,形成三个内角和三个外角。
2. 顶点:三角形的顶点是三个不共线的点,它们确定了三角形的形状和大小。
3. 边:三角形的边是连接顶点的线段,它们是三角形的基本构成元素。
4. 内角:三角形的内角是由两条边相交所形成的角,共有三个内角。
5. 外角:三角形的外角是由一条边和延长线所形成的角,共有三个外角。
二、性质1. 内角和:三角形的内角和等于180度,即∠A + ∠B + ∠C = 180°。
2. 外角和:三角形的外角和等于360度,即∠D + ∠E + ∠F = 360°。
3. 两边之和大于第三边:三角形的任意两边之和大于第三边,即AB + BC > AC,AC + BC > AB,AB + AC > BC。
4. 等边三角形:如果一个三角形的三条边长度相等,则该三角形是等边三角形。
等边三角形的三个内角也相等,都是60度。
5. 等腰三角形:如果一个三角形的两条边长度相等,则该三角形是等腰三角形。
等腰三角形的两个底角也相等。
6. 直角三角形:如果一个三角形拥有一个直角(90度),则该三角形是直角三角形。
直角三角形的两条边平方和等于斜边平方,即a² + b² = c²。
7. 锐角三角形:如果一个三角形的三个内角都小于90度,则该三角形是锐角三角形。
8. 钝角三角形:如果一个三角形中有一个内角大于90度,则该三角形是钝角三角形。
三、应用三角形的基本概念和性质在几何学和实际生活中有广泛的应用。
1. 测量:三角形的性质使得它成为测量地理距离、高度以及倾斜角度的重要工具。
2. 工程设计:在建筑和工程设计中,三角形的性质用于计算角度、边长和面积,保证结构的稳定和准确。
八年级数学竞赛讲座 三角形的有关概念

八年级数学竞赛讲座 三角形的有关概念一、知识结构:1、三角形的定义;2、三角形的角平分线、中线、高;3、三角形的三边之间的关系;4、三角形的内角和定理及其推论;5、同一个三角形中边与角之间的关系;6、三角形的分类;二、典型例题:1、△ABC 三边长分别为a,b,c,且)(2c b a bc a -=-,则这个三角形一定是( )A.三边不相等的三角形B.等边三角形C.等腰三角形D.任意三角形2、△ABC 三边长分别为a,b,c,且,222ca bc ab c b a ++=++则这个三角形一定是( )A.不等边三角形B.等边三角形C.等腰三角形D.任意三角形3、已知等腰三角形的一边等于4,一边等于9,则它的周长是( )A 、17B 、22C 、12或22D 、204、下面四个命题中不正确的是( )A .在△ABC 中,设三个内角中最小的角为α,则0°<α≤60°B .在△ABC 中,三个内角α:β:γ=1:2:3,则这个三角形是直角三角形;C .在△ABC 中,β为三个内角中最大的角,则60°<β<180°D .在△ABC 的内角中,锐角的个数最多;5、等腰三角形ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边长;6、如图:AF 、AD 分别是△ABC 的高和角平分线,且∠B=36°,∠C=76°,求∠DAF 的度数;7、△ABC 中,AB=5,AC=3,则BC 边上的中线AD 的长l 的取值范围是多少?A C8、已知斜三角形ABC 中,∠A=55°,三条高所在直线交点为H ,求∠BHC 的度数;9、已知三角形的一边是另一边的3倍,求证:它的最小边在它的周长的81与61之间;10、已知周长小于15的三角形三边的长都是质数,且其中一边的长为3,这样的三角形有多少个?11、设△ABC 的三边a,b,c 的长度均为自然数,且a ≤b ≤c ,a+b+c=13,则以a,b,c 为三边长且彼此不全等的三角形共有多少个?12、有多少个边长为整数且周长为2000的等腰三角形?13、三角形的三个内角分别为α,β,γ,且α≥β≥γ,α=2γ,求β的取值范围;14、已知三角形中两角之和为n °,最大角比最小角大24°,求n 的取值范围;15、不等边三角形中,如果有一条边长等于另外两条边长的平均值,那么,最大边上的高与最小边上的高的比值k 的取值范围是( )A .143<<k B .131<<k C .1<k <2 D .121<<k16、如图:O 为△ABC 内的一点,求证:(1) OA+OB+OC >21(AB+BC+AC ); (2) OB+OC <AB+AC ; (3) OA+OB+OC <AB+AC+BC ;作业题:1、已知三角形两边的长的差是5,若此三角形的周长是偶数,则求第三边的最小值?2、将三边长为a 、b 、c 的三角形记作(a ,b ,c ),写出周长为20、各边长为正整数的所有不同的三角形;3、不等边三角形的三条边长都是自然数,其中两条边长是3、4、5中的某两个数,求符合条件的三角形的周长的所有不同数值;AOB C4、如图,△ABC 内有一点D ,AD 、BD 、CD 分别平分∠A 、∠B 、∠C ,E 为△ABD 内一点,AE 、BE 、DE 分别平分△ABD 的各内角;F 为△BDE 内一点,BF 、EF 、DF 分别平分△BDE 的各内角。
简单介绍三角形的基本概念与性质

简单介绍三角形的基本概念与性质三角形是几何学中的基本图形之一,具有丰富的概念和性质。
本文将简单介绍三角形的基本概念和性质。
1. 三角形的定义三角形是由三条线段组成的闭合图形,其中每两条线段相交于一个顶点,并且不共线。
它是平面上最简单的多边形之一。
2. 三角形的分类根据边长的不同,三角形可以分为以下三种类型:(1) 等边三角形:三条边的长度相等。
(2) 等腰三角形:两条边的长度相等。
(3) 普通三角形:三条边的长度各不相等。
根据角度的不同,三角形可以分为以下三种类型:(1) 直角三角形:其中一个角是直角(90度)。
(2) 钝角三角形:其中一个角大于90度。
(3) 锐角三角形:其中三个角都小于90度。
3. 三角形的性质(1) 三角形的内角和等于180度:三角形的三个内角相加等于180度。
即∠A + ∠B + ∠C = 180°。
(2) 三角形的外角和等于360度:三角形的每个外角都等于其对应内角的补角。
即∠D = 180° - ∠A。
(3) 三角形的两边之和大于第三边:对于任意一个三角形ABC,有AB + BC > AC,AC + BC > AB,AB + AC > BC。
(4) 等边三角形的性质:等边三角形的三个内角均为60度,且三条边互相相等。
(5) 等腰三角形的性质:等腰三角形的两个底角相等。
(6) 直角三角形的性质:直角三角形的两个锐角之和为90度。
(7) 锐角三角形的性质:锐角三角形的三个内角都小于90度。
4. 三角形的重要定理(1) 余弦定理:对于任意一个三角形ABC,设边长分别为a、b、c,对应的内角分别为∠A、∠B、∠C,则有c^2 = a^2 + b^2 - 2ab·cos∠C。
(2) 正弦定理:对于任意一个三角形ABC,设边长分别为a、b、c,对应的内角分别为∠A、∠B、∠C,则有a/sin∠A = b/sin∠B =c/sin∠C = 2R(其中R为三角形外接圆半径)。
八年级数学竞赛专题训练13 三角形的基本知识(附答案)

八年级数学竞赛专题训练13 三角形的基本知识阅读与思考三角形是最基本的几何图形,是研究复杂几何图形的基础,许多几何问题都可转化为三角形的问题来解.三角形基本知识主要包括三角形基本概念、三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段和角度的计算、图形的计数等方面有广泛的应用.解与三角形的基本知识相关的问题时,常用到数形结合及分类讨论法,即用代数方法解几何计算题及简单的证明题,对三角形按边或按角进行恰当分类.应熟悉以下基本图形:图4图3图2图1CDBAD CBADCBA DCOBA例题与求解【例1】 在△ABC 中,∠A =50°,高BE ,CF 交于O ,则∠BOC =________.(“东方航空杯”——上海市竞赛试题)解题思路:因三角形的高不一定在三角形内部,故应注意符合题设条件的图形多样性.【例2】 等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形底边的长为( )A .17cmB .5cmC .5cm 或17cmD .无法确定(北京市竞赛试题)解题思路:中线所分两部分不等的原因在于等腰三角形的腰与底的不等,应分情况讨论.【例3】 如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 与CF 交于G ,若∠BDC =140°,∠BGC =110°,求∠A 的大小.(“希望杯”邀请赛试题)解题思路:运用凹四边形的性质计算.GC DBEF A【例4】 在△ABC 中,三个内角的度数均为正数,且∠A <∠B <∠C ,4∠C =7∠A ,求∠B 的度数.(北京市竞赛试题)解题思路:把∠A ,∠C 用∠B 的代数式表示,建立关于∠B 的不等式组,这是解本题的突破口.【例5】 (1)周长为30,各边长互不相等且都是整数的三角形共有多少个?(2)现有长为150cm 的铁丝,要截成)2(>n n 小段,每段的长不小于1cm 的整数,如果其中任意3小段都不能拼成三角形,试求n 的最大值.此时有几种方法将该铁丝截成满足条件的n 段.(江苏省竞赛试题)解题思路:对于(1),不妨设三角形三边为a ,b ,c ,且c b a <<,由条件及三角形三边关系定理可确定c 的取值范围,从而可以确定整数c 的值. 对于(2),因n 段之和为定值150cm ,故欲使n 尽可能的大,必须使每段的长度尽可能的小.这样依题意可构造一个数列.【例6】 在三角形纸片内有2 008个点,连同三角形纸片的3个顶点,共有2 011个点,在这些点中,没有三点在一条直线上.问:以这2 011个点为顶点能把三角形纸片分割成多少个没有重叠部分的小三角形?(天津市竞赛试题)解题思路:本题的解题关键是找到规律:三角形内角每增加1个内点,就增加了2个三角形和3条边.能力训练A 级1.设a ,b ,c 是△ABC 的三边,化简c b a c b a --+++=____________.2.三角形的三边分别为3,a 21-,8,则a 的取值范围是__________.3.已知一个三角形三个外角度数比为2:3:4,这个三角形是_______(按角分类)三角形.4.如图,∠A +∠B +∠C +∠D +∠E 的度数为____________. (“缙云杯“试题)EDCBAHDCMG BAEC BA(第4题) (第5题) (第6题)5.如图,已知AB ∥CD ,GM ,HM 分别是∠AGH ,∠CHG 的角平分线,那么∠GMH =_________.T ED GHCBA F21AC EDB(第7题) (第9题) 6.如图,△ABC 中,两外角平分线交于点E ,则∠BEC 等于( )A .)90(21A ∠-︒ B .A ∠+︒2190 C .)180(21A ∠-︒ D .A ∠-︒21180 7.如图,在△ABC 中,BD ,BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H .下列结论:①∠DBE =∠F ;②2∠BEF =∠BAF +∠C ;③∠F =21(∠BAC -∠C );④∠BGH =∠ABE +∠C . 其中正确的是( )A .①②③B .①③④C .①②③D .①②③④8.已知三角形的每条边长的数值都是2 001的质因数,那么这样的不同的三角形共有( ) A .6个 B .7个 C .8个 D .9个 9.如图,将纸片△ABC 沿着DE 折叠压平,则( ) A .∠A =∠1+∠2 B .∠A =21(∠1+∠2)C .∠A =31(∠1+∠2) D .∠A =41(∠1+∠2)(北京市竞赛试题)10.一个三角形的周长是偶数,其中的两条边分别是4和1 997,则满足上述条件的三角形的个数是( ) A .1个 B .3个 C .5个 D .7个(北京市竞赛试题)11.如图,已知∠3=∠1+∠2,求证:∠A +∠B +∠C +∠D =180°.(河南省竞赛试题)321EG FDCBA12.平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC =24°,∠ADC =42°. (1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小.(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2),求∠ANC .CDBAEND CBA图1 图213.三角形不等式是指一个三角形的两边长度之和大于第三边的长度.在下图中,E 位于线段CA 上,D 位于线段BE 上.(1)证明:AB +AE >DB +DE ; (2)证明:AB +AC >DB +DC ;(3)AB +BC +CA 与2(DA +DB +DC )哪一个更大?证明你的结论; (4)AB +BC +CA 与DA +DB +DC 哪一个更大?证明你的结论.(加拿大埃蒙德顿市竞赛试题)E DCBAB 级1.已知三角形的三条边长均为整数,其中有一条边长是4,但不是最短边,这样的三角形的 个数有_______个.(“祖冲之杯”邀请赛试题)2.以三角形的3个顶点和它内部的9个点共12个点为顶点能把原三角形分割成______个没有公共部分的小三角形.3.△ABC 中,∠A 是最小角,∠B 是最大角,且有2∠B =5∠A ,若∠B 的最大值是m ,最小值是n ,则=+n m ___________.(上海市竞赛试题)4.如图,若∠CGE =α,则∠A +∠B +∠C +∠D +∠E +∠F =_______.(山东省竞赛试题)αGFEDCBADA 2A 1CBA(第4题) (第5题)5.如图,在△ABC 中,∠A =96°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于1A 点,BC A 1∠与CD A 1∠的平分线相交于2A 点,依此类推,BC A 4∠与CD A 4∠的平分线相交于5A 点,则5A ∠的大小是( )A .3°B .5°C .8°D .19.2°6.四边形ABCD 两组对边AD ,BC 与AB ,DC 延长线分别交于点E ,F ,∠AEB ,∠AFD 的平分线交于点P .∠A =64°,∠BCD =136°,则下列结论中正确的是( )①∠EPF =100°; ②∠ADC +∠ABC =160°; ③∠PEB +∠PFC +∠EPF =136°; ④∠PEB +∠PFC =136°.A .①②③B .②③④C .①③④D .①②③④FEDPCBA7.三角形的三角内角分别为α,β,γ,且γβα≥≥,βα2=,则β的取值范围是( ) A .4536≤≤β B .6045≤≤β C .9060≤≤β D .3245≤≤β(重庆市竞赛试题)8.已知周长小于15的三角形三边的长都是质数,且其中一边的长为3,这样的三角形有( ) A .4个 B .5个 C .6个 D .7个(山东省竞赛试题)9.不等边△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.(第三十二届美国邀请赛试题)10.设m ,n ,p 均为自然数,满足p n m ≤≤且15=++p n m ,试问以m ,n ,p 为三边长的三角形有多少个?11.锐角三角形用度数来表示时,所有角的度数为正整数,最小角的度数是最大角的度数的41,求满足此条件的所有锐角三角形的度数.(汉城国际数学邀请赛试题)12.如图1,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C (0,-2),D (-2,-2). (1)求△BCD 的面积;(2)如图2,若∠BCO =∠BAC ,作AQ 平分∠BAC 交y 轴于P ,交BC 于Q .求证:∠CPQ =∠CQP ;(3)如图3,若∠ADC =∠DAC ,点B 在x 轴正半轴上运动,∠ACB 的平分线交直线AD 于E ,DF ∥AC交y 轴于F ,FM 平分∠DFC 交DE 于M ,EDMFBCF ∠∠-∠2的值是否发生变化?证明你的结论.x图313.如图1,),0(m A ,)0,(n B .且m ,n 满足0)42(32≤-+-n m.图1 图2(1)求A ,B 的坐标;(2)C 为y 轴正半轴上一动点,D 为△BCO 中∠BCO 的外角平分线与∠COB 的平分线的交点,问是否存在点C ,使∠D =41∠COB .若存在,求C 点坐标; (3)如图2,C 为y 轴正半轴上A 的上方一动点,P 为线段AB 上一动点,连CP 延长交x 轴于E ,∠CAB 和∠CEB 平分线交于F ,点C 在运动过程中FECOABO ∠∠+∠的值是否发生变化?若不变求其值;若变化,求其范围.专题13 三角形的基本知识例1130°或50°例2 B 例380°提示:∠A=2∠BGC-∠BDC例4设∠C=x°,则∠A=(47 x)°,∠B=180°-∠C-∠A=180°-117x°由∠A<∠B<∠C,得47x<180-117x<x.解得70<x<84.∵47x是整数,∴x=77.故∠C=77°,则∠A=44°,∠B=180°-77°-44°=59°.例5(1)不妨设a<b<c,则由30a b ca b c+=-⎧⎨+>⎩,得10<c<15.∵c是整数,∴c=11,12,13,14.当c=11时,b=10,a=9.当c=12时,b=11,a=7;b=10,a=8.当c=13时,b=12,a=5;b=11,a=6;b=10,a=7;b=19,a=8.当c=14时,b=13,a=3;b=12,a=4;b=11,a=5;b=10,a=6;b=9,a=7.(2)这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,89…但1+1+2+5+8+13+21+34+55=143<150,1+1+2+3+5+8+13+21+34+55+89>150,故n的最大值为10.共有以下7种方式:(1,1,2,3,5,8,13,21,34,62);(1,1,2,3,5,8,13,21,35,61);(1,1,2,3,5,8,13,21,36,60);(1,1,2,3,5,8,13,21,37,59);(1,1,2,3,5,8,13,22,35,60);(1,1,2,3,5,8,13,22,36,59);(1,1,2,3,5,8,14,22,36,58).例6 解法1一个小三角形内,它与该三角形的三个顶点可得到三个小三角形,从而增加了两个小三角形,于是可以推出,当三角形内有2008个点是,连线可得到小三角形的个数为:3+2×(2008-1)=4017(个).解法2 整体核算法设连线后把原三角形分割成n个小三角形,则它们的内角和为180°·n,又因为原三角形内每一个点为小三角形顶点时,能为小三角形提供360°的内角,2008个点共提供内角2008×360°,于是得方程180n=360×2008+180,解得n=4017,即这2008个点能将原三角形纸片分割成4017个小三角形.A 级1. 2(b +c )2. -5<a <-23. 钝角4. 180°5. 90°6. C7. D8. B9. B 10. B 11. 提示:过G 作GH ∥EB ,可推得BE ∥CF . 12. (1)∠AMC =12(∠ABC +∠ADC )=12×(24°+42°)=33° (2)∵AN 、CN 分别平分∠DAE ,∠BCD ,∴可设∠EAN =∠DAB =x ,∠BCN =∠DCN =y ,∴∠BAN =180°-x ,设BC 与AN 交于S ,∴∠BSA =∠CSN ,∴180°-x +∠B =y +∠ANC ,① 同理:180°-2x +∠B =2y +∠D ,②由①×2-②得:2∠ANC =180°+∠B +∠D . ∴∠ANC =12(180°+24°+42°)=123°. 13. (1)(2)略 提示:(3)DA +DB >AB ,DB +DC >DC ,DC +DA >CA ,将三个不等式相加,得2(DA +DB +DC )>AB +CB +CA .(4)由(2)知AB +AC >DB +DC ,同理BC +BA >DC +DA ,CA +CB >DA +DB , 故AB +BC +CA >DA +DB +DCB 级1. 82. 193. 175 提示:设∠A =(2x )°,∠B =(5x )°,则∠C =180°-(7x )°,由∠A ≤∠C ≤∠B 得15≤x ≤204. 2a5. A6. D7. D8. B9. 提示:设长度为4和12的高分别是边a ,b 上的,边c 上的高为h ,△ABC 的面积为S , 则24S a =,212S b =,2S c h =,由22222412412S S S S S h -<<+得36h <<,故5h =. 10. 711. 设锐角三角形最小角的度数为x ,最大角的度数为4x ,另一角为y ,则41804490x x y x y xx ++=︒⎧⎪⎨⎪<︒⎩,解得20≤x ≤22.5,故x =20或21或22. 所有锐角三角形的度数为:(20°,80°,80°),(21°,75°,84°),(22°,70°,88°). 12. (1)S △BCD =2 (2)略(3)设∠ABC =x ,则∠BCF =90°+x ,可证:∠E =12x ,∠DMF =45°. ∴2(90)245212BCF DMF x E x ∠-∠︒+-⨯︒==∠。
三角形的概念与性质

三角形的概念与性质三角形是我们常见的几何图形之一,它由三条边和三个顶点组成。
三角形在许多领域中都有着重要的应用,因此对于三角形的概念和性质的掌握非常重要。
本文将介绍三角形的定义、分类以及一些重要的性质和应用。
一、三角形的定义三角形是由三条线段连接而成的图形,其中每条线段称为边,而它们的交点称为顶点。
三角形的名称通常以其边的长度和角的大小来命名,例如等边三角形、直角三角形等。
根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形;根据角的大小,三角形可以分为直角三角形、钝角三角形和锐角三角形。
二、三角形的分类1. 根据边的长度分类- 等边三角形:三条边的长度相等。
- 等腰三角形:两条边的长度相等。
- 普通三角形:三条边的长度都不相等。
2. 根据角的大小分类- 直角三角形:其中一个角为直角(90°)。
- 钝角三角形:其中一个角大于90°。
- 锐角三角形:其中所有角都小于90°。
三、三角形的性质1. 三角形内角和性质三角形的三个内角之和为180°。
设三角形的三个内角分别为A、B 和C,则有以下等式成立:A + B + C = 180°。
这个性质在解决三角形相关问题时非常有用。
2. 三角形的外角性质三角形的外角等于其对应的两个内角的和。
设三角形的三个内角分别为A、B和C,对应的外角分别为A'、B'和C',则有以下等式成立:A' = B + C,B' = A + C和C' = A + B。
3. 三角形的边长关系a) 等边三角形的三条边长度相等,即a = b = c。
b) 等腰三角形的两个底边长度相等,即a = c。
c) 直角三角形中,较短两条边的平方和等于最长边的平方,即a² + b² = c²(或b² + c² = a²,c² + a² = b²)。
三角形的基本概念与性质

三角形的基本概念与性质三角形是几何学中最基本的图形之一,具有广泛的应用和重要的性质。
在本文中,我们将探讨三角形的基本概念和一些常见的性质,以加深我们对三角形的理解。
一、基本概念三角形是由三条边和三个角组成的图形。
根据边的长度,我们可以将三角形分为三类:等边三角形、等腰三角形和一般三角形。
1.等边三角形:假设三条边的长度都相等,那么这个三角形就是等边三角形。
等边三角形的三个角都是60度。
2.等腰三角形:假设三角形的两条边的长度相等,那么这个三角形就是等腰三角形。
等腰三角形的两个角也是相等的。
3.一般三角形:如果三角形的三条边的长度都不相等,那么这个三角形就是一般三角形。
除了边的长度外,三角形还可以根据角的大小来进行分类。
根据角的大小,我们可以将三角形分为三类:锐角三角形、直角三角形和钝角三角形。
1.锐角三角形:三个角都是锐角的三角形称为锐角三角形。
2.直角三角形:拥有一个90度角的三角形称为直角三角形。
直角三角形的两边相互垂直。
3.钝角三角形:拥有一个大于90度角的三角形称为钝角三角形。
二、性质除了基本的分类外,三角形还具有一些重要的性质。
1.三角形的内角和性质:三角形的三个内角的和总是等于180度。
这个性质被称为三角形的内角和定理。
2.直角三角形的性质:直角三角形是三角形中最特殊的一种。
如果一个三角形有一个90度角,那么它的另外两个角的和总是等于90度。
此外,直角三角形的两条直角边的平方和等于斜边的平方。
这个性质被称为毕达哥拉斯定理。
3.等腰三角形的性质:等腰三角形的两边相等,并且其底边的中线也是高和中线。
此外,等腰三角形的顶角的平分线也是高和中线。
4.等边三角形的性质:等边三角形的三边都相等,三个角也都是60度。
此外,等边三角形的高、中线、中位线、角平分线和垂直平分线都是同一条线。
5.海伦公式:对于一般的三角形,我们可以使用海伦公式来计算其面积。
海伦公式如下:设三角形的三边长度分别为a、b、c,半周长为s,则三角形的面积S可以计算如下:S = √(s(s-a)(s-b)(s-c))。
初二_三角形复习讲义(包括基本概念、全等、勾股定理)

A C B第 8 题D三角形专题复习(一)三角形基本概念:1.三角形的分类三角形按边分类可分为不等边三角形和等腰三角形(等边三角形是等腰三角形的特殊情况);按角分类可分为锐角三角形、直角三角形和钝角三角形,其中锐角三角形、钝角三角形统称为斜角形。
2.一般三角形的性质(1)角与角的关系:三个内角的和等于180°;一个外角等于和它不相邻的两个内角之和,并且大于任何—个和它不相邻的内角。
(2)边与边的关系:三角形中任两边之和大于第三边,任两边之差小于第三边。
(3)边与角的大小对应关系:在一个三角形中,等边对等角;等角对等边。
(4)三角形的主要线段的性质(见下表):名称 基本性质 角平分线 ①三角形三条内角平分线相交于一点(内心);内心到三角形三边距离相等;②角平分线上任一点到角的两边距离相等。
中线 三角形的三条中线相交于一点。
高 三角形的三条高相交于一点。
边的垂直平分线 三角形的三边的垂直平分线相交于一点(外心);外心到三角形三个顶点的距离相等。
中位线 三角形的中位线平行于第三边且等于第三边的一半。
3. 几种特殊三角形的特殊性质(1)等腰三角形的特殊性质:①等腰三角形的两个底角相等;②等腰三角形顶角的平分线、底边上的中线和底边上的高是同一条线段,这条线段所在的直线是等腰三角形的对称轴。
(2)等边三角形的特殊性质:①等边三角形每个内角都等于60°;②等边三角形外心、内心合一。
(3)直角三角形的特殊性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;4. 三角形的面积 (1)一般三角形:S △ =21a h ( h 是a 边上的高 )5.多边形的内角和为 ( n – 2 )·180°( n 为边数 ); 多边形的外角和为360°.例题剖析一、填空题1、在△ABC 中,∠A=3∠B=32∠C ,则∠A= ,∠B= ,∠C= ;若∠A+∠B=∠C ,则△ABC 是 __三角形2、如图 在直角三角形ABC 中,∠ACB=900,CD ⊥AB 于点D ,则图中有 _____ 个直角三角形, 它们是_________________;∠A 是 ___ 和 ___ 公共角;互余的角有 3 几对,它们是3、如图,已知在△ABC 中,∠ABC ,∠ACB 的平分线相交于点O ,(1)若∠ABC=500,∠ACB=650,则∠BOC= .; (2)若∠ABC+∠ACB=1300,则∠BOC= (3)若∠A=900,则∠BOC= ; (4)若∠BOC=1000,则∠A= ;AB CO课堂练习(基础题)1.四边形ABCD 中,如果∠A+∠C+∠D=280°,则∠B 的度数是( ) A .80° B .90° C .170° D .20°2.一个多边形的内角和等于1080°,这个多边形的边数是( ) A .9 B .8 C .7 D .6 3.内角和等于外角和2倍的多边形是( )A .五边形B .六边形C .七边形D .八边形 4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______6、(综合题)已知:如图,在四边形ABCD 中,∠A=∠C=90°,BE 平分∠ABC ,•DF 平分∠ADC .BE 与DF 有怎样的位置关系?为什么?7、(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.8、(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A .1个B .2个C .3个D .4个(二)全等三角形1、判定和性质一般三角形直角三角形判定边角边(SAS )、角边角(ASA )角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法 斜边和一条直角边对应相等(HL ) 性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等注:① 判定两个三角形全等必须 有一组边对应相等;② 全等三角形面积相等.2、证题的思路:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边ASA AAS SAS AAS SSS HL SAS3、有关角平分线的知识:①、把已知角平分成相等的两个角的射线叫这个角的角平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学竞赛讲座 三角形的有关概念
一、知识结构:
1、三角形的定义;
2、三角形的角平分线、中线、高;
3、三角形的三边之间的关系;
4、三角形的内角和定理及其推论;
5、同一个三角形中边与角之间的关系;
6、三角形的分类; 二、典型例题:
1、△ABC 三边长分别为a,b,c,且)(2
c b a bc a -=-,则这个三角形一定是( ) A.三边不相等的三角形 B.等边三角形 C.等腰三角形 D.任意三角形 2、△ABC 三边长分别为a,b,c,且,2
2
2
ca bc ab c b a ++=++则这个三角形一定是( ) A.不等边三角形 B.等边三角形 C.等腰三角形 D.任意三角形 3、已知等腰三角形的一边等于4,一边等于9,则它的周长是( ) A 、17 B 、22 C 、12或22 D 、20 4、下面四个命题中不正确的是( )
A .在△ABC 中,设三个内角中最小的角为α,则0°<α≤60°
B .在△AB
C 中,三个内角α:β:γ=1:2:3,则这个三角形是直角三角形; C .在△ABC 中,β为三个内角中最大的角,则60°<β<180°
D .在△ABC 的内角中,锐角的个数最多;
5、等腰三角形ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边长;
6、如图:AF 、AD 分别是△ABC 的高和角平分线, 且∠B=36°,∠C=76°,求∠DAF 的度数;
7、△ABC 中,AB=5,AC=3,则BC 边上的中线AD 的长l 的取值范围是多少?
8、已知斜三角形ABC 中,∠A=55°,三条高所在直线交点为H ,求∠BHC 的度数; A
B D F C
9、已知三角形的一边是另一边的3倍,求证:它的最小边在它的周长的81与6
1
之间;
10、已知周长小于15的三角形三边的长都是质数,且其中一边的长为3,这样的三角形有多少个?
11、设△ABC 的三边a,b,c 的长度均为自然数,且a ≤b ≤c ,a+b+c=13,则以a,b,c 为三边长且彼此不全等的三角形共有多少个?
12、有多少个边长为整数且周长为2000的等腰三角形?
13、三角形的三个内角分别为α,β,γ,且α≥β≥γ,α=2γ,求β的取值范围;
14、已知三角形中两角之和为n °,最大角比最小角大24°,求n 的取值范围;
15、不等边三角形中,如果有一条边长等于另外两条边长的平均值,那么,最大边上的高与最小边上的高的比值k 的取值范围是( ) A .143<<k B .131<<k C .1<k <2 D .12
1
<<k
16、如图:O 为△ABC 内的一点,求证:
(1) OA+OB+OC >
2
1
(AB+BC+AC ); (2) OB+OC <AB+AC ; (3) OA+OB+OC <AB+AC+BC ; 作业题:
1、已知三角形两边的长的差是5,若此三角形的周长是偶数,则求第三边的最小值?
2、将三边长为a 、b 、c 的三角形记作(a ,b ,c ),写出周长为20、各边长为正整数的所有不同的三角形;
3、不等边三角形的三条边长都是自然数,其中两条边长是3、
4、5中的某两个数,求符合条件的三角形的周长的所有不同数值;
4、如图,△ABC 内有一点D ,AD 、BD 、CD 分别平分∠A 、∠B 、∠C ,E 为△ABD 内一点,AE 、BE 、DE 分别平分△ABD 的各内角;F 为△BDE 内一点,BF 、EF 、DF 分别平分△BDE 的各内角。
若△BFE 的度数为整数,试求∠BFE 至少是多少度? A
O
B C
5、如图,将任意△ABC 的三边四等分,BC 边上分点为321,,A A A ,AC 边上的分点为321,,B B B ,
AB 边上的分点为321,,C C C ,记△ABC 的周长为p ,111C B A ∆的周长为1p ,求证:p p p 4
3
21
1<
<;
6、三条线段能构成三角形的条件是:任意两条线段长度的和大于第三条线段。
现有长为144厘米的铁丝,要截成n 小段(n >2),每段的长度不小于1厘米,如果其中任意三小段都不能拼成三角形,则n 的最大值是多少?
7、△ABC 面积为1,M 是AB 上任一点,N 是BC 上任一点,P 是MN 上任一点。
(1)将ABC AMP S S ∆∆:表示成图中已经给出的线段之比的乘积形式; (2)求证:△AMP 和△CPN 的面积中至少有一个不大于8
1
; B M P N A C
8、不等边△ABC的两条高的长度分别是4和12,若第三条高及三边均为整数,求当第三条高取得最大值时,△ABC周长的最小值;。