函数的定义及其表示

合集下载

函数的概念及其表示

函数的概念及其表示

函数的概念及其表示知识梳理1.函数的基本概念(1)函数的定义一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A 到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域.(3)函数的三要素是:定义域、值域和对应关系.(4)表示函数的常用方法有:解析法、列表法和图象法.(5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.函数定义域的求法要点一、函数的概念例1、设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N的函数关系的有()A.①②③④B.①②③C.②③D.②例2、下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1D.f(x)=•,g(x)=例3、下列集合A,B及其对应法则,不能构成函数的是()A.A=B=R f(x)=|x|B.A=B=RC.A={1,2,3,4),B={2,3,4,5,6}f(x)=x+1D.A={x|x>0},B={1}f(x)=x0答案:C A B练习1、下列四个图形中不可能是函数y=f(x)图象的是()A.B.C.D.2、已知函数f(x)的定义域A={x|0≤x≤2},值域B={y|1≤y≤2},下列选项中,能表示f (x)的图象的只可能是()A.B.C.D.3、下列四组函数中的f(x)和g(x)相等的是()A.B.C.D.4、下列对应是从集合A到B的函数的是()A.A=N,B=R,对应关系f:“求平方根”B.A=N*,B=N*,对应关系f:x→y=|x﹣3|C.A=R,B={0,1},对应关系f:D.A=Z,B=Q,对应关系5、中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合M={﹣1,1,2,4},N={1,2,4,16},给出下列四个对应法则:①,②y=x+1,③y=|x|,④y=x2,请由函数定义判断,其中能构成从M到N的函数的是()A.①③B.①②C.③④D.②④要点二、函数的定义域例4、函数的定义域是()A.(1,2]B.(1,2)C.(2,+∞)D.(﹣∞,2)例5、已知函数y=f(x+1)的定义域是[﹣1,2],则函数y=f(﹣x)的定义域为()A.[﹣3,0]B.[﹣1,2]C.[0,3]D.[﹣2,1]例6、若函数y=的定义域为R,则a的取值范围为()A.(0,4]B.[4,+∞)C.[0,4] D.(4,+∞)答案: B A C 练习6、函数f (x )=+的定义域为( )A .(﹣3,0]B .(﹣3,1]C .(﹣∞,﹣3)∪(﹣3,0]D .(﹣∞,﹣3)∪(﹣3,1] 7、函数f (x )=(x ﹣5)0+(x ﹣2)的定义域为( )A .{x ∈R |2<x <5或x >5}B .{x ∈R |x >2}C .{x ∈R |x >5}D .{x ∈R |x ≠5且x ≠2}8、若函数f (x )的定义域为[1,2],则函数y=f (x 2)的定义域为( ) A .[1,4]B .[1,] C .[﹣,] D .[﹣,﹣1]∪[1,]9、若函数f (3﹣2x )的定义域为[﹣1,2],则函数f (x )的定义域是( ) A .B .[﹣1,2]C .[﹣1,5]D .10、已知函数的定义域为R ,则实数a 的取值范围是( ) A .(0, B .(﹣∞,C .,+∞)D .[1,+∞)要点三、函数的解析式例7 (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(2) f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试求出f (x )的解析式(3) 定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. (4)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.练习11、已知函数,则( )A .f (x )=x 2+2x +1B .f (x )=x 2﹣2x +3(x ≥1)C .f (x )=x 2﹣2x +1D .f (x )=x 2+2x +3(x ≥1)12、若函数f (x )满足f ()=x ,则f (x )的解析式为( )A.f(x)=(x≠1)B.f(x)=,(x≠﹣1)C.f(x)=(x≠1)D.f(x)=(x≠﹣1)13、已知函数f(x)=2x+3,若f(g(x))=6x﹣7,则函数g(x)的解析式为()A.g(x)=4x﹣10B.g(x)=3x﹣5C.g(x)=3x﹣10D.g(x)=4x+414、若函数f(x)对于任意实数x恒有3f(x)﹣2f(﹣x)=5x+1,则f(x)=.15、已知f(x)是定义在R上的奇函数,当x>0时,f(x)=+1,则f(x)=.答案:1、C 2、D 3、C 4、C 5、C 6、C 7、A 8、D 9、C 10、C 11、B 12、A 13、B 14、x+1。

函数的概念及其表示

函数的概念及其表示

一、函数的概念及其表示函数是刻画变量之间对应关系的数学模型和工具。

函数的共同特征:(1)都包含两个非空数集,用A 、B 来表示;(2)都有一个对应关系;(3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数级A 中的任意一个数x ,按照对应关系,在数集B 中都有唯一确定的数y 和它对应。

事实上,除了解析式、图象、表格外,还有其他表示对应关系的方法。

为了表示方便,我们引进符号f 统一表示对应关系。

一般地,设A 、B 是非空的实数集,如果对于集合A 中的任意一个数x,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合b 的一个函数,记作().,A x x f y ∈=其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈|叫做函数的值域。

我们所熟悉的一次函数y=kx+b ,k ≠0的定义域是R ,值域也是R 。

对应关系f 把r 中的任意一个数x ,对应到R 中唯一确定的数kx+b 。

二次函数)0(2≠++=a c bx ax y 的定义域是R ,值域是B 。

当A>0时,B=⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当A<0时,B=⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|2。

对应关系f 把R 中任意一个数x,对应到B 中唯一确定的数)0(2≠++a c bx ax 。

由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

因为值域是由定义域和对应关系决定的,所以如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数。

两个函数如果仅有对应关系相同,但定义域不相同,那么它们不是同一个函数。

函数的三种表示方法:解析法、列表法和图象法。

解析法,就是用数学表达式表示两个变量之间的对应关系;列表法,就是列出表格来表示两个变量之间的对应关系;图象法,的就是用图象表示两个变量之间的对应关系。

高中数学必修一 第1讲函数及其表示

高中数学必修一 第1讲函数及其表示

第4讲 函数及其表示基础梳理1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.(2)用换元法解题时,应注意换元后变量的范围.考向一 相等函数的判断【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( )A y =( x )2B y=x x 2C 33x y =D y=2x 【例2】x x y 2=与⎩⎨⎧-∞∈-+∞∈=).0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域高中阶段所有基本初等函数求定义域应注意:(1)分式函数中分母不为0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1);(4)0次幂的底数不为0。

(5)正切函数2ππ+≠k x【例1】►求函数x x x x f -+--=4lg 32)(的定义域。

函数的概念及其表示

函数的概念及其表示

函数的概念及其表示一、什么是函数1、函数的定义: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function )。

记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ).注意:1) “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”。

2) 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,是一个数;而f()表示的是对应关系。

(用集合关系讲解)2、映射与函数函数的特殊的映射二、构成函数的三要素:定义域、对应关系和值域1、函数是一个整体“y=f(x),x ∈A .”表示一个函数。

函数=定义域+对应关系+值域2、比喻理解:定义域f −−→值域 等价于 原材料f −−→产品 一个函数就是一个完整过程,定义域是原材料、对应关系f 是生产设备、值域是生产的产品,而我们是老板,老板刷题就是从三要素出发不断地管理匹配这个生产过程3、举例说明:21,y x x R =+∈问:定义域值域是对应关系是三、求函数定义域.主要题型:偶次方被开方数为非负;分式的分母不为零;零次幂的底数不为零;对数真数大于零;指数对数的底数大于零且不等于1例题讲解:1、1()f x x x =-2、1()11f x x=+ 3、()f x =4、2()ln(1)f x x =- 5、()1f x x =- 四、求函数解析式1、函数的三种表达方法解析式法+图像法+列表法 因此我们可以看出解析式是函数的表达方式之一,也是我们学习过程中接触最多的。

2、函数解析式求法1) 配凑法\由已知条件(())()f g x F x =,可以将()F x 改写成关于()g x 的表达式,然后以x 替代()g x 例题:已知2222(1))3x f x x ++=-,求()f x 解析式 2) 待定系数法如已知函数类型(如一次函数、二次函数)可用待定系数法例题:已知()f x 是一次函数,且满足3(1)()29f x f x x +-=+,求函数()f x 的解析式3) 换元法若已知(())f g x 的解析式,可用换元法 例题:已知2222(1))3x f x x ++=-,求()f x 解析式 4) 解方程组法已知关于()f x 与1()f x 或者()f x 与()f x 的表达式,可根据条件构造出另外一个等式,组成方程组求解例题:已知()f x +21()f x =3x ,则求()f x 的解析式。

函数的定义及其表示法

函数的定义及其表示法
f(3)=6 f(-3)=18 f(a)=a2-2a+3 说明:f(0)=3的含义就是当自变量x=0时,函 数的值y=3。
练习:设f(x)=2x2-1,求f(1),f(-1),f(0),f(b)
分段函数的定义: 函数在它的定义域中,对于自变量x的不同取值范 围,对应关系不同,即用多个解析式表示一个函
解:y=5x
x∈{1,2,3,4}
y=5x
20
图像为
15
说明:函数图象既可以是连续的曲线, 也可以是直线、折线、离散的点等
10
等.
5
1234
课堂小结 1、(1)函数的定义 (2)函数的三要素 (3)两函数 相同的条件(4)函数定义域及函值的求法
2.函数的三种表示方法及各自的优点
列表法、图象法、解析法; 3.三种函数表示方法的相互转换;
3. 图象法:
用函数图象来表示两个变量之 间的关系.
如: 一次函数的图象是一条直线; 如函数 y=kx+b (k<0、b>0)
y
优点:直观形象.
O
x
例5.某种笔记本每个5元,买 x(x∈{1,2,3,4})个笔记 本的钱数记为y(元),试写出 以x为自变量的函数y的解析 式,并画出这个函数的图象。
例3:求函数 y = x -1+ 1- x 的定义域。 解:因为x-1≥0且1-x≥0,所以x=1
则函数的定义域为:{x|x=1}
例3:求函数y= 3+x + 3- x 的定义域
解:因为3+x≥0且3-x≥o,即-3≤x≤3 所以函数的定义域为:[-3,3]
例4 求函数f (x) x2 3x 5在x 3,x x0 1, x x0 h各点的函数值. 解 f (3) 32 3 3 5 5,

高中数学:函数的概念、区间表示法、函数的表示法、函数的单调性

高中数学:函数的概念、区间表示法、函数的表示法、函数的单调性
7.设函数,求的单调区间,并证明在其单调区间上的单调性。
【试题答案】
1. B
解:的定义域为[0,2]
2.
解:
3. -4
解:由题设条件中,得:
4.,
解:
5. D
解:
6. C
解:(1)
(2)上既不是增函数,也不是减函数。
图像法:就是用图像表示两个变量之间的关系。
6.函数的单调性:
设函数的定义域为I,如果对于属于定义域I内某个区间上的任意两个变量x1、x2,当x1<x2时,都有f(x1)<f(x2),则称当f(x)在这个区间上是增函数。如果对于属于定义域I内某个区间上的任意两个自变量x1、x2,当x1<x2时都有f(x1)>f(x2),则称f(x)在这个区间上是减函数。
2.关于区间:
设a、b是两个实数,而且a<b,规定:
(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,记为[a,b]。
(2)满足不等式a<x<b的实数x的集合叫做开区间,记为(a,b)。
(3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,分别记为[a,b)和(a,b]。
(4)实数集R用区间表示(-∞,+∞),“∞”读无穷大,“-∞”读“负无穷大”,“+∞”读“正无穷大”。
一一映射:一般地,对于两个集合A、B,f:A→B是集合A到集合B的映射。如果在这个映射下对于集合A中的不同元素,在集合B中有不同的象,且B中每个元素都有原象,则这个映射叫做一一映射。
5.函数的表示法:
解析法:就是把两个变量的函数关系式,用一个等式来表示,这个等式叫做函数的解析式,简称解析式。
列表法:就是列出表格来表示两个变量的函数关系。
例2.用长为l的铁丝弯成下部为矩形,上部为半圆形的框架(如图所示),若矩形底边长为2x,求此框架围成的面积y与x的函数关系式,并指出其定义域。

函数的概念及表示方法

函数的概念及表示方法

函数及其表示方法1.函数的概念:一般的,设A ,B 是 非空实数集,如果按照某种确定的 对应关系f ,使对于集合A 中的 每一个实数,在集合B 中都有 唯一确定的实数)(x f y =和x 对应,那么就称 f 为从集合A 到集合B 的一个函数,记作 )(x f y = , 其中 x 叫做自变量,x 的取值范围A 叫做 定义域 ,与x 的值相对应的y 值叫做 函数值 ,函数值的集合 叫做函数的 值域,显然,值域是集合B 的子集。

注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . 2.构成函数的三要素: 值域 , 定义域 , 对应关系 .3. 函数相等:若两个函数的 定义域 相同,且 对应关系 在本质上也是相同的,则称两个函数相等。

4、函数的三种表示方法(1)解析法:_用解析式把把x 与y 的对应关系表述出来,最常见的一种表示函数关系的方法。

举例:如222321,,2,6y x x S r C r S t ππ=++===等。

优点:⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(2)列表法:用表格的方式把x 与y 的对应关系一一列举出来.比较少用.举例: 如:平方表,三角函数表,利息表,列车时刻表,国民生产总值表等。

优点:不需要计算,就可以直接看出与自变量的值相对应的函数值。

(3)图象法:在坐标平面中用曲线的表示出函数关系,比较常用,经常和解析式结合起来理解函数的性质.优点:直观形象地表示自变量的变化。

5、分段函数:在函数的定义域内,对于自变量x 的不同取值区间不同的对应关系,这样的函数通常叫做 分段函数 。

拓展一 判断相同函数例1、下列函数f (x )与g (x )是表示同一个函数的是? ( )A. f ( x ) = (x -1) 0;g ( x ) = 1 ;B. f ( x ) = x ; g ( x ) = 2x C .f ( x ) = x 2;f ( x ) = (x + 1) 2 、D. f ( x ) = | x | ;g ( x ) = 2x 拓展二 函数的判断例2、下列函数图像中不能作为函数y=f(x)的图像的是 ( )拓展三 求函数的定义域函数定义域的一般求法(开偶次方根,分式,零次幂)例3、(1) ()x x f 2=+()01+x (2)1()(12)(1)f x x x =-+;(3)()4f x x =-复合函数求定义域若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。

c语言函数的概念及其表示

c语言函数的概念及其表示

c语言函数的概念及其表示【实用版】目录一、C 语言函数的概念1.函数的定义2.函数的分类二、C 语言函数的表示1.函数名2.参数列表3.返回类型4.函数体正文C 语言函数的概念及其表示一、C 语言函数的概念在 C 语言编程中,函数是一种可以实现特定功能的代码块,它允许程序员在需要时重复使用这段代码,从而提高了代码的复用性和可读性。

函数在 C 语言中具有重要的地位,是 C 语言编程的基本组成部分。

1.函数的定义函数定义时需要指定函数名、参数列表、返回类型和函数体。

函数名用于标识函数,参数列表用于接收调用函数时传递的参数,返回类型表示函数执行后返回的结果的类型,函数体则是实现函数功能的具体代码。

2.函数的分类根据函数的返回类型,C 语言函数可以分为有返回值函数和无返回值函数。

有返回值函数在执行完毕后返回一个值,而无返回值函数则不返回任何值。

二、C 语言函数的表示C 语言函数的表示主要包括函数名、参数列表、返回类型和函数体。

1.函数名函数名是用户自定义的,用于标识函数。

函数名的命名规则遵循 C 语言的命名规范,通常采用驼峰命名法。

2.参数列表参数列表包含一个或多个参数,用于接收调用函数时传递的值。

参数列表中的参数可以是整型、浮点型、字符型等数据类型,也可以是指针类型。

参数列表的每个参数都需要指定参数类型,参数类型位于参数名后面,用括号括起来。

如果函数不需要接收任何参数,则参数列表为空。

3.返回类型返回类型表示函数执行后返回的结果的类型。

返回类型需要与函数名后面的括号一起使用,表示函数返回的结果类型。

如果函数不需要返回任何结果,则返回类型为 void。

4.函数体函数体是实现函数功能的具体代码块,它包含了一组可执行的语句。

函数体通常由花括号{}包围,其中的每一行语句都对函数的执行产生影响。

综上所述,C 语言函数的概念及其表示主要包括函数的定义、函数的分类、函数名、参数列表、返回类型和函数体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的定义及其表示
一、选择题(共16小题;共80分)
1. 设集合 M ={x ∣0≤x ≤2},N ={y ∣0≤y ≤2},给出如下四个图形,其中能表示从集合 M 到集合 N 的函数关系的是 ( )
A. B.
C. D.
2. 设函数 f (x )={x 2+1,x ≤1
2x
,x >1,则 f(f (3))= ( )
A. 1
5 B. 3
C. 2
3 D. 13
9 3. 设集合 M ={x ∣(x +3)(x −2)<0},N ={x ∣1≤x ≤3},则 M ∩N = ( )
A. [1,2)
B. [1,2]
C. (2,3]
D. [2,3]
4. 定义在 R 上的函数 f (x ) 满足 f (x +y )=f (x )+f (y )+2xy (x,y ∈R ),f (1)=2,则 f (−3) 等
于 ( )
A. 2
B. 3
C. 6
D. 9
5. 已知函数 f (x )={2x +1,x <1
x 2+ax,x ≥1
,若 f(f (0))=4a ,则实数 a 等于 ( )
A. 1
2
B. 4
5
C. 2
D. 9
6. 下列各组函数中,表示同一函数的是 ( )
A. y =x +1 与 y =
x 2+x x
B. f (x )=
2(√x)
2
与 g (x )=x
C. f (x )=∣x ∣ 与 g (x )=√x n n
D. f (x )=x 与 g (t )=log a a t
7. 下列各组函数中,表示同一个函数的是 ( )
A. y =
x 2−1x−1
与 y =x +1 B. y =x 与 y =∣x∣
C. y =∣x∣ 与 y =2
D. y =2−1 与 y =x −1
8. 已知函数 f (x )={2x +1,x <1
x 2+ax,x ≥1
,若 f(f (0))=4a ,则实数 a 等于 ( )
A. 1
2
B. 4
5
C. 2
D. 9
9. 若 f (x )=ax(a >0且a ≠1) 对于任意实数 x ,y 都有 ( )
A. f (xy )=f (x )⋅f (y )
B. f (xy )=f (x )+f (y )
C. f (x +y )=f (x )f (y )
D. f (x +y )=f (x )+f (y ) 10. 在给定映射 f:(x,y )→(xy,x +y ) 下,(4,−2) 的象是 ( ) A. (2,−1)
B. (−2,−1)
C. (−8,−2)
D. (−8,2)
11. 已知函数 f (x )={2x
(x ≤0)f (x −3)(x >0)
,则 f (5)= ( )
A. 32
B. 16
C. 1
2
D. 1
32
12. 下列哪组中的两个函数是同一函数 ( )
A. y =(√x)2
与 y =x B. y =(√x 3
)3
与 y =x C. y =
√x 2 与 y
=(√x)2
D. y =
√x 33
与 y
=
x 2x
13. 下列四组函数中,f (x ) 与 g (x ) 表示同一函数的是 ( )
A. f (x )=x ,g (x )=√x 2
B. f (x )=x ,g (x )=(√x)2
C. f (x )=x 2,g (x )=
x 3x
D. f (x )=∣x ∣,g (x )={x,x ≥0
−x,x <0
14. 下列四组函数中,表示同一函数的是 ( )
A. y =√x 2,y =(√t)2
B. y =∣x ∣,y =√t 2
C. y =
x 2−1x−1
,y =x +1 D. y =x ,y =
x 2x
15. 某学校要召开学生代表大会,规定各班每 10 人推选一名代表,当各班人数除以 10 的余数大于
6⋅ 时再增选一名代表.那么,各班可推选代表人数 y 与该班人数 x 之间的函数关系用取整函数 y =[x ] ( [x ] 表示不大于 x 的最大整数)可以表示为 ( ) A. y =[x
10]
B. y =[x+3
10]
C. y =[x+4
10]
D. y =[x+5
10]
16. 已知函数 f (x )={2cosπx,x ≤0f (x −1)+1,x >0
,则 f (4
3) 的值等于 ( )
A. −1
B. 1
C. 3
2
D. 5
2
二、填空题(共6小题;共30分) 17. 已知函数 f (x )=ax 3−2x 的图象过点 (−1,4),则 a = . 18. 已知 f (x 3)=log 2x ,那么 f (8)= . 19. 已知 f (x 5)=lgx, 则 f (2)= .
20. 若 f (x )=x 2−ax +b ,且 f (1)=−1,f (b )=a ,则 f (−5)= . 21. 设 (x,y ) 在映射 f 下的象是 (
x+y 2
,
x−y 2
),则 (−5,2) 在 f 下的原象是 .
,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f2014(x)的表达式
22. 已知f(x)=x
1+x
为.
三、解答题(共4小题;共52分)
23. 设f(x),g(x)都是定义在(−∞,+∞)上的函数,并且满足f(x)+2g(−x)=x3+x2,求
f(−2)+2g(2)的值.
24. 已知点(x,y)在映射f下的象是(2x−y,2x+y).
(1)求点(2,3)在映射f下的象;
(2)求点(4,6)在映射f下的原象.
25. 某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(km/h)的函数解析式可
以表示为y=1
128000x3−3
80
x+8(0≤x≤120),已知甲、乙两地相距100km.
(1)当汽车以40km/h的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
26. 某工厂去年某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8
元.今年,工厂第一次投入100万元,并计划以后每年比上一年多投入100万元,预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为g(n)= >0,k为常数,n∈N),若产品销售价保持不变,第n次投入后的年利润为f(n)万元.√n+1
(1)求k的值,并求出f(n)的表达式.
(2)若今年是第1年,则第几年的年利润最高?最高利润为多少万元?。

相关文档
最新文档