四川大学制造科学与工程学院本科课程工程热力学与传热学教学大纲

合集下载

《传热学》教学大纲

《传热学》教学大纲

《传热学》课程教学大纲一、课程名称:传热学/ Heat Transfer二、课程编号:0300302三、学分学时:3学分/48学时四、使用教材:《传热学》(第4版)杨世铭、陶文铨编,高等教育出版社,2014年12月五、课程属性:专业基础课/必修六、教学对象:新能源科学与工程专业七、开课单位:机械工程学院八、先修课程:高等数学、大学物理、流体力学九、教学目标:1、掌握传热学的基本概念、基本理论和基本计算方法,2、培养和建立学生的工程观点和理论联系实际解决工程实际问题的初步能力,并为学习后续的专业课程提供必要的理论基础支撑。

十、课程要求:通过本课程的学习,学生需掌握热量传递的三种基本方式及综合传热过程所遵循的基本规律,学会对传热过程进行分析处理和计算的基本方法,能运用这些规律提出增强传热、提高热经济性和削弱传热减少热损失的途径,具备分析工程传热问题的能力,并基本掌握换热设备的两种基本计算方法;结合热工实验课,使学生掌握一定的传热实验的技能。

主要以课堂讲授为主,充分采用多媒体教学。

十一、教学内容:本课程主要由以下内容组成(理论教学48学时)第一章绪论(2学时)知识要点:传热学的研究对象及其在工程技术中应用;热量传递的基本方式;导热、对流和辐射,传热过程及热阻重点难点:热量传递的三种基本方式,传热过程与传热系数教学方法:课堂讲授、讨论第二章稳态热传导(6学时)知识要点:温度场、等温面、等温线,温度梯度及傅立叶定律,导热系数,各向同性、具有内热源的导热微分方程及导热过程单值性条件的确定;通过单层、多层和复合平壁的稳态导热,通过单层和多层圆筒壁的稳态导热,通过肋壁的稳态导热,具有变导热系数的单层平壁导热问题的处理方法,肋效率、等截面直肋和环肋的工程计算,接触热阻及形状系数。

重点难点:傅立叶定律,导热微分方程及其单值性条件;能够依据直角坐标系下导热微分方程和导热过程单值性条件对常物性、无内热源、简单几何形状的物体的一维稳态导热问题进行分析计算教学方法:课堂讲授、讨论第三章非稳态导热(4学时)知识要点:非稳态导热过程特点,一维非稳态导热问题分析解及其讨论,诺模图,简单几何形状一维、二维和三维非稳态导热的计算,周期性变化边界条件和常热流通量边界条件下半无限大物体非稳态导热。

《工程传热学》教学大纲

《工程传热学》教学大纲

教学大纲一、《工程传热学》(双语)课程教学大纲1. 课程名称:工程传热学2. 课程编码:8020623. 学时与学分:56/3.54. 先修课程:流体力学、工程热力学5. 课程的地位、作用和任务工程传热学是研究热量传递规律的工程技术学科,是热工类及机械类动力机械等专业的一门主干技术基础课程。

本课程不仅为学生学习有关的专业课程提供基本的理论知识,也为学生以后从事热能的合理利用,热工设备效能的提高及换热器的设计等方面的工作,打下必要的基础。

6. 课程教学目标《工程传热学》(双语)课程是全校大机械类的平台课程,适用于能源与动力工程学院、机械科学与工程学院、材料科学与工程学院、交通科学与工程学院、环境科学与工程学院共5个学院的各本科专业。

课程以中文和英语相结合的双语教学,教学目标是:1)与我校专业的发展特色相结合,编写相关高质量的专业教材《工程传热学》,同时以国外先进的外文原版教材做辅助,使学生既能了解我校本领域在国内的影响力,同时也能学习国际上本领域的先进科学知识,了解国际上本领域的科技发展前沿。

2)帮助学生获得热量传递的基本知识,了解传热学理论与生产技术之间的关系,掌握分析基本热现象的一般规律和方法,培养学生创新的思维能力。

3)通过对热量传递的三种基本方式的学习,使学生能够分析复杂的热量传递问题,提高学生综合分析和解决问题的能力。

4)提高学生的专业英语水平,提高学生阅读国际科技期刊上发表的科学研究论文的能力。

7. 教学内容第一章绪论(2学时)1-1传热概述热导热;热对流;热辐射1-2传热过程和传热系数传热过程;传热系数第二章稳态导热过程分析(6学时)2-1分析基础温度场;付立叶定律;导热系数;导热微分方程;定解条件2-2一维稳态导热分析平壁导热;圆筒壁导热;球壳导热;变截面或变导热系数问题;具有内热源的导热问题;肋片导热分析2-3 多维稳态导热分析二维稳态导热分析解;形状因子法第三章非稳态导热过程分析(8学时)3-1基本概念周期性和非周期性非稳态导热;毕渥数3-2集总参数法温度函数;傅里叶数;时间常数3-3一维非稳态导热一维平壁非稳态导热分析解;非稳态导热的正规状况阶段;一维圆柱及球体非稳态导热分析解;近似算法及海斯勒图3-4 半无限大物体非稳态导热第一类边界条件;第三类边界条件3-5 二维及三维非稳态导热二维非稳态导热;三维费稳态导热;无量纲分析法第四章对流换热原理(11学时)4-1 对流换热概述对流换热过程、对流换热过程的分类、表面传热系数、对流换热微分方程式4-2 层流流动换热的微分方程组连续性方程;动量方程;能量方程;层流流动换热的微分方程组4-3 对流换热过程的相似理论无量纲形式的对流换热微分方程组;无量纲方程组的解及换热准则关系式;特征尺寸、特征流速和定性温度;对流换热准则关系式的实验获取方法4-4 边界层理论边界层的概念;边界层微分方程组;边界层积分方程组4-5 紊流流动换热紊流流动现象及表述;稳流时均方程;混合长度理论;双方程模型;紊流边界层方程及壁面法则;紊流边界层换热的比拟分析第五章对流换热计算(7学时)5-1 流体外掠物体的强制对流换热流体平行外掠平板的对流换热;流体横向绕流单个圆柱体的强制对流换热;流体横向绕流光管管束的对流换热5-2 管(槽)内强制对流换热管内流动与换热分析;管内强制对流换热的计算5-3 自然对流换热大空间自然对流的流动与换热特性;竖直平板自然对流换热的微分方程及准则数;大空间自然对流换热计算;受限空间自然对流换热计算5-4 沸腾换热汽液相变换热的基本概念;沸腾过程的分析;大容器沸腾曲线;大容器沸腾换热计算5-5 凝结换热蒸汽表面凝结过程及换热机理;竖壁膜状凝结的理论解;影响膜状凝结换热的因素第六章热辐射基础(6学时)6-1 基本概念投入辐射;吸收比;反射比;透射比;表面辐射;容积辐射;漫反射;镜反射;透明体;白体;镜体;黑体6-2 黑体辐射和吸收的基本性质辐射力和辐射强度;普朗克定律;维恩定律;斯蒂芬—波尔兹曼定律;兰贝特定律;波段辐射和辐射函数;黑体的吸收特性6-3 实际物体的辐射和吸收实际物体的辐射特性;实际物体的吸收特性;实际物体辐射与吸收之间的关系—基尔霍夫定律6-4 气体的辐射和吸收气体辐射的特点;气体吸收定律;气体的发射率;气体的吸收比第七章辐射换热计算(4学时)7-1两黑体表面间的辐射换热角系数的定义;角系数的性质;角系数的计算7-2灰体表面间的的辐射换热有效辐射;组成封闭腔的两个灰体表面间的辐射换热;组成封闭腔的多灰表面之间辐射换热的网络求解法;辐射屏第八章传热过程和换热器(4学时)8-1传热过程的计算通过平壁的传热过程计算;通过圆筒壁的传热过程计算;通过肋壁的传热过程计算8-2换热器的类型间壁式换热器;回热式换热器;混合式换热器;热管式换热器8-3换热器计算对数平均温差法;效能-传热单元数法第九章流动与传热的数值计算(4学时)9-1 数值计算的基本思想时间与空间的离散化;节点方程的建立;节点方程的求解9-2 Saints2D软件简介速度已知与速度未知边界条件的概念;Saints2D软件的基本操作;流动与传热问题的计算示例第十章实验(4学时)10.1 演示与观察10.2 实物实验(包括导热系数测量,受迫对流实验)10.3 开放实验10.4 虚拟实验8. 考核方式期末考试为闭卷,最终成绩由学生平时课堂讨论、作业、实验成绩,卷面成绩等几部分组成。

《工程热力学》课程教学大纲

《工程热力学》课程教学大纲

《工程热力学》课程教学大纲课程编号:0807000115英文名称:Engineering Thermodynamics学分:3总学时:48。

其中,讲授48学时,实验0学时,上机0学时,实训0学时。

适用专业: 热能与动力工程专业、建筑环境与设备工程专业先修课程:高等数学、大学物理一、课程性质与教学目的本课程是热能与动力工程及建筑环境与设备工程专业的一门专业基础课程。

其任务是使学生了解热能与机械能在相互转换过程中的特点和规律;学会对热能与机械能进行转换的基本特点和规律。

掌握对不同工质和不同种类过程进行分析的思想方法。

树立能量转换效率和转换质量进行评价的基本思想和方法。

熟练工程计算的思路和方法。

二、基本要求要求学生掌握有关物质的热力性质、热能有效利用以及热能与其他能量转换的基本规律,并能正确运用这些规律进行各种热工过程和热力循环的分析计算。

本课程主要用于提高学生的热工基础理论水平,培养学生具备分析和处理热工问题的抽象能力和逻辑思维能力。

为学生今后的专业学习专业课提供必要的基础知识,同时训练学生在实际工程中的理论联系实际的能力。

此外本课程在有关计算技能和实践技能方面也使学生得到一定的训练。

三、重点与难点重点:工程热力学的主要研究内容;热力系统;状态及平衡状态;状态参数及其特性;热平衡及热力学第一定律;第一定律的实质;热力学第一定律应用;理想气体特性;对比态状态方程;第二定律的实质;第二定律各种表述的等效性;不可逆过程;混合物的成分表示;湿空气的概念;湿空气过程;绝热流动过程(可逆与不可逆过程)特性,喷管计算(设计及校核);有摩擦的流动;定温压缩和绝热压缩;多变压缩;提高压缩机效率的途径;蒸汽卡诺循环。

难点:工程热力学的研究方法,准平衡过程;状态量和过程;功和热的异同;热力学能和焓的概念;可逆与不可逆过程;可逆与准平衡过程;熵,熵产与熵流量;广延量和强度量;混合物的参数计算;湿空气的参数;湿空气h-d、p-h图及应用;定熵流动的基本方程,定熵流动特性图;滞止参数;多级压缩中间冷却;朗肯循环;复杂循环(回热、再热)的计算;循环分析的一般方法。

工程热力学与传热学(第二十四讲)17-1、2

工程热力学与传热学(第二十四讲)17-1、2

第十七章传热过程工业生产中经常需要在温度不同的两种流体之间实现热交换,而流体又不能混合在一起,因此热交换过程是在热交换器或换热器中来实现的。

换热器中,一般冷、热流体分别处在固体壁面的两侧,热量由热流体经固体壁面传递给冷流体的过程中,往往同时存在着导热、对流换热和辐射换热三种基本方式。

本章讨论这三种基本传热方式联合作用时的传热过程,分析传热量计算以及增强与削减传热的方法。

第一节传热过程及计算一、基本概念传热过程:指热量由热流体经固体壁面传递给另一侧冷流体的过程。

例如,柴油机汽缸中高温燃气向缸壁外侧冷却水的传热;制冷设备中蒸发器的管外空气与管内制冷工质的传热;各种换热器中热流体通过管壁向冷流体的传热都属于传热过程。

传热过程的特点:(1)传热过程至少包含了三个串联的环节,其中两个环节有流体参与换热;(2)传热过程至少包含了两种以上的换热方式:固体本身的导热、流体与固体壁面的对流换热。

其中,对流换热有以下四种可能:①强制对流—如油冷却器水侧;②自然对流—如暖气散热器空气侧;③相变对流换热—如蒸发器和冷凝器的制冷剂侧;④对流与辐射的复合换热。

对于复合换热,一般认为稳定状态下各种换热过程互不干涉,总换热系数是各种基本换热过程单独作用的总和。

即α=α对流+α辐射二、平壁传热过程计算由图17-1可以看出通过平壁传热过程中的温度分布曲线。

冷、热流体被一无限大平壁隔开。

平壁侧面积为F ,厚度为δ,导热系数为λ;热流体测流体温度、避免温度和总换热系数分别为t f1、t W1和α1;冷流体测流体温度、避免温度和总换热系数分别为t f2、t W2和α2.热流体传给壁面的总换热量为:Q 1=α1(t f1- t W1)F (17-1)平壁导热量为:壁面传给冷流体的总换热量为:Q 2=α2(t f2- t W2)F (17-3)当系统达到稳定状态时,由热流体向壁面传递的热量等于经过平壁所传递的热量,也等于壁面传给冷流体的热量。

传热学课程教学大纲

传热学课程教学大纲

传热学课程教学大纲一、引言传热学是热力学的一个重要分支,它研究热量在物质之间传递的规律和方法。

本课程旨在通过深入的理论学习和实验实践,使学生掌握传热学的基本原理和方法,并培养学生分析和解决传热问题的能力。

二、课程目标1. 理解传热学的基本概念和原理;2. 熟悉几种常见的传热模式和传热方式;3. 掌握传热计算的基本方法和步骤;4. 能够分析和解决传热学中的实际问题;5. 培养学生在实验中观察、分析、设计和总结的能力。

三、教学内容1. 传热学基本概念- 传热学的定义和发展历程;- 传热学与热力学、流体力学的关系;- 传热学中的重要概念和基本假设。

2. 传热模式和传热方式- 热传导、对流传热和辐射传热的基本概念和特点;- 传热方式的分类及其特点;- 不同传热方式的应用和实际例子。

3. 传热计算方法- 热传导计算方法:一维热传导方程、对流换热方程、辐射换热方程;- 对流换热计算方法:强迫对流传热、自然对流传热的计算方法;- 辐射换热计算方法:黑体辐射、实物辐射的计算方法。

4. 传热过程分析- 传热过程的热阻和热导率分析;- 热传导问题的一维和二维稳态解法;- 管壳式换热器的换热分析。

5. 传热实验- 传热实验基本原理和实验设计;- 测量传热系数和传热机制的实验方法;- 实验数据处理和结果分析。

四、教学方法1. 理论讲授:通过课堂教学的方式,讲解传热学的基本概念、原理和计算方法;2. 实验实践:设计一系列的传热实验,使学生能够通过实际操作,了解传热学的基本知识和实验技能;3. 讨论与互动:组织学生进行课堂讨论、小组讨论和案例分析,促进学生的思维活跃和合作交流;4. 作业和测验:布置传热学相关的作业和测验,检验学生对教学内容的理解和掌握程度。

五、考核方式1. 平时表现:包括参与课堂讨论、课堂作业和实验报告等;2. 期中考试:对学生对传热学基本概念和计算方法的理解和掌握程度进行考核;3. 期末考试:综合考核学生对传热学理论和实验技能的综合应用能力。

《传热学》课程教学大纲

《传热学》课程教学大纲

《传热学》课程教学大纲课程名称:传热学英文名称:Heat Transfer课程编码:CJX0120课程学时:56学分:3.5适用对象:机械系能动和建环专业先修课程:高等数学,物理,流体力学使用教材:戴锅生编,《传热学》,第二版,北京:高等教育出版社,1999主要参考书:[1]杨世铭、陶文铨主编,《传热学》,第四版,北京:高等教育出版社,2006[2]傅秦生主编,《热工基础与应用》,第三版,北京:机械工业出版社,2015一、课程性质、目的和任务传热学是研究热量传递规律及其应用,以提高热能利用经济性的一门学科。

传热学是我院机械系能动和建环专业的一门必修的主干专业基础课程。

本课程不仅为学生学习有关的专业课程提供基本的理论知识,而且也为学生以后从事热能的合理利用、热工设备效能的提高及换热器的设计和开发研究等方面的工作打下必要的基础。

通过本课程的学习1. 应使学生获得比较宽广和巩固的热量传递规律的基础知识,具备分析工程传热问题的基本能力;2. 掌握计算工程传热问题的基本方法,并具有相应的计算(包括理论分析和数值计算)能力。

二、教学基本要求要求学生熟练掌握导热、对流和热辐射三种热量传递方式的物理概念、特点和基本规律,并能综合应用这些基础知识正确分析工程实际中的传热问题。

掌握计算各类热量传递过程的基本方法,能对典型的工程传热问题进行计算,能对间壁式换热器进行热设计。

掌握强化或削弱热量传递过程的方法,并能提出工程实际中切实可行的强化或削弱传热的措施。

三、课程内容第一章绪论了解传热学与工程热力学在研究内容和方法上的区别,掌握传热学的研究对象、任务、方法及其在工程中的应用。

作为一门研究热量传递基本规律及其应用的技术基础课,学习目的在于掌握一般工程技术中热量传递的基本规律和处理传热问题的基本方法,以提高热能直接利用的经济性;能够应用这些知识来解决遇到的实际问题;并为学习有关的工程技术课程提供必要的理论基础。

掌握热量传递的基本方式:导热、对流和热辐射的概念和所传递热量的基本计算公式。

传热学课程教学大纲

传热学课程教学大纲

传热学课程教学大纲
一、课程背景简介
传热学是热力学的一个重要分支,研究热量在固体、液体和气体之间的传递过程和规律。

本课程旨在通过理论探讨和实践操作,使学生掌握传热学的基本知识和应用技能,为后续学习和工作提供有力支撑。

二、课程目标
1. 理解传热学的基本概念、原理和基本方程。

2. 掌握传热过程中的传热量计算和传热速率计算方法。

3. 熟悉传热过程中的传热机制和传热方式。

4. 能够应用传热学知识解决传热问题。

三、教学内容和安排
1. 传热学的基本概念和原理
a. 传热学的定义和研究对象。

b. 热量和温度的基本概念。

c. 传热机制和传热方式的分类和特点。

d. 传热方程和传热速率的计算方法。

2. 热传导
a. 热传导的基本概念和特点。

b. 热传导方程和气体、液体和固体的传热模型。

c. 热传导的计算方法和相关应用。

3. 对流传热
a. 对流传热的基本概念和原理。

b. 自然对流和强制对流的区别和特点。

c. 对流传热的计算方法和相关应用。

4. 辐射传热
a. 辐射传热的基本概念和原理。

b. 黑体辐射和实物体辐射的特点和计算方法。

c. 辐射传热的影响因素和相关应用。

工程热力学教学大纲

工程热力学教学大纲

工程热力学教学大纲一、引言工程热力学是工程学科中的重要基础课程之一,它研究能量转移与转换的基本原理和方法。

本教学大纲旨在全面系统地介绍工程热力学的相关知识和方法,培养学生运用热力学原理分析和解决工程问题的能力。

本大纲将从教学目标、教学内容、教学方法和评价方式等方面进行全面规划和说明。

二、教学目标1. 知识与理解目标:(1)掌握热力学的基本概念、基本定律和基本方程,并能够熟练运用;(2)了解工程热力学的基本原理和方法,理解热力学与能量转换的关系;(3)掌握热力学分析工具的使用方法,能够利用热力学原理分析和计算工程问题。

2. 能力目标:(1)具备运用热力学原理和方法分析和解决工程问题的能力;(2)能够独立进行实验设计、数据分析和报告撰写;(3)具备团队合作和跨学科交流的能力。

三、教学内容1. 热力学基础:(1)热力学的概念和基本假设;(2)热力学系统、热力学性质及其描述;(3)热力学定律和基本方程。

2. 理想气体热力学:(1)理想气体的状态方程和性质;(2)理想气体的过程及其热力学分析;(3)理想气体的热力学循环。

3. 稳流流体的能量转换:(1)能量守恒定律与控制体;(2)流体的工作与热交换;(3)水力机械的基本原理和性能。

四、教学方法1. 理论教学:(1)讲授热力学的基本理论和原理,重点讲解基本方程的推导和应用;(2)引导学生理解和掌握基本概念,培养学生运用热力学原理解决实际问题的能力;(3)结合典型案例和实际工程问题进行分析和讨论,提高学生的综合应用能力。

2. 实验教学:(1)开展与热力学相关的实验,让学生亲自实践、观察和分析实验数据;(2)培养学生实验设计和数据处理的能力,提高他们的实验技巧和科学精神;(3)组织学生进行实验报告的撰写和交流,培养团队合作和交流能力。

3. 计算机辅助教学:(1)利用计算机软件进行热力学问题的模拟与计算;(2)引导学生熟练掌握计算工具的使用,培养他们的计算和分析能力;(3)组织学生进行计算结果的验证和对比,进一步加深他们对热力学原理的理解和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科学方法,针对机械工程领域设
计、制造、运行等方面的复杂工程 4.1 对于机械工程领域设计、制造、
问题进行研究,通过设计、实施实运行中的复杂工程问题,能够基于科学原 学习目标 3
验,获取、分析和解释数据,获得理并采用科学方法,设计相应的实验;
对机械产品的设计、制造的分析、
模拟、验证及优化结论。
(12)了解机械设计制造及其
自动化领域的新理论、新技术及国 12.1 能够了解当前机械设计制造及
内外发展动态,具有自主学习和终 其自动化领域的发展状态与发展趋势;
身学习的意识,有不断学习和适应
学习目标 4
发展的能力。
四、 教学基本内容 本课程教学内容包括两大部分:第一部分:工程热力学(28 学时) 第一章 绪论(支撑学习目标 4(毕业要求 12.1)) 热能及其利用,热力学发展简史,能量转换装置工作过程简介,工程热力学和传热学的
Course offered by: Department of
College Chemistry,Fluid Mechanics
Mechanical Eng.
适用专业: 机械设计制造及其自动化专业
Intended for: Mechanical Design, Manufacturing and
Automation
通过本课程的学习,学生应了解热力学的宏观研究方法,掌握热能与机械能之间的转换 规律和能量有效利用的理论,能够正确运用热力学基本原理和定律分析计算各种热力过程和 热力循环,使学生具备分析解决实际工程热问题的基本能力,并为学生学习有关的专业课程 提供必要的理论基础。同时,通过本课程的学习,使学生获得比较宽广和巩固的热量传递规
3、能够对冷、热机提出热能工程的解决方案,并运用相关理论在热力学和传热学方面 进行数值模拟和实验验证,解决实际工程热问题;
4、了解当前工程热力学和传热学领域的整体发展状态与发展趋势。 三、学习目标与毕业要求的对应关系
毕业要求
毕业要求指标点
学习目标
1.1 具有数学、自然科学、工程基础
和专业知识,并能够将上述知识用于描述 学习目标 1
大纲执笔人: 朱鲁闯
大纲审核人: 熊瑞平
Edited by: Zhu Luchuang
Inspected by: Xiong Ruiping
一、课程简介 工程热力学是热力学的工程分支,是在阐述热力学普遍原理的基础上,研究这些原理的
技术应用的学科,着重研究热能与其他形式的能量(主要是机械能)之间的转换规律及其工 程应用。而传热学则是研究热量传递规律的工程技术学科,在阐述能量守恒原理的基础上, 研究热量传递的学科,着重研究热量传递的基本规律及其在工程上的应用。
模型进行推理和判断,并能够给出解。
(2)能够应用数学、自然科学
和机械工程科学的基本原理,通过
信息检索、文献研究,对机械工程 2.2 能够通过多种方式,对复杂工程 学习目标 3
领域设计、制造、运行等方面的复问题及其相关因素进行表达;
杂工程问题进行识别、表达、分析、
评价,并获得有效结论。
(4)能够基于科学原理并采用
四川大学制造科学与工程学院本科课程
《工程热力学与传热学》教学大纲
课程编号: 302254030
课程类型:
必修
Course Code: 302254030
Course Type:
Compulsory
课程名称: 工程热力学与传热学
授课对象:
本科三年级学生
Course Name: Engineering Thermodynamics and Heat Audience:
难点内容:准静态过程的功;热量:热量和功的类比。 第三章 热力学第一定律(支撑学习目标 1(毕业要求 1.1)、支撑学习目标 2(毕业要 求 1.2)、支撑学习目标 2(毕业要求 1.3)) 主要内容:
1、热力学第一定律的实质 2、内能、焓 3、基本能量方程式及其应用(稳定流动、开口系统) 重点内容:能量守恒方程式与应用。 基本要求:理解热力学第一定律的实质和内容;掌握闭口系统能量方程式、稳定状态稳 定流动能量方程、焓、轴功的相关公式及计算;掌握稳定流动能量方程式的应用。 难点内容:焓参数的应用。 第四章 热力学第二定律(支撑学习目标 1(毕业要求 1.1)、支撑学习目标 2(毕业要 求 1.2)、支撑学习目标 2(毕业要求 1.3)) 主要内容: 1、热力学第二定律、卡诺循环和定理 2、熵的导出及熵变分析、克劳修斯不等式 3、孤立系统的熵增原理 重点内容:理解热力学第二定律是判断过程方向性的定律。 基本要求:理解热机循环与制冷循环、热力学第二定律、可逆过程与不可逆过程,掌握 卡诺循环、卡诺定理和热能的可用性。。 难点内容:热能的可用性分析。 第五章 理想气体的热力性质与过程(支撑学习目标 1(毕业要求 1.1)、支撑学习目标 2(毕业要求 1.2)、支撑学习目标 3(毕业要求 4.1)) 主要内容: 1、理想气体及其状态方程式 2、比热、内能、焓和熵 3、研究热力过程的目的与方法 4、理想气体的特殊过程(定容、定压、定温、绝热)及多变过程 重点内容:各热力过程中功量与热量、状态参数的计算。 基本要求:掌握理想气体内能、焓、比热和熵的计算;了解热力过程分析概述;掌握定 容过程、定压过程、定温过程、定熵过程、多变过程五种典型热力过程状态参数、功量与热 量的计算以及它们的图示。 难点内容:理想气体的熵变计算;多变过程的计算分析与图示。 第六章 水蒸汽的热力性质和热力过程(支撑学习目标 1(毕业要求 1.1)、支撑学习目
律的基础知识,具备分析工程传热问题的基本能力,掌握工程传热问题计算的基本方法并具 备相应的计算能力,学会传热学实验中有关温度与热量的测量方法并具备初步的实验技能。 二、学习目标
1、能够正确理解工程热力学和传热学的基本概念、基本原理等相关理论及方法。能够 运用数学、物理、力学知识表达工程热学问题;
2、能够针对工程系统建立热力学和传热学数学模型,并能正确对系统进行理论分析和 设计计算;
Junior
Transfer Theory
学时/学分: 48/3
授课语言:
中文
Credit
48/3
Language of
Chinese
Hours/Credits
Instruction
Mandarin
先修课程: 高等数学、大学物理、大学化学、 开课院系:
机site: Calculus,University Physics,
主要研究对象及研究方法。 第二章 基本概念(支撑学习目标 1(毕业要求 1.1)) 主要内容: 1、热力学系统、平衡态及热力状态参数,功和热量 2、准静态过程、可逆过程及熵 重点内容:工程热力学的基本概念及定义。 基本要求:正确理解以下相关概念:热力学系统、热力学的状态及基本状态参数、平衡
状态、热力过程、准静态过程、准静态过程的功、热量、热力循环;掌握状态方程、功和热 量的计算。
机械工程领域设计、制造、运行等方面的
(1)能够将数学、自然科学、复杂工程问题;
机械工程基础知识和专业知识用 1.2 能够针对机械工程领域设计、制
于解决机械工程领域设计、制造、造、运行等方面的复杂工程问题,建立数 学习目标 2
运行等方面的复杂工程问题。 学、力学等理论模型,并达到适当的精度
要求;
1.3 能够对所建立的复杂工程问题 学习目标 2
相关文档
最新文档