CMOS晶体管基础

合集下载

cmos的原理

cmos的原理

cmos的原理
CMOS(亦称Complementary Metal-Oxide-Semiconductor)是
一种集成电路技术,也是一种制造这种技术的电晶体。

CMOS 芯片由NMOS和PMOS两种类型的晶体管组成,其原理基于
这两种晶体管的互补关系。

NMOS晶体管是N沟道开关型晶体管,由P型基质,在其中
形成了N型沟道。

当输入电压为高电平(逻辑“1”)时,基质
和源结之间的电势差足够大,导电层形成,电流可以通过。

而当输入电压为低电平(逻辑“0”)时,P基质和源结之间的电
势差不足以形成导电层,导致电流断开,此时晶体管处于关断状态。

PMOS晶体管是P沟道开关型晶体管,由N型基质,在其中
形成了P型沟道。

与NMOS晶体管相反,当输入电压为高电
平时,P基质和源结之间的电势差足够大,导电层形成,电流
可以通过。

而当输入电压为低电平时,N基质和源结之间的电势差不足以形成导电层,导致电流断开,晶体管处于关断状态。

CMOS技术通过将NMOS和PMOS晶体管连接在一起,形成
了互补的结构。

这样的结合使得CMOS电路具有很高的抗干
扰能力和功耗效率。

CMOS电路在逻辑门设计和数字电路中
得到广泛应用,如存储器、微控制器以及在电脑芯片等领域。

CMOS技术还可以实现低电平逻辑设计,从而让电路工作在
更低的功耗和噪声水平上。

总之,CMOS电路的原理基于NMOS和PMOS晶体管的互补
特性,利用两种晶体管之间的开关行为来实现逻辑功能。

这种技术带来了高性能、低功耗、高抗干扰能力和可靠性的优势,在现代集成电路设计中起着至关重要的作用。

CMOS工艺要点

CMOS工艺要点

CMOS工艺要点1.CMOS工艺的基本结构是互补的NMOS(N型金属氧化物半导体)和PMOS(P型金属氧化物半导体)晶体管。

这两种晶体管的结构和工作原理互补,可以实现低功率消耗和高集成度。

2.CMOS工艺的制备过程基于晶圆的批量生产。

首先,在硅衬底上生长一层二氧化硅(SiO2)薄膜,然后通过光刻和蚀刻工艺形成了晶体管的控制门电极。

接下来,通过注入掺杂物来形成NMOS和PMOS的源与漏区域。

最后,通过金属引脚和连线将晶体管连接在一起。

3.CMOS工艺采用高纯度晶体硅材料作为衬底,使得晶体管的电子迁移率高。

同时,CMOS工艺还采用了硅二氧化物(SiO2)作为绝缘层来隔离晶体管和金属导线,提高了电路的良好性能。

4.CMOS工艺具有极低的功耗特性。

由于互补的晶体管结构,只有在逻辑电路切换时才会产生瞬态电流,其他时候几乎没有电流通过。

这使得CMOS工艺非常适合移动设备,如智能手机和平板电脑,因为电池寿命可以得到更好的保持。

5.CMOS工艺的集成度很高。

由于可以在晶圆上同时制造多个晶体管和其他电子器件,因此CMOS工艺可以实现非常复杂的电路设计,从而提供更强大的计算和功能性能。

6.CMOS工艺具有一定的可靠性和稳定性。

晶体管的硅二氧化物绝缘层可以提供良好的电离隔离,使得晶体管具有较低的泄漏电流和较高的开关速度。

此外,CMOS工艺还提供了对精密电流和电压控制的良好性能。

总之,CMOS工艺是现代集成电路制造中最重要的工艺之一、它具有低功耗、高集成度、高性能和可靠性的特点,使得它成为各种电子设备和系统的首选工艺。

随着科技的进步,CMOS工艺仍然在不断发展,以适应越来越高的性能和集成度要求。

CMOS基础及基本工艺流程

CMOS基础及基本工艺流程

CMOS基础及基本工艺流程
1.单晶硅衬底制备:首先需要准备单晶硅衬底,它是整个集成电路的
基础。

这一步骤通常会涉及硅片切割和粗化,最终得到大小合适的硅衬底。

2.外延生长:在单晶硅衬底上外延生长蓝宝石或氮化硅等薄膜,这些
薄膜将作为隔离层使用,以电隔离各个晶体管。

3.门电极制备:在隔离层上制备门电极。

通常使用化学气相沉积(CVD)或物理气相沉积(PVD)等技术,在薄膜上沉积一层金属,如铝或钨。

4.掺杂:利用掺杂技术向单晶硅衬底中注入掺杂物(例如硼或磷),
以改变硅的电子特性。

5.晶体管制备:利用光刻技术定义出晶体管的结构,通过曝光、阻挡、显影等步骤,制造出源极、栅极和漏极之间的结构。

6.金属互连:使用金属沉积和光刻技术,在晶体管上制造出金属互连层,将各个晶体管连接在一起。

7.电介质和过程模拟:制备电介质层,通常使用氧化硅或氧化铝等材料。

过程模拟是为了检测制造过程中的缺陷和问题。

8.上下电极制备:制造上下电极用于晶体管之间的连接。

9.晶体管测试:测试晶体管的性能和可靠性。

10.封装和测试:最后,将制造好的芯片封装成集成电路,并进行最
终的测试。

以上是CMOS基本工艺流程的主要步骤,每个步骤都需精确控制和复杂操作,以确保芯片的性能和可靠性。

CMOS技术由于其功耗低、稳定性好和集成度高等优点,被广泛应用于各种电子设备中,如微处理器、存储器、传感器等。

cmos电路和器件基本结构

cmos电路和器件基本结构

cmos电路和器件基本结构CMOS电路和器件基本结构一、引言CMOS(亦称为互补金属-氧化物-半导体)电路是一种常用的逻辑电路,它由NMOS(N型金属-氧化物-半导体)和PMOS(P型金属-氧化物-半导体)两种互补型的MOSFET(金属-氧化物-半导体场效应晶体管)组成。

CMOS电路以其低功耗、高集成度和低电压操作等特点,在现代集成电路设计中得到广泛应用。

本文将介绍CMOS电路和器件的基本结构。

二、CMOS电路的基本结构1. NMOS器件NMOS器件由P型衬底上生长的N型沟道和两个掺入P型源极和漏极的P型扩散区组成。

沟道区域上方由一层薄的氧化硅(SiO2)作为绝缘层,上面再覆盖一层金属(通常为铝)作为电极。

当沟道区没有电压施加时,NMOS处于截止状态,导通状态需要在沟道区施加正电压。

2. PMOS器件PMOS器件与NMOS器件相反,由N型衬底上生长的P型沟道和两个掺入N型源极和漏极的N型扩散区组成。

沟道区域上方同样有一层氧化硅和金属电极。

当沟道区施加负电压时,PMOS处于导通状态,截止状态需要在沟道区施加正电压。

3. CMOS电路CMOS电路是通过将NMOS和PMOS器件相互串联或并联而构成的。

在CMOS电路中,NMOS器件的漏极与PMOS器件的源极相连,共同组成电路的输出端;NMOS器件的源极与PMOS器件的漏极相连,共同组成电路的输入端。

当输入信号施加到NMOS和PMOS器件上时,根据不同的输入信号电平,其中一个器件处于导通状态,另一个器件处于截止状态,从而实现电路的逻辑功能。

三、CMOS电路的工作原理CMOS电路的工作原理是基于MOSFET的三个重要特性:沟道截止、沟道饱和和门极电势控制。

当输入信号为低电平时,NMOS处于导通状态,PMOS处于截止状态,此时电路输出为高电平;当输入信号为高电平时,NMOS处于截止状态,PMOS处于导通状态,此时电路输出为低电平。

由于CMOS电路的输出仅在输入发生变化时才会改变,且输出信号的上升和下降均经过一个NMOS和一个PMOS器件,因此CMOS电路具有较低的功耗和较高的抗噪声能力。

cmos晶体管原理

cmos晶体管原理

cmos晶体管原理CMOS晶体管原理什么是CMOS晶体管CMOS(Complementary Metal-Oxide-Semiconductor,互补金属氧化物半导体)晶体管是一种常用于数字集成电路中的半导体器件。

它由P型沟道MOSFET(PMOS)和N型沟道MOSFET(NMOS)组成。

CMOS的基本原理CMOS晶体管的基本原理是利用P型和N型MOSFET的互补特性,实现器件的低功耗、高集成度和高可靠性。

P型MOSFET•噪声:P型MOSFET受控极为基区,电流由基区中的电子恢复时间决定,因此噪声较大。

•寿命:电荷注入效应会导致电子在基区游离,造成寿命的降低。

N型MOSFET•噪声:N型MOSFET的噪声较小,因为电流由电子决定,而电子的恢复时间较短。

•寿命:寿命较长,因为电子注入基区不会关联到电子的迁移。

互补特性CMOS晶体管由P型和N型MOSFET组成,因此能够克服P型和N 型MOSFET各自的缺点,实现高性能和低功耗的优势。

CMOS工作原理CMOS晶体管工作分为两个阶段:开关阶段和恢复阶段。

开关阶段在开关阶段,当输入信号为高电平时,P型MOSFET导通,N型MOSFET截止;当输入信号为低电平时,P型MOSFET截止,N型MOSFET 导通。

这样就实现了输出信号的高低电平反转。

恢复阶段在恢复阶段,当输入信号经过传输延时后,P型MOSFET和N型MOSFET同时切换状态,完成信号的恢复。

CMOS的应用CMOS晶体管由于其低功耗、高集成度和高可靠性的特点,在各种数字集成电路中得到广泛应用:1.微处理器和微控制器:CMOS晶体管实现了高速运算和低功耗。

2.存储器:CMOS晶体管实现了高密度集成和快速读写。

3.传感器:CMOS晶体管用于光电传感器和温度传感器等。

4.通信系统:CMOS晶体管用于射频功率放大器和射频开关等。

综上所述,CMOS晶体管是一种重要的数字集成电路器件,它的工作原理和特性使得其在现代科技中起着不可或缺的作用。

cmos的基本原理

cmos的基本原理

cmos的基本原理CMOS的基本原理CMOS是一种重要的集成电路技术,其基本原理是通过控制两个互补的金属氧化物半导体(Metal-Oxide-Semiconductor)场效应晶体管(MOSFET)的导通和截断来实现电路的逻辑运算。

CMOS电路由p型和n型MOSFET组成,可以实现低功耗、高集成度和高可靠性的电路设计。

CMOS电路的基本元件是MOSFET,它是一种三端口器件,包括栅极、漏极和源极。

根据栅极的工作电压,MOSFET可以分为两种类型:pMOSFET和nMOSFET。

pMOSFET的栅极与源极之间的电压为正时,pMOSFET导通;nMOSFET的栅极与源极之间的电压为负时,nMOSFET导通。

通过适当的电路连接,可以实现不同的逻辑操作。

CMOS电路的关键是通过pMOSFET和nMOSFET之间的互补工作来实现逻辑功能。

在CMOS电路中,pMOSFET和nMOSFET是互补的,即当pMOSFET导通时,nMOSFET截断;当nMOSFET导通时,pMOSFET截断。

这种互补工作方式使得CMOS电路具有低功耗特性,因为只有在逻辑操作时才会有电流流过器件。

CMOS电路的逻辑门是由多个MOSFET组成的。

最常见的逻辑门有与门、或门、非门和异或门。

与门由两个或多个输入和一个输出组成,只有当所有输入均为高电平时,输出才为高电平;或门也由两个或多个输入和一个输出组成,只要输入中有一个为高电平,输出就为高电平;非门只有一个输入和一个输出,当输入为高电平时,输出为低电平,反之亦然;异或门有两个输入和一个输出,当两个输入相等时,输出为低电平,否则输出为高电平。

CMOS电路的优点是低功耗和高集成度。

由于CMOS电路只在逻辑操作时才有电流流过,因此其功耗相对较低。

此外,CMOS电路的工作电压范围广,可以适应不同的应用场景。

CMOS技术还具有高集成度的特点,可以在一块芯片上集成大量的逻辑门和其他功能模块,实现复杂的系统设计。

第08章-CMOS工艺双极型晶体管和二极管

第08章-CMOS工艺双极型晶体管和二极管
第八章 CMOS工艺双极型晶体管和二极管
白雪飞 中国科学技术大学电子科学与技术系
提纲
• CMOS工艺双极型晶体管 • CMOS工艺二极管
2
CMOS工艺双极型晶体管
寄生双极型晶体管
• CMOS工艺是为了制造MOS电路而优化设计的 • CMOS工艺只能生成寄生双极型晶体管,其性能不及标准双极工艺或 BiCMOS工艺的双极型晶体管
• CMOS工艺寄生双极型晶体管在电路设计中也可以加以利用
4
衬底PNP晶体管
• 任何N阱CMOS工艺都可以制作衬底PNP晶体管
– 发射区:P型扩散 – 基 区:N阱 – 集电区:P型衬底
5
衬底PNP晶体管版图
(A) 采用叉指状发射区的版图 (B) 采用小接触孔大面积发射区的版图
6
横向PNP晶体管
N阱CMOS工艺横向PNP晶体管
可以获得较高的增益
7
浅阱晶体管
Байду номын сангаас
CMOS工艺浅阱NPN晶体管
8
CMOS工艺二极管
CMOS结型二极管
PSD/N阱二极管 可用于ESD保护结构
10
CMOS肖特基二极管
CMOS工艺制造的PSD保护环肖特基二极管
11
匹配PN结二极管
匹配PSD/N阱二极管
12
本章结束

cmos电路和器件基本结构

cmos电路和器件基本结构

cmos电路和器件基本结构CMOS电路和器件基本结构CMOS(Complementary Metal-Oxide-Semiconductor)电路是一种广泛应用于数字集成电路中的技术。

CMOS电路由CMOS 器件构成,它是一种特殊的半导体器件。

本文将介绍CMOS电路和器件的基本结构。

一、CMOS电路的基本原理CMOS电路的基本原理是利用n型MOS(NMOS)和p型MOS (PMOS)两种互补型的场效应晶体管(FET)来实现电路的逻辑功能。

NMOS和PMOS的特性互补,通过它们的联合工作可以实现低功耗、高集成度和高噪声抑制的优点。

二、CMOS器件的基本结构CMOS器件由一对互补型的MOSFET组成,即NMOS和PMOS。

这两种器件的基本结构如下:1. NMOS结构NMOS器件由一个n型沟道和两个控制电极(栅极和源极)组成。

栅极用于控制沟道的导电性,源极和漏极用于连接电路。

当栅极施加高电压时,沟道会形成导电通道,电流可以从源极流向漏极;当栅极施加低电压时,导电通道关闭,电流无法流动。

2. PMOS结构PMOS器件由一个p型沟道和两个控制电极(栅极和源极)组成。

栅极用于控制沟道的导电性,源极和漏极用于连接电路。

与NMOS 相反,当栅极施加低电压时,沟道会形成导电通道,电流可以从源极流向漏极;当栅极施加高电压时,导电通道关闭,电流无法流动。

三、CMOS电路的工作原理CMOS电路的工作原理是利用两个互补型MOSFET的特性,通过不同的输入信号来控制输出信号。

当输入信号为高电平时,NMOS 导通,PMOS截止;当输入信号为低电平时,PMOS导通,NMOS 截止。

这样就实现了输入信号与输出信号之间的逻辑关系。

四、CMOS电路的优点CMOS电路具有以下几个优点:1. 低功耗:CMOS电路只在切换时才消耗电能,而静态时几乎不消耗电能,因此功耗较低。

2. 高集成度:CMOS电路中的晶体管可以非常小型化,因此可以实现高度集成的芯片设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ID2
VGSVTHN2
WhereKPnW L
➢ 当晶体管被夹断(pinchoff)时, 发生了什么? ➢ 增大 VDS 使耗尽区扩大到沟道中. ➢ 这导致ID 随 VDS 的增加而增大. 因此ID 可写为:
ID 2V G S V TH 21 N cV D S V D _ S Sat WhereKPnW L
gm
iDS vGS
Q
g mb
iDS vBS
Q
g ds
iDS vDS
Q
➢ 式中,Q表示在静态工作点的值.
Small-Signal Model of MOSFET in Saturation
NMOS管的阈值电压VTHN可表示为:
V q C o s N A i x2 F V S B 2 F V T 0 H2 N F V S B 2 F
其中
ms = 栅和衬底的接触电势(contact potential between the gate and the bulk)
F = 衬底的静电势(electrostatic potential of the substrate) Q`bo = 耗尽区的电荷(charge in the depletion region) Q`ss = Si/SiO2 接触面的电荷(Si/Sicharge at the Si/SiO2
2、阈值电压(Threshold Voltage)
➢ 阈值电压是当沟道反型时所需的电压 (i.e. 将沟道从p型变 到n型的电压).
➢ 阈值电压可按下式计算:
V TH N m 2 sF Q b C o o Q s x s 2 q C o sN i x A 2 F V S B2 F
① VGS〈Vthn时
下面的结构是N+PN+,耗尽层内是没有 自由移动的电荷的。D、S之间没有形成 一条电流通道,所以IDS=0。
②,VGS>=Vthn时
由于电场的作用,P—SUB中的少量电子移动到了沟 道的顶部。这样就形成了一条电子移动的通道,如 果VDS>0,就会形成源漏电流IDS。
沟道夹断
电容值的计算(了解)
Capacitance values are the same as Accumulation
Co
x
ox
TOX
and
CoxCo xWL
Capacitance is comprised of three components
C gb ox LT 2O LX D W C g dC g s oT xLO W D X CG W D CO G W SO
➢ 晶体管偏置在 VGS VTHN , 此时沟道已形成. ➢ 漏源电压 (VDS) 较小. ➢ 漏极电流可用下式表示:
IDVGSVTHN VDSV2D 2S
WhereKPnW L
MOSFET I-V 特性 (饱和区Saturation Region)
➢ 晶体管偏置在 VGS VTHN ,此时沟道已形成. ➢ 漏源电压较大 (i.e. VDS VGS – VTHN). ➢ 理想的漏极电流可表示为:
CMOS晶体管基础
MOSFET的三个重要几何参数
Lmin、 Wmin和 tox 由工艺确定 Lmin: MOS工艺的特征尺寸(feature size)
决定MOSFET的速度和功耗等众多特性 L和W由设计者选定 通常选取L= Lmin,由此,设计者只需选取W W影响MOSFET的速度,决定电路驱动能力和功耗
Area (poly)
54 18 11 aF/um2
Area (M1)
46 17 aF/um2
Area (M2)
49 aF/um2
Area (N+act.)
3599
aF/um2
Area (P+act.)
3415
aF/um2
Fringe (sub.) 249 261
aF/um
5、MOSFET的交流小信号模型(Analog Model for the MOSFET)
MOSFET的高频模拟模型. 电容已经在以前提到. ro 是输出电阻,gm是栅跨导. Current sources model the gain associated with biasing the base and the body of the MOSFET.
Small-Signal Model of MOSFET
以上各式中:
Eox: 氧化层的介电常数。
Tox: 氧化层的厚度。
Cox’ : 表示单位面积氧化层的电容值。
LD: 表示栅极和S、D重叠的宽度(由工艺精度决定)。
深亚微米CMOS IC工艺的寄生电容(数据)
Cap. N+Act.P+Act. Poly M1 M2 M3 Units
Area (sub.) 526 937 83 25 10 8 aF/um2
interface)
VSB = 源到衬底的电势差(Source to bulk voltage)
对于一般工艺,Vtn= 0.83V(NMOS的阈值电压), Vtp= - 0.91V(PMOS的阈值电压),
阈值电压由工艺参数决定
3、MOSFET的 I-V 特性 (线性区Triode Region)
➢ 输入信号的幅度和电源电压相比很小, 它在直流偏置工作 点附近的变化, 可近似认为工作在线性区间(如iD:SidsIDS ).
➢ MOS管的小信号模型可以直接从直流模型得出。大多数应 用中, MOS管被偏置在饱和区工作。下面仅给出饱和区的 小信号参数.
➢ 沟道导纳gm, gmb和gds, 分别称为栅跨导, 衬底跨导, 漏电导, 定义如下:
➢ c 是非理想因子,它是考虑了随着漏极电压增加耗尽层加厚而造成的.
MOSFET I-V Characteristics(伏安特性)曲线
VGS:栅极和源极的电压差。 VDS: 漏极和源极的电压差。 ID : 流过漏极和源极的电流。 Vth: 器件的阈值电压,当VGS增加到一定的值时,栅极下面的P型 半导体会发生反型,形成N型半导体的沟道。此时D和S之间可以有 电流流过,这个特定的电压值,称之为值电压。
相关文档
最新文档