【精选】2020年中考数学复习中考数学复习中考数学复习专题34 动态问题(学生版)
【优选】2020年中考数学复习中考数学复习中考数学复习专题34 动态问题(学生版)

专题34 动态问题专题知识回顾一、动态问题概述1.就运动类型而言,有函数中的动点问题、图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题,有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型:1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型:1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)(解析版)

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)1.如图1,已知四边形ABCD内接于⊙O,AC为⊙O的直径,AD=DB,AC与BD交于点E,且AE=BC.(1)求证:AB=CB;(2)如图2,△ABC绕点C逆时针旋转35°得到△FGC,点A经过的路径为弧AF,若AC=4,求图中阴影部分的面积.(1)证明:∵AD=BD,∠DAE=∠DBC,AE=BC,∴△ADE≌△BDC(SAS),∴∠ADE=∠BDC,∴=.∴AB=BC.(2)解:S阴=S扇形CAF+S△CFG﹣S△ABC=S扇形CAF==.2.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:CG=3:2,AB=16.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=30°,将沿弦CE翻折,交CB于点F,求图中阴影部分的面积.解:(1)连接AO,如右图所示,∵CD为⊙O的直径,AB⊥CD,AB=16,∴AG==8,∵OG:CG=3:2,∴OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+82=(5k)2,解得,k=2或k=﹣2(舍去),∴5k=10,即⊙O的半径是10;(2)如图所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=30°,由对称性可知,∠DCM=60°,S阴影=S弓形CBM,连接OM,则∠MOD=120°,∴∠MOC=60°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=10×=5,∴S阴影=S扇形OMC﹣S△OMC=﹣×10×5=﹣25.3.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵CD⊥AB,∴∠OBC+∠BCD=90°,∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(2)解:①线段CF与CD之间满足的数量关系是:CF=2CD,理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;②∵CD=4,BD=2,∴BC==2,由①得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴=,∴=,∴FG=.4.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s 的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.设运动时间为t秒.(1)当t=2时,△DPQ的面积为28 cm2;(2)在运动过程中△DPQ的面积能否为26cm2?如果能,求出t的值,若不能,请说明理由;(3)运动过程中,当A、P、Q、D四点恰好在同一个圆上时,求t的值;(4)运动过程中,当以Q为圆心,QP为半径的圆,与矩形ABCD的边共有4个交点时,直接写出t的取值范围.解:(1)∵四边形ABCD是矩形,∴AD=BC=12,CD=AB=6,∠A=∠B=∠C=90°,由题意得:AP=t,BQ=2t,∴BP=AB﹣AP=6﹣t,CQ=BC﹣BQ=12﹣2t,当t=2时,AP=2,BQ=4,BP=AB﹣AP=4,CQ=BC﹣BQ=8,∴△DPQ的面积=12×6﹣×12×2﹣×4×4﹣×6×8=28(cm2),故答案为:28;(2)不能;理由如下:根据题意得:△DPQ的面积=,整理得:t2﹣6t+10=0,∵b2﹣4ac=﹣4<0,∴方程无实数根,∴△DPQ的面积不可能为26cm2;(3)∵∠A=90°,∴A、P、D三点在以DP为直径的圆上,若点Q也在圆上,则∠PQD=90°,∵PQ2=(6﹣t)2+(2t)2,DQ2=62+(12﹣2t)2,DP2=t2+122,PQ2+DQ2=DP2,∴(6﹣t)2+(2t)2+62+(12﹣2t)2=t2+122;解得t1=6,t2=,∴t=6或时A、P、Q、D四点恰好在同一个圆上.(4)如图1,⊙Q与边AD相切时,过点Q作QE⊥AD,∵⊙Q与边AD相切,∴QE=QP,由勾股定理得:62=(6﹣t)2+(2t)2;解得t1=0(舍去),t2=,如图2,⊙Q过点D时,则QD=QP,由勾股定理得:(6﹣t)2+(2t)2=62+(12﹣2t)2;解得:(舍去)∴当<t<时,⊙Q与矩形ABCD的边共有四个交点.5.如图,已知直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)若⊙O的半径为2,说明直线AB与⊙O的位置关系;(2)若△ABO的内切圆圆心是点M,外接圆圆心是点N,则MN的长度是;(直接填空)(3)设F是x轴上一动点,⊙P的半径为2,⊙P经过点B且与x轴相切于点F,求圆心P的坐标.解:(1)∵直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点,∴当x=0时,y=3;当y=0时,x=4;∴A(﹣4,0),B(0,3),∴OB=3,OA=4,AB===5,过点O作OC⊥AB于C,如图1所示:∵sin∠BAO==,∴=,∴OC=>2,∴直线AB与⊙O的位置关系是相离;(2)设⊙M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,如图2所示:则四边形OCMD是正方形,DE⊥AB,BE=BD,∴MC=MD=ME=OD=(OA+OB﹣AB)=×(4+3﹣5)=1,∴BE=BD=OB﹣OD=3﹣1=2,∵∠AOB=90°,∴△ABO外接圆圆心N在AB上,∴AN=BN=AB=,∴NE=BN﹣BE=﹣2=,在Rt△MEN中,MN===;故答案为:;(3)连接PB、PF,作PC⊥OB于C,如图3所示:则四边形OCPF是矩形,∴OC=PF=BP=2,BC=OB﹣OC=3﹣2=1,∴PC===,∴圆心P的坐标为:(,2).6.联想我们曾经学习过的三角形外心的概念,我们可引入准外心的定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.请回答下面的三个问题:(1)如图1,若PB=PC,则点P为△ABC的准外心,而且我们知道满足此条件的准外心有无数多个,你能否用尺规作出另外一个准外心Q呢?请尝试完成;(2)如图2,已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长;(3)如图3,点B既是△EDC又是△ADC的准外心,BD=BA=BC=2AD,BD∥AC,CD=,求AD的值.解:(1)能用尺规作出另外一个准外心Q,作AB的垂直平分线MN,在MN上取点Q,如图1所示:则QA=QB,点Q为△ABC的准外心;(2)连接BP,如图2所示:∵△ABC为直角三角形,斜边BC=5,AB=3,∴AC===4,∵准外心P在AC边上,①当PB=PC时,设PB=PC=x,则PA=4﹣x,在Rt△ABP中,由勾股定理得:32+(4﹣x)2=x2,解得:x=,∴PA=4﹣=;②当PA=PC时,PA=AC=2;③当PA=PB时,∵△ABC是直角三角形,此情况不存在;综上所述,准外心P在AC边上,PA的长为或2;(3)∵BD=BA=BC,∴∠BAC=∠BCA,点D、A、C在以B为圆心,AB长为半径的圆上,如图3所示:则∠ABD=2∠ACD,作BE⊥CD于E,BF⊥AD于F,则DE=CE=CD=,DF=AF=AD,∠ABD=2∠DBF,∠BEC=∠DFB=90°,∵BD∥AC,∴∠ABD=∠BAC=∠BCA=2∠ACD=2∠DBF=2∠BCE,∴∠DBF=∠BCE,在△BDF和△CBE中,,∴△BDF≌△CBE(ASA),∴DF=BE,设DF=BE=x,则AD=2x,BD=2AD=4x,在Rt△BDE中,由勾股定理得:x2+()2=(4x)2,解得:x=,∴AD=2x=.7.如图,在平面直角坐标系中,AB=AC=10,线段BC在x轴上,BC=12,点B的坐标为(﹣3,0),线段AB交y轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿x轴向右运动,设运动的时间为t秒.(1)当△BP E是等腰三角形时,求t的值;(2)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位.△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD 所在直线相切时,求t的值和此时点C的坐标.解:(1)∵AB=AC,AD⊥BC,∴BD=CD=BC=6,∴AD===8,∵点B的坐标为(﹣3,0),∴OB=3,∴OD=BD﹣OB=6﹣3=3,∴A(3,8),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=x+4,∴E(0,4),∴OE=4,BE===5,当△BPE是等腰三角形有三种情况:①当BE=BP时,则3+3t=5,解得:t=;②当BE=EP时,则3t=3,解得:t=1;③当BP=PE时,∵BP=PE,AB=AC,∠ABC=∠PBE,∴∠PEB=∠ACB=∠ABC,∴△PBE∽△ABC,∴=,即=,解得:t=;综上所述,当△BPE是等腰三角形时,t的值为或1或;(2)由题意得:C(9+2t,0),∴BC=12+2t,BD=CD=6+t,OD=3+t,设F为EP的中点,连接OF,作FH⊥AD于H,FG⊥OP于G,如图所示:则四边形FGDH是矩形,FG∥EO,∴FG是△POE的中位线,∴PG=OG=OP=t,FG=OE=2,∴F(t,2),∵四边形FGDH是矩形,∴FH=GD=OD﹣OG=3+t﹣t=3﹣t,∵以EP为直径的圆与动线段AD所在直线相切,∴FH=EP=3﹣t,在Rt△POE中,EP2=OP2+OE2,即:4(3﹣t)2=(3t)2+42,解得:t=1或t=﹣(不合题意舍去),∴C(11,0),∴以EP为直径的圆与动线段AD所在直线相切时,t的值为1,此时点C的坐标为(11,0).8.如图1,在△ABC中,∠ACB=90°,∠ABC的角平分线交AC上点E,过点E作BE 的垂线交AB于点F,△BEF的外接圆⊙O与CB交于点D.(1)求证:AC是⊙O的切线;(2)若BC=9,EH=3,求⊙O的半径长;(3)如图2,在(2)的条件下,过C作CP⊥AB于P,求CP的长.(1)证明:连接OE.如图1所示:∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC⊥OE,∴AC是⊙O的切线;(2)解:∵∠ACB=90°,∴EC⊥BC,∵BE平分∠ABC,EH⊥AB,∴EH=EC,∠BHE=90°,在Rt△BHE和Rt△BCE中,,∴Rt△BHE≌Rt△BCE(HL),∴BH=BC=9,∵BE⊥EF,∴∠BEF=90°=∠BHE,BF是圆O的直径,∴BE===3,∵∠EBH=∠FBE,∴△BEH∽△BFE,∴=,即=,解得:BF=10,∴⊙O的半径长=BF=5;(3)解:连接OE,如图2所示:由(2)得:OE=OF=5,EC=EH=3,∵EH⊥AB,∴OH===4,在Rt△OHE中,cos∠EOA==,在Rt△EOA中,cos∠EOA==,∴OA=OE=,∴AE===,∴AC=AE+EC=+3=,,∵AB=OB+OA=5+=,∠ACB=90°,∴△ABC的面积=AB×CP=BC×AC,∴CP===.9.【操作体验】如图①,已知线段AB和直线1,用直尺和圆规在1上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点(1)在图②中,连接P1A,P1B,说明∠AP1B=30°【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°(不写作法,保留作图痕迹);【深入探究】(3)已知矩形ABCD,BC=2,AB=m,P为AD边上的点,若满足∠BPC=45°的点P恰有两个,求m的取值范围;(4)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=120°,若点P绕点A逆时针旋转60°到点Q,求PQ的最小值.解:(1)如图②,连接AP1,BP1,∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AP1B=∠AOB=30°;(2)如图③,①以B、C为圆心,以BC为半径作圆,交AB、DC于E、F,②作BC的中垂线,连接EC,交于O,③以O为圆心,OE为半径作圆,则上所有的点(不包括E、F两点)即为所求;(3)如图④,同理作⊙O,∵BE=BC=2,∴CE=4,∴⊙O的半径为2,即OE=OG=2,∵OG⊥EF,∴EH=,∴OH=,∴GH=2﹣,∴BE≤AB<MB,∴3≤m<2+,故答案为:3≤m<2+;(4)如图⑤,构建⊙O,使∠COB=120°,在优弧上取一点H,则∠CHB=60°∴∠CPB=120°,由旋转得:△APQ是等边三角形,∴PQ=AP,∴PQ取最小值时,就是AP取最小值,当P与E重合时,即A、P、O在同一直线上时,AP最小,则PQ的值最小,在Rt△AFO中,AF=,OF=3+1=4,∴AO==,∴AE=﹣2=AP,∴PQ=AP=﹣2.10.如图,线段AB是⊙O的直径,C、D是半圆的三等分点,过点C的直线与AD的延长线垂直,垂足为点E,与AB的延长线相交于点F,连接OE,交AC于点G.(1)求证:FC是⊙O的切线;(2)连接DC、CO,判断四边形ADCO的形状,并证明;(3)求OG与GE的比值.(1)证明:连接OC,∵C、D是半圆的三等分点,∴==,∴∠DAC=∠CAB,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AE,∴∠OCF=∠AEC=90°,∴OC⊥EF,∴FC是⊙O的切线;(2)解:四边形ADCO是菱形,理由如下:连接DC、DO,由(1)知==,∴∠AOD=∠DOC=COB=×180°=60°,又∵OA=OD=OC,∴△OAD与△OCD是等边三角形,∴OA=OD=AD,OD=OC=DC,∴OA=AD=DC=OC,∴四边形ADCO是菱形;(3)解:由(1)知,OC∥AE,∴△OCG∽△EAG,△FCO∽△FEA,∠COF=∠EAF=60°,∴=,=,∴=,在Rt△OCF中,∠F=30°,设OC=r,则OF=2r,∴==,∴=,∴OG与GE的比值为.11.已知:CD为△ABC的外角平分线,交△ABC的外接圆O于D.(1)如图1,连接0A,OD,求证:∠AOD=2∠BCD;(2)如图2.连接BC,若CB平分∠ACD,求证:AB=BD;(3)如图3,在(2)的条件下,在AB上取一点E,BD上取一点F.连接DE、AF交于点M,连接EF,若∠DMF=60°,AC=EF=7,CD=8(DF>BF),求AE的长.解:(1)如图1,连接BD,∵CD为△ABC的外角平分线,∴∠HCD=∠BCD,∵∠HCD=∠ABD,∴∠ABD=∠BCD,∵∠AOD=2∠ABD,∴∠AOD=2∠BCD;(2)∵CB平分∠ACD,∴∠ACB=∠DCB,∴=,∴AB=BD;(3)如图3,作FG⊥AB于G,EP⊥AF于P,CN⊥AC交AC的延长线于N.在Rt△CDN中,∵∠DCN=60°,CD=8,∴∠CDN=30°,∴CN=CD=4,DN=4,∴AD===13,∵AB=BD,∠B=60°,∴∠ABC是等边三角形,∴AD=DB=BD=13,∠DAB=60°,∵∠DMF=∠ADM+∠MAD=60°,∠MAE+∠MAD=60°,∴∠ADE=∠BAF,∵∠DAE=∠B,∴△ADE≌△BAF(ASA),∴AE=BF,设AE=BF=x,则BE=13﹣x,BG=x,EG=13﹣x,FG=x,在Rt△EFG中,72=(13﹣x)2+(x)2,解得x=5或8(舍弃),∴AE=BF=5.12.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长A0与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)证明:OA2=OD•OP;(3)若BC=6,tan∠F=,求cos∠ACB的值.(1)证明:连接OB,如图1所示:∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∵BA⊥PF,∴AD=BD,即OP垂直平分AB,∴PA=PB,∴∠PAB=∠PBA,∵OA=OB,∴∠OAB=∠OBA,∴∠PAB+∠OAB=∠PBA+∠OBA=90°,即∠OAP=90°,∴OA⊥PA,∴直线PA为⊙O的切线;(2)∵∠ADO=∠OAP=90°,∠AOD=∠POA,∴△OAD∽△OPA,∴=,∴OA2=OD•OP;(3)解:连接AE,如图2所示:∵AC为直径,∴∠ABC=90°,∵OD垂直平分AB,∴OD∥BC,∴OD是△ABC的中位线,∴OD=BC=3,设DE=x,则OE=OA=OF=3+x,∵OD垂直平分AB,∴=,∴∠F=∠DAE,∴tan∠DAE=tan∠F=,∴AD=2DE=2x,在Rt△ADF中,tan∠F==,∴=,解得:x=2,∴AD=4,BC=6,OA=OE=5,在Rt△ABC中,AC=2OA=10,∴cos∠ACB===.13.如图1,在矩形ABCD中,AB=18cm,BC=24cm.在Rt△GEF中,∠GFE=90°.EF =12cm,GF=16cm.E,F两点在BC边上,GE,GF两边分别与矩形ABCD对角线BD交于M,N两点.现矩形ABCD固定不动,△GEF从点F与点B重合的位置出发,沿BC以2cm/s的速度向点C运动,点P从点F出发,在折线FG﹣GE上以4cm/s的速度向点E运动.⊙G是以G为圆心.GP的长为半径的圆.△GEF与点P同时出发,当点E到达点C 时,△GEF和点P同时停止运动.设运动的时间是t(单位:s).(1)当t=2s时,PN= 5 cm,GM=cm;(2)当△PGE为等腰三角形时,求t的值;(3)当⊙G与BD相切时,求t的值.解:(1)当t=2时,BF=2×2=4(cm),FP=2×4=8(cm),∵四边形ABCD是矩形,∴∠C=90°,AB=CD=18cm,tan∠DBC===,∵∠GFE=90°,∴∠BFN=90°=∠C,∴GF∥CD,∴△BFN∽△BCD,∴=,即=,解得:FN=3cm,∴PN=FP﹣FN=5cm;GN=GF﹣FN=16﹣3=13(cm),∵Rt△GEF中,∠GFE=90°.EF=12cm,GF=16cm,∴GE==20cm,tan∠G===,∴∠DBC=∠G,∵∠BFN=180°﹣90°=90°,∴∠DBC+∠BNF=90°,∵∠GNM=∠BNF,∴∠G+∠GNM=90°,∴∠GMN=90°,∴△GNM∽△GEF,∴=,即=,∴GM=cm,故答案为:5,;(2)由题意得:当△PGE为等腰三角形时,PG=PE,如图2所示:设PF=x,则PE=PG=(16﹣x)cm,在Rt△PEF中,由勾股定理得:122+x2=(16﹣x)2,解得:x=,∴PF=,∴t=÷4=(s);(3)由勾股定理得:BD==30cm,由(1)得:∠GMN=90°,∴GM⊥BD,∵GP是⊙G的半径,∴当⊙G与BD相切时,GM=GP,∵∠BME=∠C=90°,∠DBC=∠EBM,∴△BME∽△BCD,∴=,即=,解得:ME=(2t+12),∴GM=GE﹣ME=20﹣(2t+12)=,分两种情况:①当0<t≤4时,∵GP=16﹣4t,∴=16﹣4t,解得:t=;②当4<t≤6时,P与M重合,GP=4t﹣16,∴=4t﹣16,解得:t=;综上所述,当⊙G与BD相切时,t的值为s或s.14.如图1,已知AB是⊙O的直径,AM和BN是⊙O的两条切线,∠是⊙O的半圆弧上一动点(不与A,B重合),过点E的直线分别交射线AM、BN于D、C两点,且CB=CE.(1)求证:CD为⊙O的切线;(2)求证:AB2=4AD•BC;(3)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.(1)证明:如图1,连接OE,OC,在△BCO与△ECO中,,∴△BCO≌△ECO(SSS),∴∠OEC=∠OBC,∵BN是⊙O的切线,∴AB是⊙O的直径,∴AB⊥BN,∴∠ABC=90°,∴∠OEC=90°,∴CD为⊙O的切线;(2)证明:连接OC、OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,∴∠ODE=∠ADE,∠OCE=∠BCE,∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90°,∴△AOD∽△BCO,∴=,∴OA2=AD•BC,∴(AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,∴OD=DF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD=OA,Rt△BOC中,BC=OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB=,∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×××3﹣=3﹣π.15.如图,A(﹣5,0),B(﹣3,0)点C在y的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°,点P从点A出发,沿x轴向右以每秒1个单位长度的速度运动,运动时间为t秒.(1)当时t=1,求PC的长;(2)当∠BCP=15°时,求t的值;(3)以线段PC为直径的⊙Q随点P的运动而变化,当⊙Q与四边形ABCD的边(或边所在的直线)相切时,求t的值.解:(1)A(﹣5,0),B(﹣3,0),∴OA=5,OB=3,当t=1时,AP=1,∴OP=OA﹣AP=4,∵∠CBO=45°,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠OCB=45°,OC=OB=3,∴PC===5;(2)分两种情况:如图1所示:①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∴∠OPC=30°,∴OP=OC=3,∴AP=OA﹣OP=5﹣3,∵点P沿x轴向右以每秒1个单位的速度运动,∴t=5﹣3,②当P在点B的右侧时,∵∠OCB=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∴OP=OC=,∴AP=OA﹣OP=5﹣,∵点P沿x轴向右以每秒1个单位的速度运动,∴t=5﹣;综上所述,当∠BCP=15°时,t的值为(5﹣3)秒或(5﹣)秒;(3)如图2中,由题意知,若该圆与四边形ABCD的边相切,有以下三种情况:①当该圆与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP1=OC=3,此时AP1Q=5+3=8,∴t=8;②当该圆与CD相切于点C时,有P2C⊥CD,即点P2与点O重合,此时AP2=5,∴t=5;③当该圆与AD相切时,设P3(5﹣t,0),则Q(,),半径r2=()2+()2,作QH⊥AD于点H,则QH=,∵QH2=r2,∴()2=()2+()2,解得t=,综上所述,t的值为8秒或5秒或秒.。
2020年中考数学热点专题四动态探究问题解析版

2020年中考数学热点专题四动态探究问题解析版2019的中考中的动态问题是失分点,总结如下:常见的动点问题分类:①求最值问题,②动点构成特殊图形问题.一、求最值问题初中利用轴对称性质实现“搬点移线”求几何图形中一些线段和最小值问题。
利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短.求线段和的最小值问题可以归结为:一个动点的最值问题,两个动点的最值问题.二、动点构成特殊图形问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置).分析图形变化过程中变量和其他量之间的关系,或是找到变化中的不变量,建立方程或函数关系解决.小结在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.考向1 动点与最值1.(2019·聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且ACCB=13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B.(52,52) C.(83,83) D.(3,3)2.(2019·威海)如图,在平面直角坐标系中,点A ,B 在反比例函数()0ky k x=≠的图像上运动,且始终保持线段AB =M 为线段AB 的中点,连接OM.则线段OM 的长度的最小值是 (用含k 的代数式表示).3.(2019·巴中)如图,在菱形ABCD 中,连接BD ,AC 交于点O ,过点O 作OH ⊥BC 于点H ,以点O 为圆心,OH 为半径的半圆交AC 于点M.(1)求证:DC 是e O 的切线;(2)若AC=4MC 且AC=8,求图中阴影部分的面积;(3)在②的条件下,P 是线段BD 上的一动点,当PD 为何值时,PH+PM 的值最小,并求出最小值.4.(2019·益阳)如图,在半面直角坐标系xOy 中,矩形ABCD 的边AB=4,BC=6.若不改变矩形ABCD 的形状和大小,当形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半上随之上下移动.(1)当∠OAD=30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形 OMCD 的面积为221时,求OA 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos ∠OAD 的值.5.(2019·衡阳)如图,在等边△ABC 中,AB=6cm ,动点P 从点A 出发以cm/s 的速度沿AB 匀速运动.动点Q 同时从点C 出发以同样的速度沿BC 延长线方向匀速运动.当点P 到达点B 时,点P 、Q 同时停止运动.设运动时间为t (s ).过点P 作PE ⊥AC 于E ,连接PQ 交AC 边于D .以CQ 、CE 为边作平行四边形CQFE .(1)当t 为何值时,△BPQ 为直角三角形;(2)是否存在某一时刻t ,使点F 在∠ABC 的平分线上?若存在,求出t 的值,若不存在,请说明理由;(3)求DE 的长;(4)取线段BC 的中点M ,连接PM ,将△BPM 沿直线PM 翻折,得△B ′PM ,连接AB ′,当t 为何值时,AB ′的值最小?并求出最小值.考向2 动点与图形存在性问题1.(2019·自贡)如图,已知直线AB 与抛物线:y=ax 2+2x+c 相交于点A (-1,0)和点B (2,3)两点. (1)求抛物线C 函数解析式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标;(3)在抛物线C 的对称轴上是否存在顶点F ,使抛物线C 上任意一点P 到F 的距离等于到直线y=174的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.2.(2019·凉山州)如图,抛物线y= ax 2+bx+c 的图象过点A (-1,0)、B (3,0)、C (0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点 P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 S △PAM =S △PAC ,若存在,请求出点M 的坐标;若不存在,请说明理由. 考向3 动点与函数图像问题1.(2019·广元)如图,点P 是菱形ABCD 边上的动点,它从点A 出发沿A→B→C→D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )2.(2019·衡阳)如图,在直角三角形ABC 中,∠C=90°,AC=BC ,E 是AB 的中点,过点E 作AC 和BC 的垂线,垂足分别为点D 和点F ,四边形CDEF 沿着CA 方向匀速运动,点C 与点A 重合时停止运动,设运动时间为t ,运动过程中四边形CDEF 与△ABC 的重叠部分面积为S ,则S 关于t 的函数图象大致为( ).3.(2019·菏泽)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()4.(2019·长沙)如图,函数kyx=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM 分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2;④若MF=25MB,则MD=2MA.其中正确的结论的序号是.2020年中考数学热点专题四动态探究问题解析版2019的中考中的动态问题是失分点,总结如下:常见的动点问题分类:①求最值问题,②动点构成特殊图形问题.一、求最值问题初中利用轴对称性质实现“搬点移线”求几何图形中一些线段和最小值问题。
2020年中考数学必考高分考点:动态问题(教师版)

专题34 动态问题专题知识回顾一、动态问题概述1.就运动类型而言,有函数中的动点问题、图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题,有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型:1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型:1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2020年中考数学压轴题突破之动态问题(几何)(含详解)

2020年中考数学压轴题突破之动态问题(几何)1.如图,点O是等边ABC内一点,AOB 110 , BOC .以OC为一边作等边三角形OCD,连接AC、AD .(1)若120 ,判断OB OD BD (填“,或”)(2)当150 ,试判断AOD的形状,并说明理由;(3)探究:当时,AOD是等腰三角形.(请直接写出答案)【答案】(1) 二; (2) ADO是直角三角形,证明见详解;(3) 125、110、140 .【分析】(1)根据等边三角形性质得出COD 60 ,利用?BOC a = 120。
求出BOD 180 ,所以B, 0, D三点共线,即有OB+ OD = BD ;(2)首先根据已知条件可以证明BOC ADC ,然后利用全等三角形的性质可以求出ADO的度数,由此即可判定AOD的形状;(3)分三种情况讨论,利用已知条件及等腰三角形的性质即可求解.2 .如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A C在坐标轴上,B(18,6),将矩形沿EF折叠,使点A与点C重合.图3 G(1)求点E的坐标;(2)P O O A E2E时停止运动,设P的运动时间为t, VPCE的面积为S,求S与t的关系式,直接写出t 的取值范围;3(3)在(2)的条件下,当PA=]PE 时,在平面直角坐标系中是否存在点Q,使得以点P 、E 、G Q 为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q 的坐标.【答案】(1) E (10, 6); (2) S= -8t+54 (0<t<3)或 S=-6t+48 (3vtW8); (3)存 在,Q (14.4 , -4.8 )或(18.4 , -4.8 ). 【详解】解:(1)如图 1,矩形 ABO, B (18, 6),• .AB=18 BC=6,设 AE=x,贝U EC=x BE=18-x,Rt^EBC 中,由勾股定理得: EB"+BC 2=EC 2,(18-x) 2+62=x 2, x=10,即 AE=10,①当P 在OA 上时,0WtW3,如图 2,=18X 6-1X10(62) — - X8X6 - 1X 18X2t , 2 2 2=-8t+54 ,②当P 在AE 上时,3<t<8,如图3,S = S 矩形 OABC S △ PAE -S △ BEC -S △OPCj• •E ( 10, 6);(2)分两种情况:S=1PE?BC=1 X 6X(16-2t)=3 (16-2t ) =-6t+48 ;2 2(3)存在,由PA=3PE可知:P在AE上,如图4,过G作GHLOC于H,2•.AP+PE=10.•.AP=6 PE=4,设OF=y,则FG=y, FC=18-y,由折叠得:/ CGFW AOF=90 ,由勾股定理得:FC2=FC+CG,•. ( 18-y) 2=y2+62,y=8,•.FG=8 FC=18-8=10,1FC?GH= 1FG?CG221X10XGH= 1 X6X8,22GH=4.8,由勾股定理得:FH=J82 4 82 =6.4 ,• .OH=8+6.4=14.4,.•.G ( 14.4 , -4.8 ),•・•点P、E G Q为顶点的四边形为平行四边形,且PE=4,.•.Q ( 14.4 , -4.8 )或(18.4 , -4.8 ). k ,3.如图1,平面直角坐标系xoy中,A(-4, 3),反比例函数y —(k 0)的图象分别x交矩形ABOC勺两边AC, BC于E, F (E, F不与A重合),沿着EF将矩形ABO所叠使A, D重合.②若折叠后点 D 落在矩形ABOCrt (不包括边界),求线段CE 长度的取值范围.(2)若折叠后,△ ABD 是等腰三角形,请直接写出此时点 D 的坐标.7 . 23 3. 11 3.【答案】(1)①EC= 2;②3 CE 4; (2)点D 的坐标为(一,一)或(一,一)88 2 5 5【详解】,k k解:(1)①由题意得E(k,3) , F( 4,-), 3 4k kk 0 ,则 EC — , FB 一, 3 4AF 3 一, 417(12 k) 4 3 1 3 4(12 k) 3..由 A(-4, 3)得:AC 4, AB 3,,AC 4一 --- 一,AB 3 AE AC AF AB '又A=Z A,・ .△AE% AACB ・ •/AEF4 ACB ・ •.EF// CB如图2,连接AD 交EF 于点H ,••• AE.AE (1)①如图2,当点D 恰好在矩形 ABOC 勺对角线BC 上时,求CE 的长;②由折叠得EF 垂直平分AD,••• /AHE 90 ,则 EAH AEF又• BAD EAH BAC 90 ,BAD AEF ,・ .△AE% ABAQAE AF 口"AB AE 4--- ----- ,则 ----- ------ -,AB BD BD AF 34 3 9 BDAB - 3 - 3 4 4设 AF=x,贝U FB=3— x, FD=AF=x 在Rt^BDF 中,由勾股定理得:FB 2 BD 2 FD 2,r i图2由折叠的性质得: •••D 在 BC 上, ,AE AHEC DH 1 EC AC 2AH=DH 1,则 AE EC 2;即(3 x)2x 2 ,解得:如图,当D 落在BO 上时,: EAF ABD 90 ,B力。
中考数学专题复习——动态变化问题(经典题型)

中考数学专题复习——动态变化问题(经典题型)【专题点拨】动态型问题一般是指以几何知识和图形为背景,渗透运动变化观点的一类试题,常见的运动对象有点动、线动和面动;其运动形式而言就是平移、旋转、翻折和滚动等。
动态型试题其特点是集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活,多变,动中有静,动静结合,能够在运动变化中发展同学们的空间想象能力。
解答动态型试题的策略是:(1)动中求静,即在运动变化中探索问题中的不变性;(2)动静互化,抓住静的瞬间。
找到导致图形或者变化规律发生改变的特殊时刻,同时在运动变化的过程中寻找不变性及其变化规律。
【典例赏析】【例题1】(2017黑龙江佳木斯)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG 交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG :S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG :S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.【例题2】(2017黑龙江佳木斯)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)①如图2中,结论:OH=AD,OH⊥AD.延长OH到E,使得HE=OH,连接BE,由△BEO≌△ODA即可解决问题;②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.由△BEO≌△ODA即可解决问题;【解答】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,∵在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又因为∠OAD+∠ADO=90°,所以∠ADO+∠BOH=90°,所以OH⊥AD(2)解:①结论:OH=AD,OH⊥AD,如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°∴OH⊥AD.【例题3】(2017湖北江汉)如图,在平面直角坐标系中,四边形ABCD的边AD 在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B 两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC 交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为20 ;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;(2)①当0≤t≤3时,根据已知条件得到四边形ABFE是平行四边形,于是得到S=AE•OC=4t;②当3≤t<7时,如图1,求得直线CD的解析式为:y=2x﹣4,直线E′F′的解析式为:y=﹣2x+2t﹣10,解方程组得到G(,t﹣7),于是得到S=S四边形ABCD ﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,③当t≥7时,S=S四边形ABCD=20,(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF 的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),求得PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,∴A(﹣5,0),∴OA=5,∴AC=7,把x=﹣3代入y=﹣2x﹣10得,y=﹣4∴OC=4,∴四边形ABCD的面积=(3+7)×4=20;故答案为:20;(2)①当0≤t≤3时,∵BC∥AD,AB∥EF,∴四边形ABFE是平行四边形,∴S=AE•OC=4t;②当3≤t<7时,如图1,∵C(0,﹣4),D(2,0),∴直线CD的解析式为:y=2x﹣4,∵E′F′∥AB,BF′∥AE′∴BF′=AE=t,∴F′(t﹣3,﹣4),直线E′F′的解析式为:y=﹣2x+2t﹣10,解得,∴G(,t﹣7),∴S=S四边形ABCD ﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,③当t≥7时,S=S四边形ABCD=20,综上所述:S关于t的函数解析式为:S=;(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),∵PM⊥直线BC于M,交x轴于n,∴M(m,﹣4),N(m,0),∴PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作FK⊥x轴于K,则KF=4,由△TKF∽△PNT得, =2,∴NT=2KF=8,∵PN2+NT2=PT2,∴4(m+3)2+82=4(m+1)2,解得:m=﹣6,∴﹣2m﹣6=﹣6,此时,P(﹣6,6);②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作PH⊥y轴于H,则PH=|m|,由△TFC∽△PTH得,,∴HT=2CF=2,∵HT2+PH2=PT2,即22+m2=4(m+1)2,解得:m=﹣,m=0(不合题意,舍去),∴m=﹣时,﹣2m﹣6=﹣,∴P(﹣,﹣),综上所述:直线EF上存在点P(﹣6,6)或P(﹣,﹣)使点T恰好落在y轴上.【能力检测】1.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AF G=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC=EC,再由GE=2BG 结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.2.(2017乌鲁木齐)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.【考点】G6:反比例函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于y轴的对称点P,B点关于x轴的对称点Q,根据对称的性质得到P点坐标为(﹣1,3),Q点坐标为(3,﹣1),PQ分别交x 轴、y轴于C点、D点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用两点间的距离公式求解可得.【解答】解:分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=DP+DC+CQ+AB=PQ+AB=+=4+2=6,故选:B.3.(2017黑龙江鹤岗)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是 5 .【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,则AE的长即为PC+PE的最小值,再根据勾股定理求出AE的长即可.【解答】解:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PC+PE的最小值,∵CD=4,CE=1,∴DE=3,在Rt△ADE中,∵AE===5,∴PC+PE的最小值为5.故答案为:5.4.(2017黑龙江鹤岗)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;L8:菱形的性质;R2:旋转的性质.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=OA,OD=OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=OA,OD=OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=OC′,∠AOC′=∠BOD′,∴=,∴△AOC′∽△BOD′,∴==,∠OAC′=∠OBD′,∴BD′=AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.5.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC 的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.【考点】FI:一次函数综合题.【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得=,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N 点坐标,利用待定系数法可求得直线BN的解析式;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为▱BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S﹣S四边形BNN′B′,可分别得到S与t的函数关系式.△OGN′【解答】解:(1)∵|x﹣15|+=0,∴x=15,y=13,∴OA=BC=15,AB=OC=13,∴B(15,13);(2)如图1,过D作EF⊥OA于点E,交CB于点F,由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,∵tan∠CBD=,∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,∴∠ONM=∠CBD,∴=,∵DE∥ON,∴==,且OE=3,∴=,解得OM=6,∴ON=8,即N(0,8),把N、B的坐标代入y=kx+b可得,解得,∴直线BN的解析式为y=x+8;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方,即0<t≤8时,如图2,由题意可知四边形BN N′B′为平行四边形,且NN′=t,∴S=NN′•OA=15t;当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,∵NN′=t,∴可设直线B′N′解析式为y=x+8﹣t,令y=0,可得x=3t﹣24,∴OG=24,∵ON=8,NN′=t,∴ON′=t﹣8,∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;综上可知S与t的函数关系式为S=.。
2020年中考数学专题复习学案:折叠类题目中的动点问题(含答案)

专题:折叠类题目中的动点问题折叠问题是中考的热点也是难点问题,通常与动点问题结合起来,这类问题的题设通常是将某个图形按一定的条件折叠,通过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似三角形性质、三角函数等知识进行解答。
此类问题立意新颖,充满着变化,要解决此类问题,除了能根据轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。
类型一、求折叠中动点运动距离或线段长度的最值例1. 动手操作:在矩形纸片ABCD中,AB=3,AD=5. 如图例1-1所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动. 若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为 .图例1-1【答案】2.【解析】此题根据题目要求准确判断出点A'的最左端和最右端位置.当点Q与点D重合时,A'的位置处于最左端,当点P与点B重合时,点A'的位置处于最右端. 根据分析结果,作出图形,利用折叠性质分别求出两种情况下的BA'或CA'的长度,二者之差即为所求.①当点Q与点D重合时,A'的位置处于最左端,如图例1-2所示.确定点A'的位置方法:因为在折叠过程中,A'Q=AQ,所以以点Q为圆心,以AQ长为半径画弧,与BC的交点即为点A'. 再作出∠A'QA的角平分线,与AB的交点即为点P.图例1-2 图例1-3由折叠性质可知,AD= A'D=5,在Rt△A'CD中,由勾股定理得,A C==='4②当点P与点B重合时,点A'的位置处于最右端,如图例1-3所示.确定点A'的位置方法:因为在折叠过程中,A'P=AP,所以以点P为圆心,以AP长为半径画弧,与BC的交点即为点A'. 再作出∠A'PA的角平分线,与AD的交点即为点Q.由折叠性质可知,AB= A'B=3,所以四边形AB A'Q为正方形.所以A'C=BC-A'B=5-3=2.综上所述,点A移动的最大距离为4-2=2.故答案为:2.【点睛】此类问题难度较大,主要考察学生的分析能力,作图能力。
2020年九年级数学中考复习:二次函数压轴动点问题

二次函数动点问题以不变应万变 一题多问 多题归一类型一 定点问题类型二 抛物线动点存在性问题 ———线段和差问题类型三 抛物线动点存在性问题———等腰三角形存在性问题 类型四 抛物线动点存在性问题———三角形面积最大值类型五 抛物线动点存在性问题 ——— 四边形面积最大值 类型六 抛物线动点存在性问题——— 特殊角度问题类型七 抛物线动点存在性问题———直角三角形存在性问题 类型八 抛物线动点存在性问题——— 相似三角形存在性问题 类型九 抛物线动点存在性问题———平行四边形存在性问题 类型十 抛物线动点存在性问题———梯形存在性问题题干:抛物线32-x y 2-=x 与y 轴交于点B ,与x 轴交于C,D (C 在D 点的左侧),点A 为顶点 。
类型一定点问题(直接三角形判定,两点之间距离公式,勾股定理的运用)(1)判定三角形ABD的形状?并说明理由。
【通法:运用两点间的距离公式,求出该三角形各边的长】(两点之间距离公式,相似三角形的判定)(2)三角形ABD与三角形BOD是否相似?说明理由。
【通法:用两点间的距离公式分别两个三角形的各边之长,再用相似的判定方法】类型二抛物线动点存在性问题———线段和差问题(3)在x轴上是否存在点P,使PB+PA最短?若存在求出点P的坐标,并求出最小值。
若不存在,请说明理由。
【通法:在两定点中任选一个点(为了简单起见,常常取轴上的点),求出该点关于题中的动点运动所经过的那条直线的对称点的坐标,再把此对称点与余下定点相连】(4)在y轴上是否存在点P,使三角形PAD的周长最小?若存在,求出点P的坐标,并求出周长的最小值;若不存在,请说明理由。
【通法:注意到AD是定线段,其长度是个定值,因此只需PA+PD最小】(5)在直线BC上是否存在点P,使三角形PAD的周长最小?若存在,求出点P的坐标,并求出周长的最小值;若不存在,请说明理由。
(6)在y轴上是否存在点P,使PAPD-最大?若存在,求出点P的坐标,并求出PAPD-的最大值;若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题34 动态问题专题知识回顾一、动态问题概述1.就运动类型而言,有函数中的动点问题、图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题,有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型:1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型:1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型:1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
2.四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系。
3.圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题。
五、解决动态问题一般步骤:(1)用数量来刻画运动过程。
因为在不同的运动阶段,同一个量的数学表达方式会发生变化,所以需要分类讨论。
有时符合试题要求的情况不止一种,这时也需要分类讨论。
(2)画出符合题意的示意图。
(3)根据试题的已知条件或者要求列出算式、方程或者数量间的关系式。
【例题1】(点动题)如图,在矩形 ABCD 中,AB=6,BC=8,点E 是 BC 中点,点 F 是边 CD 上的任意一点,当△AEF 的周长最小时,则 DF 的长为()A.1B.2C.3D.4热点二:线动【例题2】(线动题)如图,量角器的直径与直角三角板 ABC 的斜边 AB 重合,其中量角器 0 刻度线的端点 N 与点 A 重合,射线 CP 从 CA 处出发沿顺时针方向以每秒 3°的速度旋转,CP 与量角器的半圆弧交于点 E,第 24 秒,点 E 在量角器上对应的读数是________.【例题3】(面动题)如图 Z10-4,将一个边长为 2 的正方形 ABCD 和一个长为 2,宽为 1 的长方形 CEFD 拼在一起,构成一个大的长方形 ABEF.现将小长方形 CEFD 绕点 C 按顺时针旋转至 CE′F′D′,旋转角为α.(1)当点 D′恰好落在 EF 边上时,求旋转角α的值;(2)如图 Z10-5,G 为 BC 中点,且 0°<α<90°,求证:GD′=E′D;(3)小长方形 CEFD 绕点 C 按顺时针旋转一周的过程中,△ DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.专题典型题考法及解析一.选择题1.(2019•四川省达州市)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.专题典型训练题2.(2019•山东泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A.2 B.4 C.D.3.(2019•山东潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.4.(2019•湖北武汉)如图,AB是⊙O的直径,M、N是(异于A.B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C.E两点的运动路径长的比是()A.B.C.D.5.(2019•湖南衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A B C D6.(2019•浙江衢州)如图所示,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A B C D7.(2019•甘肃武威)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A.3 B.4 C.5 D.68.(2019甘肃省天水市)已知点P 为某个封闭图形边界上一定点,动点M 从点P 出发,沿其边界顺时针匀速运动一周,设点M 的运动时间为x ,线段PM 的长度为y ,表示y 与x 的函数图象大致如图所示,则该封闭图形可能是( )A. B. C. D.二、填空题9.(2019•浙江嘉兴)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,AC =12cm .当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则△ABD 的面积最大值为 cm 2.10.(2019•四川省广安市)如图1.8,在四边形ABCD 中,AD ∥BC ,︒=∠30B ,直线AB l ⊥.当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2.8所示,则四边形ABCD 的周长是 .11.(2019•山东潍坊)如图,直线y =x +1与抛物线y =x 2﹣4x +5交于A ,B 两点,点P 是y 轴上的一个动点,当△P AB 的周长最小时,S △P AB = .三、解答题12.(2019•湖北省仙桃市)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k 的值;若变化,请说明理由.13.(2019•山东青岛)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.14.((2019山西)综合与探究如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,D C.(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.15.(2019•湖南岳阳)操作体验:如图,在矩形ABCD 中,点E.F 分别在边A D.BC 上,将矩形ABCD 沿直线EF 折叠,使点D 恰好与点B 重合,点C 落在点C ′处.点P 为直线EF 上一动点(不与E.F 重合),过点P 分别作直线BE.BF 的垂线,垂足分别为点M 和N ,以PM 、PN 为邻边构造平行四边形PMQN .(1)如图1,求证:BE =BF ;(2)特例感知:如图2,若DE =5,CF =2,当点P 在线段EF 上运动时,求平行四边形PMQN 的周长;(3)类比探究:若DE =a ,CF =b .①如图3,当点P 在线段EF 的延长线上运动时,试用含A.b 的式子表示QM 与QN 之间的数量关系,并证明; ②如图4,当点P 在线段FE 的延长线上运动时,请直接用含A.b 的式子表示QM 与QN 之间的数量关系.(不要求写证明过程)16.(2019•湖南邵阳)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.。