深圳市2012年中考数学试题(word版+扫描答案)
(最新整理)年深圳市中考数学试题(答案)

2012年深圳市中考数学试题(答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2012年深圳市中考数学试题(答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2012年深圳市中考数学试题(答案)的全部内容。
深圳市2012年初中毕业生学业考试数学试卷第一部分选择题(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.—3的倒数是A .3B .-3 31.c 31.-D 2.第八届中国(深圳)文博会以总成交额143 300 000 000元再创新高.将数143 300 000 000用科学记数法表示为1010433.1.⨯A 1110433.1.⨯B 1210433.1.⨯C 12101433.0.⨯D 3.下列图形中,既是轴对称图形,又是中心对称图形的是4.下列运算正确的是ab b a A 532.=+ 532.a a a B =⋅ 336)2.(a a c = 326.a a a D =÷5.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的A .平均数B 。
频数分布 C.中位数 D.方差6.如图1所示,一个60o 角的三角形纸片,剪去这个600角后,得到一个四边形,则么21∠+∠的度数为A 。
120O B. 180O . C 。
240O D 。
30007.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只咸肉粽,粽子除内部馅料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是101.A 51.B 31.c 21.D 8.下列命题其中真命题有:①方程x x =2的解是1=x ②4的平方根是2③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形A .4个 B.3个 C.2个 D.1个9.如图2,⊙C 过原点,且与两坐标轴分别交于点A 、点B,点A 的坐标为(0,3),M 是第三象限内上一点,∠BM 0=120o ,则⊙C 的半径长为A .6B .5C .3 23.D 10。
2012年广东省中考数学试卷及详细参考答案

2012年广东省中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2011•河南)﹣5的绝对值是(A)A. 5 B.﹣5 C.D.﹣2.(2012•广东)地球半径约为6400000米,用科学记数法表示为(B)A.0.64×107B.6.4×106C.64×105D.640×1043.(2012•广东)数据8、8、6、5、6、1、6的众数是(C)A.1B.5C.6D.84.(2012•广东)如图所示几何体的主视图是(B)A.B.C.D.5.(2012•广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是(C)A.5B.6C.11 D.16二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(2012•广东)分解因式:2x2﹣10x=______2Xx(X-5)___.7.(2012•广东)不等式3x﹣9>0的解集是_____X>3____.8.(2012•广东)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是_______50__.9.(2012•广东)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是_____1____.10.(2012•广东)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是_________(结果保留π).三、解答题(一)(每小题6分,共30分)11.(2012•广东)计算:﹣2sin45°﹣(1+)0+2﹣1.=1.5+12.(2012•广东)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.=2x-9=-113.(2012•广东)解方程组:.X=5Y=114.(2012•广东)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(2012•广东)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(2012•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.(2012•广东)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(2012•广东)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(2012•广东)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=1/_9x11_______=_1/9-1/11________;(2)用含有n的代数式表示第n个等式:a n=_________=_________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(2012•广东)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(2012•广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C 落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(2012•广东)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).2012年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2011•河南)﹣5的绝对值是()A.5B.﹣5 C.D.﹣考点:绝对值。
广东省2012年中考数学试题(含答案)

机密★启用前2012年广东省初中毕业生学业考试数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. —5的相反数是(的相反数是( A )A. 5 B. —5 C. 51D. 51-2. 地球半径约为6 400 000米,用科学记数法表示为(米,用科学记数法表示为( B )A. 0.64×107B. 6.4×106C. 64×105D. 640×1043. 数据8、8、6、5、6、1、6的众数是(的众数是( C )A. 1 B. 5 C. 6 D. 8 4. 如左图所示几何体的主视图是(如左图所示几何体的主视图是( B )5. 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是(,则此三角形第三边的长可能是( C )A. 5 B. 6 C. 11 D. 16 二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6. 分解因式:2x 2 —10x =2x (x —5) . 7. 不等式3x —9>0的解集是的解集是 x>3 。
8. 如图,A 、B 、C 是⊙O 上的三个点,∠ABC = 250, 则∠AOC 的度数是的度数是 500 。
9. 若x 、y 为实数,且满足033=++-y x ,则2012÷÷øöççèæy x 的值是的值是 1 。
10. 如图,在□ABCD 中,AD =2,AB =4,∠A =300,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连结CE ,则阴影部分的面积是阴影部分的面积是 p 313- (结果保留p )。
)。
三、解答题(一)(本大题5小题,每小题6分,共30分)11. 计算:()128145sin 22-++--。
2012年深圳市初中升学考试数学试题2

(每组数据含最小值,不含最大值)2012年深圳市初中升学考试数学试题2一,选择题: 二,填空题:13 14 15 16 三、解答题(共52分)17、(5分)计算:()()1222-1-60cos 418-+︒--18、(6分)解不等式组:⎪⎩⎪⎨⎧-≤--x x x x 238226> ,并把它的解集表示在数轴上。
19.(7分)宝安区对参加2012年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分.请根据图表信息回答下列问题: (1)在频数分布表中,a 的值为__________,b 的值为__________,并将频数分布直方图补充完整; (2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,并根20、(8分)如图4所示,已知△ABC 是等腰直角三角形,∠ACB=90°,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F .(1)求证:△CEB ≌△ADC ;(2)若AD=8cm ,DE=5cm ,求BE 及EF 的长.21.(8分)深圳市环保部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A 、B 两种园艺造型共50个,摆放在深南大道两侧.已知搭配一个A 种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B 种造型需甲种花卉5盆,乙种花卉9盆.(l )某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A 种造型的成本是200元,搭配一个B 种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元图422.(9分)如图5,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D 作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3)当AB=5,BC=6时,求⊙O的半径.23.(9分)已知抛物线23y ax bx=++(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线23y ax bx=++(a≠0)的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.ECA(图5)。
2012年广东省中考数学试题及答案

2012年广东省中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)1.﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣2.地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×1043.数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.84.如图所示几何体的主视图是()A.B.C.D.5.)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11 D.16二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.分解因式:2x2﹣10x=_________.7.不等式3x﹣9>0的解集是_________.8.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是_________.9.若x,y为实数,且满足|x﹣3|+=0,则()2012的值是_________.10.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是_________(结果保留π).三、解答题(一)(每小题6分,共30分)11.(2012•广东)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(2012•广东)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(2012•广东)解方程组:.14.(2012•广东)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(2012•广东)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(2012•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.(2012•广东)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(2012•广东)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(2012•广东)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=_________=_________;(2)用含有n的代数式表示第n个等式:a n=_________=_________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(2012•广东)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(2012•广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C 落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC 相切的圆的面积(结果保留π).2012年广东省初中数学毕业生学业考试答案6.2(5)x x - 7.3x > 8.509.1 10.13π3-三、解答题(一)(本大题5小题,每小题7分,共35分) 11. 12-. ························································································································ 7分12.解:原式=2292x x x --+ ························································································ 3分 =29x -. ···································································································· 5分 当4x =时,原式=2491⨯-=-. ····················································································· 7分 13∴原方程组的解是51x y =⎧⎨=⎩,.····························································································· 7分14.解:(1)如图所示(作图正确得4分);(2)363672B D C A A B D ∴=+=+=∠∠∠. ························································ 7分 四、解答题(二)(本大题共3小题,每小题9分,共27分) 16.解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .依题意,得25000(1)7200x +=.···················································································· 3分 解得120.2 2.2x x ==-,(不合题意,舍去).(2)若2012年仍保持相同的年平均增长率,则预测2012年我国公民出境旅游总人数约7200(120%)8640⨯+=(万人次).17.解:(1) 点(42)A ,在反比例函数(0)k y x x=>的图象上,24k ∴=,解得8k =. ······························································································ 2分将0y =代入26y x =-,得260x -=,解得3x =,则3O B =.∴点B 的坐标是(3,0). ······················································································· 4分(2)存在.∴点C 的坐标是(5,0). ··············································································· 9分 18.解:设小山岗的高A B 为x 米.解得300x =. ····················································································································· 7分 答:小山岗的高A B 为300米. ·························································································· 9分 19.解:(1)311119112911a ⎛⎫==⨯- ⎪⨯⎝⎭. ····································································· 2分 (2)1111(21)(21)22121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭. ·························································· 6分 (3)123100a a a a ++++…=1111133557199201++++⨯⨯⨯⨯…=1112201⎛⎫⨯- ⎪⎝⎭=100201. ························································································································· 9分五、解答题(三)(本大题3小题,每小题9分,共27分) 20.解:方法一:树状图如下:············································································································································ 3分所有()x y ,可能的结果共有9种,分别是:(22)--,,(21)--,,(21)-,,(12)--,,(11)--,,(11)-,,(12)-,,(11)-,,(11),. ································································································ 4分(2)由题意知,要使分式有意义,则220x y -≠且0x y -≠.即x y ≠且x y ≠-. ············································································································ 5分上述9种可能的结果中,共4种能使分式有意义,分别是:(21)-,,(21)--,,(12)-,,(12)--,.············································································································································ 7分 所以,使分式2223x xy y x yx y-+--有意义的()x y ,出现的概率是49. ································· 8分(3)原式2223()()()()()x xy xy y x y x y x y x y x y x y x y-++--===+-+-+. ··········································· 10分由(2)可知,有4种可能的结果能使分式有意义,其中能使分式的计算结果是整数的结果有2种,分别是:(21)-,,(12)-,. 所以,使分式2223x xy y x yx y-+--的值为整数的()x y ,出现的概率是29. ······················· 12分21.(1)证明: 四边形A B C D 为矩形,90C B A D A B C D ∴===∠∠,, ················································································· 1分由图形的折叠性质,得90C D C D C C ''===,∠∠,B A DC A B CD ''∴==∠∠,. ························································································· 3分又A G B C G D '= ∠∠, A B G C D G '∴△≌△(AAS ). ······················································································· 4分 (2)解:设A G 为x .8A B G C D G A D A G x '== △≌△,,, 8B G D G A D A G x ∴==-=-. ····················································································· 5分 在R t A B G △中,有222B G A G A B =+,6A B = ,222(8)6x x ∴-=+.解得74x =. ························································································································· 7分7tan 24A G AB G A B∴==∠. ······························································································· 8分(3)解法一:由图形的折叠性质,得904E H D D H A H ===∠,,A B E F ∴∥, D H F D A B ∴△∽△,H F D H A BA D∴=,即162H F =,3H F ∴=. ·························································································································· 9分又A B G C D G ' △≌△, A B G H D E ∴=∠∠,tan tan E H A B G H D E H D∴==∠∠,即7244E H =,76E H ∴=. ························································································································ 11分725366E F E H H F ∴=+=+=. ··················································································· 12分22.解:(1) 当0y =时,2139022x x --=,解得1263x x ==-,. ····································································································· 1分∴点A 的坐标为(30)-,,点B 的坐标为(60),, 6(3)9A B ∴=--=, ······································································································ 2分 当0x =时,9y =-,∴点C 的坐标为(09)-,, |9|9O C ∴=-=. ················································································································ 3分(2)l B C ∥,A D E A CB ∴△∽△,2A D E A CB S A E S A B ⎛⎫∴= ⎪⎝⎭△△, ········································································································ 4分 118199222A CB S A B OC =∙=⨯⨯=△,- 11 - 22811922A D Em S m ⎛⎫∴=⨯= ⎪⎝⎭△. ························································································· 6分 21(09)2S m m ∴=<<. ···································································································· 7分 (3)解法一:1199222A E C S A E O C m m =∙=⨯= △, 2291198122228C D E A E C A D E S S S m m m ⎛⎫∴=-=-=--+ ⎪⎝⎭△△△. ····································· 9分 09m << , ∴当92m =时,C D E S △取得最大值,最大值为818. ······················································· 10分 此时,99922B E A B A E =-=-=.记E ⊙与B C 相切于点M ,连结E M ,则E M B C ⊥,设E ⊙的半径为r . 在R t B O C △中,B C ===90C B O E B M C O B E M B === ∠∠,∠∠,B OC B M E ∴△∽△.E ME BO C C B ∴=.99r∴=. r =. ······················································································································· 11分∴所求E ⊙的面积为:2729ππ52⎛= ⎝. ······························································ 12分。
(word详细解析版)深圳市2012年中考数学试题-推荐下载

数学试卷
说明:1.答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答 题卡指定的位置上,将条形码粘贴好。
2.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4 页。考试 时间 90 分钟,满分 1 00 分。
3.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的, 其答案一律无效。答题卡必须保持清洁,不能折叠。
6.(2012•深圳)如图所示,一个 60°角的三角形纸片,剪去这个 60°角后,得到一个四边 形,则∠1+∠2 的度数为( )
A.120°
B.180°
考点: 多边形内角与外角;三角形内角和定理。 710842
分析: 三角形纸片中,剪去其中一个 60°的角后变成四边形,则根据多边形的内角和等于 360 度即可求得∠1+∠2 的度数.
C.(2a)3=6a3
C.中位数
D.
D.a6+a3=a9
D.方差
数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较 稳定,通常需要比较这两名学生了 5 次短跑训练成绩的方差. 解答: 解:由于方差能反映数据的稳定性,需要比较这两名学生了 5 次短跑训练成绩的方 差. 故选 D. 点评: 此题主要考查了方差,关键是掌握方差所表示的意义.
数 143 300 000 000 用科学记数法表示为( )
A.1.433×1010
B.1.433×1011
考点: 科学记数法—表示较大的数。710842 分析: 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值是
易错点,由于 143 300 000 000 有 12 位,所以可以确定 n=12﹣1=11.
2012深圳中考数学试卷及答案(试题word版,答案图片)

深圳市2012年初中毕业生学业考试数学试卷说明:1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。
2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。
考试时间90分钟,满分100分。
3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。
答题卡必须保持清洁,不能折叠。
4、本卷选择题1—12,每小题选出答案后,用2B铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。
5、考试结束,请将本试卷和答题卡一并交回第一部分选择题1.的倒数是()A.B.C.D.2.第八届中国(深圳)文博会以总成交额143 300 000 000元再创新高,将数143 300 000 000用科学计数法表示为()A.B.C.D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.下列计算正确的是()A.B.C.D.5.在体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常要比较这两名学生成绩的()A.平均数 B.频数分布 C.中位数 D.方差6.如图1所示,一个角的三角形纸片,剪去这个角后,得到一个四边形,则的度数为()A.B.C.D.7.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆棕,3只碱水粽,5只感肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是()A.B.C.D.8.下列命题:① 方程的解是② 4的平方根是2③ 有两边和一角相等的两个三角形全等④ 连接任意四边形各边中点的四边形是平行四边形A.4个 B. 3个 C.2个 D.1个9.如图2,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内上一点,,则⊙C的半径为()A.6 B.5 C.3 D.10.已知点关于轴的对称点在第一象限,则的取值范围是()A.B.C.D.11.小明想测一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图3,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.米 B.12米 C.米 D.10米12.如图4,已知:,点、、……在射线上,点、、……在射线上,、、……均为等边三角形,若,则的边长为()A.6 B.12 C.32 D.64第二部分非选择题二、填空题(本题共4小题, 每小题3分, 共12分)13.分解因式:。
广东省深圳2012年中考数学真题试题

某某市2012年初中毕业生学业考试数 学 试 卷(本试卷满分100分,考试时间90分钟)第一部分 选择题一.选择题(共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(2012某某某某3分)-3的倒数是( )A .3B .-3C .13 D .13【答案】D 。
【考点】倒数。
【分析】解:∵(﹣31)×(﹣3)=1, ∴-3的倒数是﹣31. 故选D .2.(2012某某某某3分)第八届中国(某某)文博会以总成交额143 300 000 000 元再创新高,将数143 300 000 000 用科学记数法表示为( ) ×1010×1011×1012D .0.1433×1012【答案】B 。
【考点】科学记数法—表示较大的数。
【分析】解:143 300 000 000=×1011; 故选B .3.(2012某某某某3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D 【答案】A 。
【考点】中心对称图形和轴对称图形。
【分析】解:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A、是中心对称图形,也是轴对称图形,故本选项正确.B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.4.(2012某某某某3分)下列运算正确的是()A.2a+3b= 5ab B.a2·a3=a5 C.(2a)3= 6a3 D.a6+a3=a9【答案】B。
【考点】合并同类项;幂的乘方与积的乘方;同底数幂的乘法。
【分析】根据合并同类项,同底幂乘法和除法,幂的乘方和积的乘方运算法则逐一计算作出判断:解:A.2 a与3b不是同类项,不能合并成一项,所以A选项不正确;B.a2·a3=a5,所以B选项正确;C.(2a)3= 8a3,所以C选项不正确;D.a6与a3不是同类项,不能合并成一项,所以D选项不正确.故选B.5.(2012某某某某3分)体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的【】【答案】D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳市2012年初中毕业生学业考试数学试卷
第一部分选择题
一、(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)
1.-3的倒数是
A .3
B .-3 31
.c 31
.-D
2.第八届中国(深圳)文博会以总成交额143 300 000 000元再创新高.将数143 300 000 000用科学记数法表示为
1010433.1.⨯A 1110433.1.⨯B 1210433.1.⨯C 12101433.0.⨯D
3.下列图形中,既是轴对称图形,又是中心对称图形的是
4.下列运算正确的是
ab b a A 532.=+ 532.a a a B =⋅ 336)2.(a a c = 3
26.a a a D =÷ 5.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学
的成绩比较稳定,通常需要比较这两名学生成绩的
A .平均数 B.频数分布 C.中位数 D.方差
6.如图1所示,一个60o 角的三角形纸片,剪去这个600角后,
得到一个四边形,则么21∠+∠的度数为
A. 120O
B. 180O .
C. 240O
D. 3000
7.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只咸肉粽,粽子除内部馅
料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是
101
.A 51
.B 31
.c 21
.D
8.下列命题①方程x x =2的解是1=x ②4的平方根是2③有两边和一角
相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形。
其中真命题有:
A .4个 B.3个 C.2个 D.1个
9.如图2,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为
(0,3),M 是第三象限内上一点,∠BM 0=120o
,则⊙C 的半径长为 A .6 B .5 C .3 23.D
10.已知点P (a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是
1.-<a A 23
1.<<-a B 123
.<<-a C 23.>
a D
11.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图3,此时测得地面上的
影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为
)36.(+A 米 12.B 米 )324(.+C 米 D .10米
12.如图4,已知:∠MON =30o ,点A 1、A 2、A 3 在射线ON 上,点B 1、B 2、B 3…..在射线OM 上,△A 1B 1A 2.
△A 2B 2A 3、△A 3B 3A 4……均为等边三角形,若OA 1=l ,则△A 6B 6A 7 的边长为
A .6
B .12
C .32
D .64
第二部分 非选择题
二、填空题(本题共4小题,每小题3分,共12分) .
13.分解因式:=-23ab a
14.二次函数622+-=x x y 的最小值是 .
15.如图5,双曲线)0(>=k x k
y 与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴
作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为 .
16.如图6,Rt △ABC 中,C = 90o ,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点D ,
连接OC ,已知AC =5,OC =62,则另一直角边BC 的长为 .
三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21
题8分,第22题9分,第23题9分,共52分)
17.(5分)计算:
45cos 8)13()21(|4|01---+-
18.(6分)已知a = -3,b =2,求代数式b a b ab a b
a +++÷+222)11(的值.
19.(7分)为了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:
请根据以上图表提供的信息,解答下列问题:
(1)本次调查的样本容量为
(2)在表中:m= .n= ;
(3)补全频数分布直方图:
(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩
落在分数段内;
(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是
20.(8分)如图7,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、
交BC于点F,连接AF、CE.
(1)求证:四边形AFCE为菱形;
(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之
间的数量关系式.
21.(8分)“节能环保,低碳生活”是我们倡导的一种
生活方式,某家电商场计划用11.8万元购进节能型
电视机、洗衣机和空调共40台,三种家电的进价
和售价如右表所示:
(1)在不超出现有资金前提下,若购进电视机的数
量和洗衣机的数量相同,空调的数量不超过电视机
的数量的3倍.请问商场有哪几种进货方案?
(2)在“2012年消费促进月”促销活动期问,商家针对这三种节能型)品推出“现金每
购满1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下若三种电
器在活动期间全部售出,商家预估最多送出消费券多少张?
22.(9分)如图8,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).
(1)求经过A、B、C三点的抛物线解析式;
(2)设直线BC交y轴于点E,连接AE,
求证:AE=CE;
(3)设抛物线与y轴交于点D,连接AD交BC于点F,
试问以A、B、F,为顶点的三角形与△ABC相似吗?
请说明理由.
23.(9分)如图9,在平面直角坐标系中,直线l:y=-2x+b (b≥0)的位置随b的不同取值而变化.
(1)已知⊙M的圆心坐标为(4,2),半径为2.
当b=时,直线l:y=-2x+b (b≥0)经过圆心M:
当b=时,直线l:y= -2x+b(b≥0)与OM相切:
(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、BC6,O)、C(6,2).
设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式,。