探索勾股定理一教学设计20
勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
《探索勾股定理》教学设计

《探索勾股定理》教学设计一、教学分析(一)教学内容分析本节课是北师大版数学八年上册第一章《勾股定理》第一节第1课时的内容,勾股定理是几何中极重要的一个定理, 它揭示了直角三角形三边之间的一种美妙关系,将数与形密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数、学习三角函数的基础,充分体现了数学知识承前启后的紧密相关性和连续性.此外,历史上勾股定理的发现反映了人类的杰出智慧,其中蕴含着丰富的科学和人文价值.本节课内容渗透了数形结合、转化、从特殊到一般等数学思想方法,教材中关于勾股定理的多种验证及勾股定理的推广等,都可供学生探究与挖掘,是渗透研究性学习,培养学生探究能力和创新精神的极好素材.(二)教学对象分析本节课所教学生是沈阳市博才中学八年级四班学生,学生数学基础较好,思维活跃,自主学习和小组合作的能力较强;学生对多媒体大屏幕环境下的课堂环境非常熟悉,对数学上常用的几何画板比较了解;学生已经掌握了直角三角形的有关性质,并且已经对图形的探索、验证有了一定的推理能力,因此学生对勾股定理的学习会有较浓厚的兴趣.(三)教学环境分析选择多媒体教室进行授课.使用相关的教学软件:FLASH、几何画板等来完成各种图形的制作.二、教学目标(一)知识与技能1.使学生在探索勾股定理的过程中,掌握直角三角形三边之间的数量关系.2.学会初步运用勾股定理进行简单的计算,并解决实际问题.(二)过程与方法让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,体验从特殊到一般的逻辑推理过程.(三)情感、态度与价值观1.通过对勾股定理历史的了解,感受数学文化,激发学习热情.2.在探索勾股定理的过程中体验获得成功的快乐.三、教学重点难点(一)教学重点探索和验证勾股定理及简单应用.(二)教学难点通过计算面积的方法探索勾股定理及简单应用.四、教法与学法分析(一)教法分析我采用探究发现式的教学方法,安排了两探究活动,通过方格纸为学生设计一个合适的学习铺垫,通过观察、计算、多媒体辅助演示,使学生在教师的引导下达到知识的顺利迁移和综合内化.(二)学法分析在教师的组织引导下,采用自主探索、合作交流方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动口、动脑的能力,使学生真正成为学习的主体.五、教学过程根据新课程改革的教学理念,本节课我采用如下的教学模式来组织教学,力求着眼于学生探究能力和创造性思维能力的培养.“创设情境引入新课----师生互动探究新知----验证结论得到定理----回归生活应用新知----感悟收获巩固拓展---归纳总结布置作业”至此,使各个教学目标在整个教学过程中,逐步得到落实.(五)感悟收获巩固拓展1.如图,受台风麦莎影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?2.在平静的湖面上,有一支红莲,高出水面1尺红莲被风一吹,花朵刚好与水面平齐,已知红莲移动的水平距离是2尺问这里水深是多少?讲练结合法为了检验学生是否完成了学习目标,及时反馈学生掌握知识情况,给出以上两题进一步体会勾股定理在实际生活中的应用,还渗透了方程思想.设计意图这两题立足于巩固,着眼于发展,使学生进一步巩固所学内容,增强学生学数学、用数学的意识.图片演示,立体直观.(六)归纳总结布置作业归纳总结1.这节课你学到了什么知识?2.运用“勾股定理”应注意什么问题?3.你还有什么疑惑或没有弄懂的地方?作业1.探索勾股定理还有那学方法?2.查找有关勾股定理相关的历史知识.送给同学们一副对联(flash).设计意图反思总结、布置作业学生们对本节课的知识认真的加以梳理,并为学习新知做好准备.内化知识,培养能力.与情境引入交相呼应,也为下节课学习做好铺垫 .视频对联4米3米六、教学过程反思1.本节课的教学流程体现了知识发生,形成和发展过程,让学生体会到观察,猜想,归纳,验证的思想和数形结合的思想.2.本节课最大的亮点是:始终把学生的探索与验证活动放在首位,整个教学过程我采用动画、几何画板、图片等多媒体形式引导学生主动参与课堂活动,借助信息技术手段适时呈现问题情境,以丰富学生的感性认识,增强直观效果,提高课堂教学效率,建立平等、民主、和谐的师生关系,意在创设一种学生乐学的课堂气氛,让学生真正成为课堂的主体,最终实现知识的建构.七、板书设计。
2020-2021学年最新北师大版八年级数学上册《探索勾股定理》教学设计-优质课教案

第一章勾股定理1. 探索勾股定理课题:探索勾股定理教学目标1、知识与技能目标用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2、过程与方法让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.3、情感态度与价值观在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习.教学重点:了结勾股定理的由来,并能用它来解决一些简单的问题。
教学难点:勾股定理的发现教学准备:多媒体课件三、教学过程第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望. 2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:(2)填表:(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214=+⨯⨯⨯=C S .方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452=⨯⨯⨯-=C S . 方法三:如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,13542=+⨯=C S . (4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2.3.议一议内容:(1)你能用直角三角形的边长a ,b ,c 来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力. 第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程) 练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):2.生活中的应用:小明妈妈买了一部29 in (74 cm )的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?弦股勾?225100x1517意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c分别表示直角三角形的两直角边和斜边,那么222c b a =+.2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.第五环节:布置作业内容:布置作业:1.教科书习题1.1.2.观察下图,探究图中三角形的三边长是否满足222c b a =+?意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进a bcabc一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.五、教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.。
浙教版数学八年级上册2.7《探索勾股定理》教学设计

浙教版数学八年级上册2.7《探索勾股定理》教学设计一. 教材分析《探索勾股定理》是浙教版数学八年级上册2.7节的内容,主要介绍了勾股定理的证明和应用。
本节内容是在学生已经掌握了相似三角形、全等三角形和勾股定理的初步知识的基础上进行学习的。
教材通过引导学生探索勾股定理的证明,让学生更深入地理解勾股定理,并能够运用勾股定理解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。
但是,对于证明勾股定理的深层次理解还存在一定的困难。
因此,在教学过程中,需要引导学生通过实践探索,加深对勾股定理的理解。
三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的应用。
2.培养学生的探索精神和合作意识。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重难点:勾股定理的证明过程。
2.难点:如何引导学生探索并理解勾股定理的证明过程。
五. 教学方法1.引导探究法:通过引导学生探索勾股定理的证明过程,让学生加深对勾股定理的理解。
2.小组合作法:在探索过程中,采用小组合作的方式,培养学生的合作意识。
3.实例讲解法:通过具体实例,讲解勾股定理的应用,提高学生运用数学知识解决实际问题的能力。
六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。
2.学具准备:每人一份勾股定理的证明材料,一份练习题。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示勾股定理的应用场景,引导学生思考勾股定理的意义和重要性。
2.呈现(10分钟)呈现勾股定理的证明过程,引导学生观察和思考,让学生尝试自己证明勾股定理。
3.操练(10分钟)学生分组合作,根据呈现的证明过程,自己动手操作,尝试证明勾股定理。
4.巩固(10分钟)学生分组讨论,总结证明勾股定理的方法和步骤,加深对勾股定理的理解。
5.拓展(10分钟)利用实例,讲解勾股定理在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
6.小结(5分钟)教师引导学生总结本节课的学习内容,加深对勾股定理的理解。
八年级数学上册《探索勾股定理》教案、教学设计

四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示勾股定理的历史背景,如古希腊数学家毕达哥拉斯发现勾股定理的故事,以及我国古代对勾股定理的研究成果,引发学生对勾股定理的好奇心。
2.提问学生:“同学们,你们知道直角三角形有什么特征吗?”让学生回忆直角三角形的定义和性质,为新课的学习做好铺垫。
3.教师提出问题:“在直角三角形中,斜边与直角边之间是否存在某种特殊的数量关系?今天我们就一起来探讨这个问题。”
(二)讲授新知
1.教师通过动画演示,引导学生观察直角三角形中斜边与直角边的关系,并提出勾股定理的猜想。
2.教师逐步引导学生,利用数学归纳法证明勾股定理,强调数学逻辑性和严谨性。
-首先,验证直角边长度为1的直角三角形,斜边长度是否满足勾股定理;
4.多元评价:采用口头提问、课堂练习、课后作业等多种形式,全面评价学生的学习效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探索数学知识的热情;
2.培养学生严谨、细心的学习态度,提高他们的数学素养;
3.培养学生的团队协作意识,让他们在合作探究中学会倾听、交流、分享;
4.使学生认识到勾股定理在数学发展中的重要地位,以及数学在人类文明进步中的价值。
此外,学生在解决问题的过程中,可能存在以下问题:对勾股定理的理解不够深入,难以灵活运用;在解决实际问题时,容易忽略细节,导致计算错误。因此,在教学过程中,教师应关注学生的这些薄弱环节,有针对性地进行教学设计和指导。
在此基础上,教师要关注学生的兴趣和动机,通过生动有趣的教学手段,激发学生的学习兴趣,使他们愿意主动参与到勾股定理的探究过程中。同时,注重培养学生的团队合作精神,让他们在互动交流中共同提高,为学生的全面发展奠定基础。
探索勾股定理教学设计

《3.1探索勾股定理(第1课时)》教学设计教学内容:鲁教版七年级上册3.1《探索勾股定理》第一课时.教材分析:勾股定理是在学生已经掌握了直角三角形有关性质的基础上进行学习的.本节课的学习在教材中起到承上启下的作用,为下面学习勾股定理的逆定理作了铺垫,为以后学习“四边形”和“解直角三角形”奠定基础.学情分析:学生通过前面一般三角形的学习,初步掌握了三角形三边长的关系以及直角三角形两锐角之间的关系,但是学生在用割补法求图形面积方面还接触不多,证明也仅仅停留在比较简单的全等三角形的层面上。
因此,本节课为了降低难度,并不涉及勾股定理的验证过程。
素养目标:1.经历探索勾股定理的过程,了解我国勾股定理发展史,培养推理意识、主动探究习惯;2.掌握勾股定理,并能用勾股定理解决一些简单问题;3.体会分类讨论的思想方法,发展几何直观、模型观念.教学重点:掌握勾股定理,并能用勾股定理解决一些简单问题.教学难点:探索勾股定理.教学过程:一情境创设【设计意图】通过一段北斗导航系统的引入,一方面令学生感知它的重要性,另一方面通过将复杂模型简化出一个直角三角形引入课题,向学生灌输一种模型意识.真实情境的创设能提升学生的应用意识.二新课讲解(一)溯源求本【设计意图】本环节意在令学生感知勾股定理在中国的发展史,增加学生的民族自豪感,为后面培养其爱国奠定基础.(二)探究求真【初识】1.在方格纸上分别画出直角边为以下数值的直角三角形并度量斜边长.(1)3cm和4cm (2)6cm和8cm(3)1cm和3cm【设计意图】本环节通过设置两道整数边长的作图令学生先猜想出结论,再通过一道不能精确度量的作图能学生的思想引起冲突,进而思考原因是测量有误差,从而引出用图形-面积法探究直角三角形的三边关系. 【生惑】独立思考1分钟后,小组合作交流3分钟,并解决下列问题: 1..________,____,===C B A S S S 2.表示三个正方形面积之间的关系. 3.描述Rt △ DEF 三边的关系.【设计意图】令学生小组合作正方形面积的求法,从而引出网格中常用割补法求图形的面积. 【又惑】任意一个直角三角形的三边关系是否都满足上面的猜想呢? 【验证】【终获】勾股定理:直角三角形两直角边的_________等于斜边的平方.如果 用a ,b 和c 分别表示直角三角形的两直角边和斜边长,那么 . 符号语言:(三) 应用 求实例1求下图中字母所代表的正方形的面积.例2在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)a =6,b =8,求c . (2)b =40,c =41, 求a . (四) 变式 求深在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . 1.若a =3,b =4,则c =______. 2.若c =5,b =4,则a =______.变式一:a :b =3:4,c =25,则a =_____,b =_____.变式二:其中两边长为3、4,则第三边的平方为_____.【设计意图】习题设计既有对勾股定理公式的直接应用,又有变式练习提升学生能力,其中变式二着重向学生灌输分类讨论的数学思想方法.abcac ba中国的“青朱出入图”青出青入朱入朱出青入青出cb青方朱方a225400A 81225B(五) 小结 求远【设计意图】从大单元角度令学生对直角三角形有整体认知,为后续学习奠定基础。
勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《探索勾股定理》教学设计
1.探索勾股定理(一)
一、教材分析
(一)教材的地位和作用
这节课是九年制义务教育课程标准实验教科书,北师大版八年级第一章第一节《探索勾股定理》第一课时。
在本节课以前,学生学习了(三角形、正方形、梯形)一些图形的面积公式,还学习了三角形全等的判定和性质、直角三角形的有关性质以及整式运算中的完全平方公式(a+b)2=a2+2ab+b2。
学生在这些原有的认知水平基础上,探索直角三角形的又一条重要性质——勾股定理。
我国是最早了解勾股定理的国家之一,这一定理揭示了直角三角形三边之间的数量关系,为以后学习《解直角三角形》和《二次根式》奠定基础,在有关的物理计算中也离不开《勾股定理》,它在生活中的用途很大。
(二)、学生起点分析
八年级学生已经具备一定的观察、归纳、探索和推理的能力.且他们勤于思考、乐于探究。
(根据以上教材地位和学生情况,再结合《课程标准》的要求,我制定如下教学目标)
三、教学目标分析
(二)、教学目标
1、知识与技能目标
用数格子的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单
的计算和实际运用
2、过程与方法目标
在探索勾股定理的过程中,让学生经历“观察——猜想——归纳——验证”的数学过程,并体会数形结合和从特殊到一般的数学思想方法。
3、情感态度与价值观目标
(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进学习数学的信心,感受数学之美。
(2)利用远程教育资源介绍中国古代勾股方面的成就,体现数学的文化价值。
(三)、教学重点及难点(根据《课程标准》的要求,以及为学生在今后解决有关几何问题。
因此,本节课的教学重点和难点是)【教学重点】勾股定理及勾股定理的证明与简单运用
【教学难点】用拼图求面积的方法证明勾股定理
【难点成因】在小学,他们已学习了一些几何图形面积的计算方法(包括割补法)但运用面积法和割补思想解决问题的意识和能力还远远不够,因此形成了难点。
【教具】教师准备:课件直角三角形
学生准备:四个全等的直角三角形
二、教学方法及教学手段的选择
针对八年级学生的认知结构和心理特征,本节课我选择的方法是:引导探索、讨论发现法(其意图是由浅到深,由特殊到一般的
提出问题,与学生合作交流,这种教学理念紧随新课改理念)。
三、学法指导
教师有组织、有目的、有针对性的引导学生并一同参与到学习活动中,鼓励学生采用自主探索与合作交流相结合(其意图是让学生真正成为学习的主人)。
四、教学过程设计
本节课设计了六个教学环节:第一环节:创设情境,探索新知;第二环节:猜测结论,获取新知;第三环节:归纳验证,完善新知;第四环节:解决问题,应用新知;第五环节:课堂小结,巩固新知.第六环节:布置作业,拓展新知
(一):创设情境,引入新课
先让学生阅读教科书第一页的引言。
我再讲个小故事,我国著名数学家华罗庚教授在《数学的用场与发展》一文中假设我们宇宙航船到另一个星球上,为什么带“数”和“数形关系”两个图形?(意图是激发学生的探究欲望,让学生感到“有趣”、“有意思”的状态下进入学习过程)。
数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号,从而产生了勾股数(3、4、5)(5、12、13)引入新课(展示课件,并作简单的介绍)让学生听说“勾”与“股”(展示课件),(意图:形象的说明勾与股,强调:勾与股互相垂直;几何图形中勾、股只适合在直角三角形中,顺便引出弦).
(二):猜测结论,获取新知
1、特殊图形(等腰直角三角形)
首先我在网格中建立等腰直角三角形,以小三角形的面积为单位1,学生直接看出S A 、S B 、S C ,并引导学生猜测结论。
通过观察,归纳发现:
结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。
意图:这一环节通过图片展示,以直观形象的观察图形,引导学生找到三个正方形面积之间的关系,为下一步用面积计算、验证直角三角形三边关系奠定基础。
2、一般图形(直角三角形)
(1)、验证结论 通过刚才的问题我们发现等腰直角三角形三个正方形面积之间的关系,那么这一结论在一般的直角三角形中是否也存在呢?
(1)观察下面两幅图:
两图都是勾与股不相等的直角三角形,需要割正方形C 才能得到S A 、S B 、S C ,再填表推猜测三者之间存在的关系:S A +S B =S C 得出 结论1 以直角三角形两直角边为边长的小正方形的面积的和,等于
以斜边为边长的正方形的面积
【设计意图】为了突破用面积法证明直角三角形三边关系这一难点,本人先让学生小组合作,互相交流,再引导学生用“割”与“补”的方法计算以斜边为边长的正方形的面积,进而得到直角三角形以三边为边的正方形面积之间的关系。
由特殊(的等腰直角三角形)到一般直角三角形的三边关系进行探索,使直角三角形数与形的关系展示得更为直观,更易被学生接受,更有利于难点的突破,为学生归纳结论打下基础,使学生分析和解决问题的能力得到提高,符合学生的认知规律。
教材编写时也注重了培养学生的动手操作能力和观察分析问题的能力。
(2)、转换结论 通过三个正方形的面积关系,你能说明直角三角形三边之间的关系论吗?(提出设想,让学生讨论)
a b
c
A B
C
由正方形的面积公式得:S A =a 2 S B =b 2 S C =c 2 S A +S B =S C
结论2 如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2
即直角三角形两直角边的平方和等于斜边的平方.
设计意图:先后三次验证“勾股定理”这一结论,使学生从中体会到数形结合和从特殊到一般的数学思想,这一过程也培养了学生严谨、科学的学习态度
(三)归纳验证,完善新知
1、验证命题小组合作探究:(1)每小组拿出提前剪好的四个直角三角形进行拼图,用所拼的图形观察后画出几何图形进行证明(我的证明暂且不用赵爽弦图,因为中间小正方形的边长有点困难,利用赵爽弦图证明勾股定理的方法留在课后学生做,让他们体验我国汉代赵爽的证法。
)(2)由教师提供美国第二十任总统伽菲尔德证明勾股定理的图形,学生通过合作探讨证明勾股定理
意图:是让学生感受数学中的一题多解,以激发学生的学习兴趣。
并且这一过程有利于培养学生严谨、科学的学习态度。
(四)解决问题,应用新知
1、基础训练
(1)、求下图中?所代表的正方形的面积
(2)、求出下图中直角三角形中未知边x的长度
2、现实运用
如图所示,一棵大树在一次强烈台风中于离地面10米处折断倒下,树顶落在离树根24米处. 大树在折断之前高多少米?
设计意图:训练作业(1)(2)、是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;通过此题可让学生进一步认识勾股定理的前提条件.将实际问题转化为数学问题,再运用勾股定理解决问题,体会勾股定理在实际生活中的运用,进一步培养了学生的数学建模。
(五)课堂小结,巩固新知
1、师生小结:今天我们学习了
数学知识:勾股定理和勾股定理的简单计算
经历过程:观察 猜想 探索 归纳 验证
数学思想:特殊到一般,数形结合
x 17
?
225100
2、告诉你同年级其他班的同学,今天我们所学的内容
设计意图:以告诉你同年级其他班的同学形式,让学生积极回顾所学的数学知识。
(六)布置作业,拓展新知
1、用赵爽弦图证明勾股定理,整理在作业本上。
2、阅读教材6页《勾股世界》
3、查找资料,找寻勾股定理的发展史。
【设计意图】这个作业活动是开放的,它不仅为每个学生搭建了进一步探索和思考数学活动的平台,而且给了他们施展自我才能的舞台。
在这个数学活动中,学生是完全自由的学习个体,是学习真正的主人,只要我们相信他们、尊重他们、激励他们,他们的创新潜能就能被充分开发,而这种学习、思考和创新的能力将使他们终身受益。
板书设计:
意图:结构新颖井然,对所授新课要点一目了然
六、教学设计反思
(1)设计理念
依据“学生是学习的主体”这一理念.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.
(2)突出重点、突破难点的策略
本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手到探究一般直角三角形,学生通过观察图形,割补面积的方法分析数据,发现直角三角形三边的关系,进而得到勾股定理.
(3)分层教学基础训练和现实运用
(4)评价方式
根据新课标的评价理念,在本课主要从以下几个方面对学生学习情况进行评价:
第一,对学生合作交流、积极探究等学习情况进行评价.
第二,通过练习,可有效地评价学生理解和掌握知识的情况.
第三,在“课堂小结”这一环节中,教师可从学生的自由发言和交流中,了解到各个教学目标的达成情况.
第四,通过课后作业的完成情况,进一步了解学生对勾股定理的理解和掌握的程度.
教师根据这些评价结果做出相应的反馈和调节,调整、设计下节课或下阶段的教学内容,以达到尽可能好的教学效果。