差分方程讲解
差分方程介绍

例如,如认为第一季度的销售量大体按线性增长,可设销售量
(1) yk = ak + b
(1) (1) yk = 1.3k + 9.5, y6 = 17.3
得到
缺点:数据少,用回归分析不好。改用差分方程
yk = a1 yk −1 + a2 yk = a1 yk −1 + a2 yk − 2 + a3 或者 用二阶差分, yk = a1 yk −1 + a2 yk − 2 + a3
和最小二乘法,使 最小,求出
∑[ y
3
5
k
− (a1 yk −1 + a2 yk − 2 + a3 a3 = −8, y6 = 21, y7 = 19
上述为预测各年第一季度销售量而建立的二阶差分方程,虽然其系数与前 上述为预测各年第一季度销售量而建立的二阶差分方程,虽然其系数与前5 年第一季度的统计数据完全吻合,但用于预测时预测值与事实不符。 年第一季度的统计数据完全吻合,但用于预测时预测值与事实不符。凭直 第六年估计值明显偏高,第七年销售量预测值甚至小于第六年。 觉,第六年估计值明显偏高,第七年销售量预测值甚至小于第六年。稍作 分析,不难看出,如分别对每一季度建立一差分方程, 分析,不难看出,如分别对每一季度建立一差分方程,则根据统计数据拟 合出的系数可能会相差甚大,但对同一种商品,这种差异应当是微小的, 合出的系数可能会相差甚大,但对同一种商品,这种差异应当是微小的, 故应根据统计数据建立一个共用于各个季度的差分方程。 故应根据统计数据建立一个共用于各个季度的差分方程。 为此, 为此,将季度编号为
∗
只取一次项近似为: 只取一次项近似为: (5)是(4)的近似线性方程,x ∗ 也是 ( 5 ) ) )的近似线性方程, 的平衡点, 的平衡点,关于线性方程平衡点稳定的条 件上面已给出。 件上面已给出。
差分方程简介

差分方程简介
汇报人:
contents
目录
• 差分方程的基本概念 • 差分方程的求解方法 • 差分方程的应用 • 差分方程的局限性 • 差分方程的发展历程与未来趋势 • 差分方程的实际案例分析
01
差分方程的基本概念
定义与例子
• 差分方程是描述离散序列变化的方程式。例如,考虑一个数列{an},我们可以写出一个差分方程:a{n+1} = 2a_n + 3。
应用
经济学中的差分方程模型适用于预测经济指标的未来趋势 、政策效应分析等。然而,由于现实世界中的复杂性,该 模型可能不适用于所有经济情况。
THANKS
感谢观看
公式法
公式法的原理
01
通过差分方程的解的公式直接计算出解。公式法的步骤 Nhomakorabea02
根据差分方程的特点,寻找解的公式,然后代入初值计算出解
。
公式法的优缺点
03
公式法适用于某些特定类型的差分方程,但不适用于所有类型
的差分方程,需要具体问题具体分析。
计算机方法
计算机方法的原理
利用计算机强大的计算能力,通过编程等方法求解差分方程。
人群、感染人群和免疫人群之间的转换。这些因素都可以通过差分方程来描述 。 • 数学方程:常见的传染病模型如SIR模型,其差分方程为 S(t+1) = S(t) b*S(t)*I(t)/N(t), I(t+1) = I(t) + b*S(t)*I(t)/N(t) - d*I(t), R(t+1) = R(t) + d*I(t),其中S表示易感人群,I表示感染人群,R表示免疫人群,b表示感染率 ,d表示疾病死亡率。 • 应用:传染病模型适用于预测疾病的传播趋势、评估公共卫生干预措施的效果 等。然而,由于现实世界中的复杂性,该模型可能不适用于所有疾病传播情况 。
差分方程的基本概念

差分方程的应用领域
01
02
03
金融领域
差分方程在金融领域中用 于描述股票价格、债券收 益率等金融变量的动态变 化。
物理学领域
在物理学中,差分方程用 于描述离散系统的动态行 为,如离散的弹簧振荡器、 离散的波动等。
生物学领域
在生态学和流行病学中, 差分方程用于描述种群数 量随时间的变化规律。
差分方程与微分方程的关系
定义
差分方程的稳定性是指当时间步 长趋于无穷大时,差分方程的解 是否收敛到原方程的解。
分类
根据稳定性性质的不同,差分方 程可以分为稳定、不稳定和临界 稳定三种类型。
稳定性判据
判据一
如果对于任意小的正数ε,存在一个正 数δ,使得当|Δt|<δ时,差分方程的 解满足|x(n+1)−x(n)|<ε,则称差分方 程是稳定的。
有限元法的基本思想是将连续的求解区域离 散化为有限个相互连接的子域(即有限元), 并在每个子域上选择合适的基函数进行近似。 通过这种方式,可以将偏微分方程转化为离 散的差分方程,从而进行数值求解。
有限体积法
总结词
有限体积法是一种将偏微分方程离散化为差 分方程的数值方法,通过在每个控制体积上 对微分进行离散近似,将微分方程转化为差 分方程。
数值解法
数值解法是一种通过数值计算方法来求解差分方程的方法。常用的数值解法包括 欧拉பைடு நூலகம்、龙格-库塔法等。
数值解法的优点是适用于各种类型的差分方程,特别是一些难以直接求解的差分 方程。数值解法的精度可以通过增加计算步数来提高。然而,数值解法的计算量 大,需要较高的计算能力。
03 差分方程的稳定性
定义与分类
详细描述
有限差分法的基本思想是将连续的空间离散化为有限个离散点,并利用泰勒级数展开式或其它近似方 法,将微分运算转化为差分运算。通过这种方式,可以将偏微分方程转化为离散的差分方程,从而进 行数值求解。
高数第七章(11)差分方程的概念.

2.n阶常系数非齐次线性差分方程解的结构
定理 3 设 yx* 是 n 阶常系数非齐次线性差分方程
yxn a1 yxn1 an1 yx1 an yx f x 2
的一个特解, Yx 是与(2)对应的齐次方程(1)的通
解, 那么 yx Yx yx* 是 n 阶常系数非齐次线性差分
方程(2)的通解.
7.P(t ) 1 1 ,Q(t ) (1 1)2t
t
t
D. yx 2 yx1 3 yx2 4
解 由差分方程的定义有:A, D是差分方程.
B的 左 端
3yx
3( yx1
yx )
3 yx1
3
y
,
x
则 等 式 实 为 3 yx1 a x, 仅 含 一 个 时 期 的 函 数
值y
x
,
1
故
不
是
差
分
方
程.而C的
左
端2
yx
( yx1
yx)
yx1 yx
yx2
yx1 zx1 yx zx yx1 zx1 yx zx1 yx zx1 yx zx
yx1 yx zx1 yx zx1 zx
z x1Δ y x y xΔ z x
又证明(3)
yx zx
yx1 zx1 yx zx yx1 zx1 yx1 zx yx1 zx yx zx
解 , 求 常 数α ,β .
7、 已 知y1 (t ) 2t , y2 (t ) 2t 3t是 方 程yt1 P(t ) yt Q(t ) 的 两 个 特 解 , 求P(t),Q(t).
练习题答案
1.a x (a 1);2.2;3.C;4.C;
6.(1)α
差分方程知识点总结

差分方程知识点总结一、差分方程的概念差分方程是指用差分运算符号(Δ)表示的方程。
差分运算符Δ表示的是某一变量在两个连续时间点的变化量。
差分方程通常用于描述离散时间下的变化规律,比如时间序列、离散动力系统等。
二、常见的差分方程1. 一阶线性差分方程一阶线性差分方程的一般形式为:y(t+1) - y(t) = a*y(t) + b,其中a和b为常数。
一阶线性差分方程常常用于描述某一变量在不同时间点之间的线性变化规律。
2. 二阶线性差分方程二阶线性差分方程的一般形式为:y(t+2) - 2*y(t+1) + y(t) = a*y(t) + b,其中a和b为常数。
二阶线性差分方程通常用于描述某一变量在不同时间点之间的二阶线性变化规律。
3. 线性非齐次差分方程线性非齐次差分方程的一般形式为:y(t+1) - a*y(t) = b,其中a和b为常数。
线性非齐次差分方程通常用于描述某一变量在不同时间点之间的线性变化规律,并且受到外部条件的影响。
4. 滞后差分方程滞后差分方程的一般形式为:y(t+1) = f(y(t)),其中f为某一函数。
滞后差分方程通常用于描述某一变量在不同时间点之间的非线性变化规律。
5. 差分方程组差分方程组是指由多个差分方程组成的方程组。
差分方程组通常用于描述多个变量之间的变化规律,比如混合动力系统、多变量时间序列等。
三、差分方程的解法1. 特征根法特征根法是解一阶或二阶线性差分方程的一种常用方法。
通过求解特征方程,可以求得差分方程的通解。
2. 递推法递推法是解一阶或二阶非齐次差分方程的一种常用方法。
通过递推关系,可以求得差分方程的特解。
3. Z变换法Z变换法是解一阶或二阶差分方程的一种常用方法。
通过对差分方程进行Z变换,可以将其转换为等价的代数方程,然后求解其解。
4. 数值解法对于复杂的差分方程,通常采用数值解法求解。
数值解法包括Euler法、Runge-Kutta法、递推法等,通过迭代计算逼近差分方程的解。
差分方程的求解方法及其应用

差分方程的求解方法及其应用差分方程是数学中一个比较重要的分支,用于描述离散化的动态系统和过程,广泛应用于物理、工程、生态、经济、金融等领域。
通过离散化,可以将连续的问题转化为离散的数值计算问题,从而可以用计算机进行求解。
本文将介绍差分方程的求解方法及其应用,希望能够对读者有所帮助。
一、差分方程的定义差分方程是指包含有未知函数的离散变量的函数方程。
通俗的说,就是说差分方程用来描述离散的数学模型。
一般的差分方程可以写成如下形式:$$y_{n+1} = f(y_n, y_{n-1}, \cdots, y_{n-k+1}, n)$$其中,$y_n$ 是未知函数在 $n$ 时刻的值,$f$ 是一个给定的函数,$k$ 是差分方程中自变量的个数。
当 $k=1$ 时,常常称为一阶差分方程,如下所示:$$y_{n+1} = f(y_n, n)$$此外还有二阶、三阶等高阶差分方程。
差分方程与微分方程相似,都是用来描述某种动态系统的变化规律,只是微分方程是描述连续变化的模型,而差分方程是描述离散变化的模型。
二、差分方程的求解方法差分方程的求解方法可以分为两类,一类是解析解法,即用数学公式直接求解;另一类是数值解法,即用计算机进行数值计算求解。
1. 解析解法对于一些特殊的差分方程,可以用解析解法求出解析解。
解析解法就是通过数学公式直接求解,得到函数在论域上的解析表达式,从而可以对解析表达式进行分析求得有关该函数的很多重要信息。
以一阶线性差分方程为例,即:$$y_{n+1} = ay_n + b, \ \ (n=0,1,2,\cdots)$$其中 $y_0$ 是已知值, $a$ 和 $b$ 是常数。
可以通过数学公式得到该差分方程的解析解:$$y_n = a^ny_0 + b\frac{a^n-1}{a-1}, \ \ (n=0,1,2,\cdots)$$其它的高阶差分方程可以运用代数学、矩阵论、微积分等方法求解。
2. 数值解法数值解法是一种通过数值计算来求解差分方程的方法。
差分方程讲解

an+1 = 5an , an+2 = 3an ,
an+2 = 3an + n2 ,
an+2 −3an+1 + 4an = 0, an+2 − 3an+1 + 4an = 6,
§2 一阶线性差分方程
对于差分方程的研究主要是差分方程的求解(当 可以求解的时候)以及讨论解的性质. 能够给出解 析解的差分方程是为数很少的一部分, 大多数差 分方程是不能给出解析解的, 此时, 只能对其解的 性质给出一定的讨论, 讨论解的性质(解的变化趋 势, 是周期的还是非周期的或混沌的)有两种方法: 一是数值计算方法, 二是定性或定性定量结合的 方法.
−1 1 3 5 7 9
∆2an
2 2 2 2 2
§1 数列的差分
§2 一阶线性差分方程 一. 差分方程的基本概念 二. 齐次线性差分方程的解析解
§2 一阶线性差分方程
一. 差分方程的基本概念
定义2.1 差分方程是一种方程, 该方程表明数列 定义2.1 差分方程 中的任意项如何用前一项或几项来计算. 初始 条件是该数列的第一项. 出现在差分方程中的 条件 项的最大下标减去最小下标得到的数称为差分 差分 方程的阶. 方程的阶.
an+2 = 3an + n ,
2
2
an+1 = 5an ,
an+2 −3an+1 + 4an = 6,
an+1 = ( an ) , an+2 = ( an+1 )( an ) .
§2 一阶线性差分方程
定义2.2 定义2.2 如果差分方程中包含数列变量(即包含 an)的项不包含数列变量的乘积, 不包含数列变 量的幂, 也不包含数列变量的诸如指数, 对数或 三角函数在内的函数, 那么我们称该差分方程 是线性的 否则差分方程就是非线性的 注意这 线性的. 非线性的. 线性的 非线性的 种限制只适用于包含数列变量的项, 而不能用 于不包含数列变量的数列{an} = {1, 3, 6, 10, 15, 21, L}, 则有 {∆an} = {2, 3, 4, 5, 6, L} 以及 {∆2an} = {1, 1, 1, 1, 1, L}. 令 an = An2 + Bn + C,
高等数学中的差分方程相关知识点详解

高等数学中的差分方程相关知识点详解在高等数学中,差分方程是一个非常重要的数学工具,它被广泛应用于各种科学领域,如物理、化学、工程学等。
差分方程与微分方程不同,在处理离散数据时更加方便,因此在实际应用中得到了广泛的应用。
接下来,我们将详细介绍差分方程的相关知识点。
1.差分方程的定义差分方程是一种用递推关系式描述离散变量间数值关系的数学工具,通常表示为:$a_n=F(a_{n-1},a_{n-2},...,a_{n-k})$其中,$a_n$表示一个数列的第$n$项,$k$为正整数,$F$为给定的函数。
差分方程起始值$a_0,a_1,...,a_{k-1}$也是给定的。
2.差分方程的求解方法求解差分方程的过程与求解微分方程的过程类似,需要先求出差分方程的通解,然后根据初始条件得到特解。
(1)求通解对于一个$k$阶差分方程,我们可以猜测一个$k$次线性递推数列$\{b_n\}$,即$b_n=c_1\lambda_1^n+c_2\lambda_2^n+...+c_k\lambda_k^n$,其中$c_1,c_2,...,c_k$是任意常数,$\lambda_1,\lambda_2,...,\lambda_k$是$k$个根。
将猜测的线性递推数列带入差分方程中得到:$c_1\lambda_1^n+c_2\lambda_2^n+...+c_k\lambda_k^n=F(c_1\la mbda_1^{n-1}+c_2\lambda_2^{n-1}+...+c_k\lambda_k^{n-1},c_1\lambda_1^{n-2}+c_2\lambda_2^{n-2}+...+c_k\lambda_k^{n-2},...,c_1\lambda_1^{n-k}+c_2\lambda_2^{n-k}+...+c_k\lambda_k^{n-k})$整理得到:$c_1(\lambda_1^n-F(\lambda_1^{n-1},\lambda_1^{n-2},...,\lambda_1^{n-k}))+c_2(\lambda_2^n-F(\lambda_2^{n-1},\lambda_2^{n-2},...,\lambda_2^{n-k}))+...+c_k(\lambda_k^n-F(\lambda_k^{n-1},\lambda_k^{n-2},...,\lambda_k^{n-k}))=0$由于$c_1,c_2,...,c_k$是任意常数,因此需要使方程的每个系数都等于$0$,也就是:$\lambda_1^n-F(\lambda_1^{n-1},\lambda_1^{n-2},...,\lambda_1^{n-k})=0$$\lambda_2^n-F(\lambda_2^{n-1},\lambda_2^{n-2},...,\lambda_2^{n-k})=0$...$\lambda_k^n-F(\lambda_k^{n-1},\lambda_k^{n-2},...,\lambda_k^{n-k})=0$将上述$k$个方程写成矩阵的形式,即可解得$\lambda_1,\lambda_2,...,\lambda_k$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
an+2 = 3an + n ,
2
2
an+1 = 5an ,
an+2 −3an+1 + 4an = 6,
an+1 = ( an ) , an+2 = ( an+1 )( an ) .
§2 一阶线性差分方程
定义2.2 定义2.2 如果差分方程中包含数列变量(即包含 an)的项不包含数列变量的乘积, 不包含数列变 量的幂, 也不包含数列变量的诸如指数, 对数或 三角函数在内的函数, 那么我们称该差分方程 是线性的 否则差分方程就是非线性的 注意这 线性的. 非线性的. 线性的 非线性的 种限制只适用于包含数列变量的项, 而不能用 于不包含数列变量的其它项. 线性的
§1 数列的差分
例 考虑数列{an} = {1, 3, 6, 10, 15, 21, L}, 则有 {∆an} = {2, 3, 4, 5, 6, L} 以及 {∆2an} = {1, 1, 1, 1, 1, L}. 令 an = An2 + Bn + C,
1 1 C =0 A= B= 2 2 1 2 1 1 an = n + n = n(n +1) 2 2 2
月 n 0 1 2 3 4 5 6 7 8 9 10 本金 利息
an
$1000.000 1070.000 1144.900 1225.043 1310.796 1402.552 1500.730 16.5.781 1718.186 1838.459 1967.151 $70.0000 74.9000 80.1430 85.7530 91.7557 98.1786 105.0510 112.4050 120.2730 128.6920 137.7010
§1 数列的差分
例 求数列{an} = {n2} = {12, 22, 32, 42, 52, 62, L} 前n项和Sn, 即n个正整数平方和. 由于 {∆Sn}={(n+1)2}={22, 32, 42, 52, L}, {∆2Sn} ={2n+3} = {5, 7, 9, 11, L} 以及 {∆3Sn} = {2, 2, 2, 2, L} 令 Sn = An3 + Bn2 + Cn + D.
§1 数列的差分
数列的表示: 3. 图象法: 序列的项通过标出点(n, an) 图示. 直观, 具有可视化的效果. 4. 描述法:
§1 数列的差分 数列的一些例子
1. 假如你开了一个10000元的银行帐户, 银 行每月付给2%的利息. 假如你既不加进存 款也不取钱, 那么每个月后的存款余额就 构成一个数列.
−1 1 3 5 7 9
∆2an
2 2 2 2 2
§1 数列的差分
§2 一阶线性差分方程 一. 差分方程的基本概念 二. 齐次线性差分方程的解析解
§2 一阶线性差分方程
一. 差分方程的基本概念
定义2.1 差分方程是一种方程, 该方程表明数列 定义2.1 差分方程 中的任意项如何用前一项或几项来计算. 初始 条件是该数列的第一项. 出现在差分方程中的 条件 项的最大下标减去最小下标得到的数称为差分 差分 方程的阶. 方程的阶.
§2 一阶线性差分方程
差分方程的解具有不同的形式: 数值, 图形, 公式 定义2.4 数值解是从一个或多个初值出发迭代 定义2.4 数值解 差分方程得到的一张数值表.
§2 一阶线性差分方程
例如, 在银行帐户上以7% 的利息积累起来的钱数是 由差分方程 an+1 = an + 0.07an 来确定, 其中an表示n个月 后银行中的存款数.
差分方程从数列谈起
§1 数列的差分 §2 一阶线性差分方程 §3 一阶线性差分方程组
§1 数列的差分 一. 数列的概念 二. 数列差分的概念 三. 差分表的性质
§1 数列的差分 一. 数列的概念
一个数列 数列就是实数的任何(有限或无限的) 数列 有序集. 这些数称为数列的项或元素 元素. 项 元素 用an来表示数列的第n项, 称之为数列的 通项. 通项. 定义1.1 定义1.1 一个数列 数列是一个函数, 其定义域 数列 为全体正整数(有时, 为方便计, 是全体非 负整数集合), 其值域包含在全体实数集中.
§1 数列的差分
例. 假设我们有数列{an} = {3n − 5}, 并考虑由 表给出的关于n = 1, 2, 3, L的数列. 我们按函 数值列表, 并考虑相邻项的差.
n 1 2 3 4 5 6 7 8
an
-2 1 4 7 10 13 16 19
∆an
3 3 3 3 3 3 3
§1 数列的差分
§1 数列的差分
§1 数列的差分
例 讨论数列 {n2 − 4n + 3}的性质 构造an = n2 − 4n + 3的前7个数列值的差分表, 并用该表确定 数列在何处增加、减少, 达到相对极大或极小, 上凹、下凹以及是否有拐点.
n 1 2 3 4 5 6 7
an
0 −1 0 3 8 15 24
∆an
§1 数列的差分
2. 兔子出生以后两个月就能生小兔, 若每 次不多不少恰好生一对(一雌一雄). 假如 养了初生的小兔一对, 则每个月小兔的对 数也构成一个数列(假设生下的小兔都不 死) 斐波那契 斐波那契(Fibonacci意大利 约11701250本名Leonardo) 1, 1, 2, 3, 5, 8, 13, 21, 34, …
an+2 = 3an + n2 ,
2
an+1 = 5an ,
an+2 −3an+1 + 4an = 6,
非线性的 an+1 = ( an ) ,
an+2 = ( an+1 )( an ) .
§2 一阶线性差分方程
定义2.3 定义2.3 线性差分方程称为齐次的 如果它只包 齐次的, 齐次的 含数列变量的项. 如果略掉非齐次方程中不包含数列变量的项, 就得到一个齐次方程, 称之为与原方程相应的 相应的 齐次方程. 齐次方程 齐 差分的物理和几何意义 在物理方面, 一阶差分表示物体运动的平均速 度, 二阶差分表示平均加速度. 在几何方面, 一阶差分表示数列图形中相邻两 点连线的斜率. . 例. 外出汽车旅行, 每小时记录下里程表的读数. 设A ={an} ={22322, 22352, 22401, 22456, 22479, 22511}, ∆A = {∆an} = {30, 49, 55, 23, 32},
§1 数列的差分
由S1 = 1, S2 = 5, S3 = 14, S4 = 30得 A + B + C + D =1, 8A +4B + 2C + D =5(23 A +22 B +2C + D =5), 27A + 9B + 3C + D =14(33A + 32B + 3C + D =14), 64A + 16B+ 4C + D =30(43A + 42 B+ 4C + D =30), 解关于A, B, C和D的方程组可得 A = 1/3, B = 1/2, C = 1/6, D = 0, 则
§1 数列的差分
数列A在第k项处上凹 若∆ak > ∆ak−1(或用二阶 上凹, 上凹 差分的算子记号, ∆2ak−1 > 0). 数列A在第k项处下凹 若∆ak < ∆ak−1(或∆2ak−1 < 0). 下凹, 下凹 注意: 注意 在k−1处的二阶差分决定了k项处的凹性. 决定凹性的另一种看法是: 当一阶差分增加时 数列上凹, 而当一阶差分减小时数列下凹. 定义1.4 定义1.4 数列A在第k项处有一个拐点 倘若∆2ak 拐点, 拐点 和∆2ak−1有不同的正负号.
§1 数列的差分
二. 数列差分的概念
数列相邻项的差, 称为数列的差分 差分. 差分 定义1.2 定义1.2 对任何数列A = {a1, a2, L}, 其差分算子 差分算子 ∆(读作delta)定义如下: ∆a1 = a2 − a1, ∆a2 = a3 − a2, ∆a3 = a4 − a3, L, 一般地, 对任何n有 ∆an = an+1 − an,
1 3 1 2 1 1 Sn = n + n + n = n(n +1)(2n +1). 3 2 6 6
§1 数列的差分
三. 差分表的性质和应用
定义1.3 定义1.3 数列A = {an}在第k项处是增的 若 ak < 增的, 增的 ak+1(或用算子记号, ∆ak > 0). 数列A在第k项处是减的 若ak > ak+1(或∆ak < 0). 减的, 减的 数列A在第k项处达到相对极大 若ak > ak+1而 相对极大, 相对极大 ak ≥ ak−1(或用算子记号, ∆ak−1 ≥ 0而∆ak < 0). 相对极小, 数列A在第k项处达到相对极小 若ak < ak+1而 相对极小 ak ≤ ak−1(或∆ak−1 ≤ 0而∆ak > 0).
§1 数列的差分
定理1.1 定理1.1 若c和b为常数且对所有n = 1, 2, 3, L有 an = cn + b, 则: 1. 对所有n, 数列{an}的差分为常数; 2. 当画an关于n的图形时, 这些点都落在 一条直线上. 定理1.2 定理1.2 若∆an = c, 其中c是一个与n无关的常数, 则有一个an的线性函数(即存在常数b使 an = cn + b).
ak+1 = (1.07)k+1c = (1.07)k c + 0.07(1.07)k c,