利用频率估计概率PPT
合集下载
北师大版九年级数学上册《用频率估计概率》优质课课件(15p)

假设用小球模拟问题的实验过程中,用6个黑球代替 3双黑袜子,用2个白球代替1双白袜子: (1)有一次摸出了2个白球,但之后一直忘了把它 们放回去,这会影响实验结果吗?
有影响,如果不放回,就不是3双黑袜子和1双白袜 子的实验,而是中途变成了3双黑袜子实验,这两 种实验结果是不一样的。
(2)如果不小心把颜色弄错了,用了2个黑球和 6个白球进行实验,结果会怎样?
频率 5
01
0.103
0.098
0.103
9、要学生做的事,教职员躬亲共做 ;要学 生学的 知识, 教职员 躬亲共 学;要 学生守 的规则 ,教职 员躬亲 共守。2 021/7 /2920 21/7/ 29Thu rsday, July 29, 2021
10、阅读一切好书如同和过去最杰出的人谈话。2021/7/292021/7/292021/7/297/29/2021 7:51:16 AM
小明参加夏令营,一天夜里熄灯了,伸手不 见五指,想到明天去八达岭长城天不亮就出 发,想把袜子准备好,而现在又不能开灯。 袋子里有尺码相同的3双黑袜子和1双白袜子, 混放在一起,只能摸黑去拿出2只。同学们能 否求出摸出的2只恰好是一双的可能性?
同学们能否通过实验估计它们恰好是一双的可 能性?如果手边没有袜子应该怎么办?
200
250
300
350
40 0
450
500
为简单起见,我们能否直接把表中的500千
损坏 柑橘 质量
克坏10柑的.5橘 概对 率1155应 ?. 的1492柑. 橘25损4.坏2 的3903频. 率32看5.作3 柑3294橘. 损474.5
51.5 4
柑橘
0.097
0.101
0.099
《用频率估计概率》PPT教学课件1人教版

2048 4040 10000 12000 24000
“正面向上”
次数m
1061 2048 4979 6019 12012
“正面向上”
频率(
m n
)
0.518
0.5069
0.4979
0.5016
0.5005
根据表中数据,画出“正面向上”的频率的变化趋势图
“正面向上”
大量重复试验中,如果频事件率A(发m 生)的频率稳定在常数p附近,
0.5 10000×(1-10%)x-1.
教练记录一名主力前锋练习罚篮的结果如下:
选做:第5,6,7题(3 4号) 抛掷硬币“正面向上”的概率是0. 答:柑橘的售价应定为3元. 想一想:“正面向上”的频率有什么规律?
10000×(1-10%)x-1. “正面向上”的频率m/n
0 2048 4040 1000012000
学习目标
掌握用频率估计概率的方法,并能解 决实际问题
导入新课:养鱼专业户为估计鱼塘里有多少条鱼,先捕捞100条 做上标记,然后放回塘里,当带标记的鱼完全和塘里的鱼混合 后,再捕捞100条,发现其中带标记的鱼有10条,他估计塘里大 约有1000条鱼.他是怎样估算出来的呢?
预习展示
探究频率与概率的关系
概率,
互动探究一
某水果公司以元/kg的成本价购进了10000千克柑橘,如果想获 得9000元的利润,那么售价应定为多少元?(会有10%损坏)
解:设柑橘的售价应定为x元, 10000×(1-10%)x-1.8x10000=9000 解得 x=3.
答:柑橘的售价应定为3元.
互动探究二
一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾, 养殖户通过多次捕获试验后发现:鲤鱼、 鲫鱼出现的频率是25%和35%,则这个水 塘里有鲤鱼 250 尾,鲢鱼 400 尾.
“正面向上”
次数m
1061 2048 4979 6019 12012
“正面向上”
频率(
m n
)
0.518
0.5069
0.4979
0.5016
0.5005
根据表中数据,画出“正面向上”的频率的变化趋势图
“正面向上”
大量重复试验中,如果频事件率A(发m 生)的频率稳定在常数p附近,
0.5 10000×(1-10%)x-1.
教练记录一名主力前锋练习罚篮的结果如下:
选做:第5,6,7题(3 4号) 抛掷硬币“正面向上”的概率是0. 答:柑橘的售价应定为3元. 想一想:“正面向上”的频率有什么规律?
10000×(1-10%)x-1. “正面向上”的频率m/n
0 2048 4040 1000012000
学习目标
掌握用频率估计概率的方法,并能解 决实际问题
导入新课:养鱼专业户为估计鱼塘里有多少条鱼,先捕捞100条 做上标记,然后放回塘里,当带标记的鱼完全和塘里的鱼混合 后,再捕捞100条,发现其中带标记的鱼有10条,他估计塘里大 约有1000条鱼.他是怎样估算出来的呢?
预习展示
探究频率与概率的关系
概率,
互动探究一
某水果公司以元/kg的成本价购进了10000千克柑橘,如果想获 得9000元的利润,那么售价应定为多少元?(会有10%损坏)
解:设柑橘的售价应定为x元, 10000×(1-10%)x-1.8x10000=9000 解得 x=3.
答:柑橘的售价应定为3元.
互动探究二
一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾, 养殖户通过多次捕获试验后发现:鲤鱼、 鲫鱼出现的频率是25%和35%,则这个水 塘里有鲤鱼 250 尾,鲢鱼 400 尾.
《用频率估计概率》ppt课件

频率的定义
01
频率是指在一定数量的 试验或观察中某一事件 发生的次数与总次数之 比。
02
03
04
频率通常用分数或小数 表示,并且具有以下特 点
• 频率介于0和1之间, 即0≤频率≤1。
• 当试验次数趋向于无 穷时,频率趋向于某 一固定值,即概率。
频率与概率的关系
频率是概率的近似值,当试验次数足够多时,频率趋近于概率。
人工智能算法
人工智能算法中,频率估计概率的方法也被 广泛应用。许多机器学习算法和自然语言处 理算法都需要用到概率和统计学的知识,而 频率估计概率是其中的重要组成部分。
例如,在自然语言处理中,词频统计是一种 常见的方法,通过对大量文本数据的分析, 可以估计某个词出现的概率,从而更好地理 解和处理自然语言。同样地,在机器学习中 ,频率估计概率的方法也被用于分类、聚类
交叉验证
采用交叉验证等方法评估频率 估计概率的准确性,以提高预
测的可靠性。
05
频率估计概率的应用场景
统计学研究
统计学研究是频率估计概率的重要应用领域之一。在统计 学中,频率估计概率的方法被广泛应用于数据分析和推断 中,例如在样本大小的计算、假设检验和置信区间的确定 等方面。
频率估计概率可以帮助统计学家了解数据分布的特征和规 律,从而为决策提供科学依据。例如,在市场调研中,通 过频率估计概率可以对市场趋势和消费者行为进行预测和 分析。
0到1之间,其中0表示事件不可能发 生,1表示事件一定发生。
概率的估计方法
01
02
03
直接估计
通过观察和实验直接得到 随机事件的频率,从而估 计概率。
间接估计
通过已知的概率分布函数 或者概率密度函数来计算 概率。
人教版九年级数学上册《25.3用频率估计概率》课件(共27张PPT)

3 B.在答卷中,喜欢足球的答卷与总问卷的比5为3︰8
C.在答卷中,喜欢足球的答卷占总答卷的
D.在答卷中,每抽出100份问卷,恰有60份答卷是喜欢足球
练习巩固
3.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他相
同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中
白球可能有( D ).
在同样条件下,对这种幼树进行大量移植,并统计成活情况,计算成活 的频率.随着移植数n越来越大,频率 m 会越来越稳定,于是就可以把频
n 率作为成活率的估计值.
从表中可以发现,随着移植数的增加,幼树移植成活的频率越来越稳 定.当移植总数为14 000时,成活的频率为0.902,于是可以估计幼树移植 成活的概率为0.9.
转动转盘的次数n
落在“铅笔”的次数m
落在“铅笔”的频率
m n
100 150 200 500 800 1 000 68 111 136 345 546 701
(2) 请估计,当n很大时,频率将会接近多少?
(3) 转动该转盘一次,获得铅笔的概率约是多少?
(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大
如果随着抛掷次数的增加,“正面向上”的频率的变化在0.5的左右摆动幅度不完全是越来越小,本次实验依然不能称为严格意义上的大量重复实验. 2.某射击运动员在同一条件下的射击成绩记录如下: 902,于是可以估计幼树移植成活的概率为 . 例2 某水果公司以2元/kg的成本价新进了10 000 kg的柑橘.如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适 ? 2.某射击运动员在同一条件下的射击成绩记录如下:
约是多少(精确到1°).
《频率与概率》概率 PPT教学课件

乙击中 10 环的次数(m) 8 19 44 93 177 453
乙击中 10 环的频率(mn ) 0.8 0.95 0.88 0.93 0.885 0.906
(2)由(1)中的数据可知两名运动员击中 10 环的频率都集中在 0.9 附近,所以预测两人
在奥运会上击中 10 环的概率均约为 0.9,也就是说甲、乙两人的实力相当.
必修第二册·人教数学A版
返回导航 上页 下页
[自主检测] 1.某人将一枚硬币连续抛掷了 10 次,正面朝上的情形出现了 6 次,则( ) A.正面朝上的概率为 0.6 B.正面朝上的频率为 0.6 C.正面朝上的频率为 6 D.正面朝上的频率接近于 0.6
解析:160=0.6 是此次试验正面朝上的频率而不是概率. 答案:B
必修第二册·人教数学A版
返回导航 上页 下页
1.给出下列四个命题: ①设有一批产品,其次品率为 0.05,则从中任取 200 件,必有 10 件是次品; ②做 100 次抛硬币的试验,结果 51 次出现正面朝上,因此,出现正面朝上的概率是 15010; ③随机事件发生的频率就是这个随机事件发生的概率; ④抛掷骰子 100 次,得点数是 1 的结果 18 次,则出现 1 点的频率是590. 其中正确命题为________(填序号).
返回导航 上页 下页
[解析] 频率是不能脱离试验次数的实验值,而概率是具有确定性的不依赖于试验次 数的理论值,故②③不正确.①④显然正确.
[答案] A
必修第二册·人教数学A版
返回导航 上页 下页
频率是事件 A 发生的次数 m 与试验总次数 n 的比值,利用此公式可求出它们的频 率.频率本身是随机变量,当 n 很大时,频率总是在一个稳定值附近摆动,这个稳 定值就是概率.
用频率估计概率-完整版PPT课件

当堂练习
1一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕
获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个
水塘里有鲤鱼 尾3,鲢10鱼 尾
270
2 养鱼专业户为了估计他承包的鱼塘里有多少条鱼假设 这个塘里养的是同一种鱼,先捕上100条做上标记,然后放回 塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后 ,再捕上100条,发现其中带标记的鱼有10条,鱼塘里大约 有鱼多少条?
解:设鱼塘里有鱼条,根据题意可得
10 100 , 100 x
解得 =1000 答:鱼塘里有鱼1000条
3抛掷硬币“正面向上”的概率是05如果连续抛掷100次,而结 果并不一定是出现“正面向上”和“反面向上”各50次,这是这 什么?
答:这是因为频数和频率的随机性以及一定的规律性或者说 概率是针对大量重复试验而言的,大量重复试验反映的规律 并非在每一次试验中都发生
方法归纳
一般地,当试验的可能结果有很多且各种可能结果发生的 可能性相等时, 则用列举法,利用概率公式PA= 的方m 式得出
n
概率 当试验的所有可能结果不是有限个,或各种可能结果发生 的可能性不相等时,常常是通过统计频率来估计概率,即在同 样条件下,大量重复试验所得到的随机事件发生的频率的稳 定值来估计这个事件发生的概率
226 281 260 238 246 259 1490
450 550 503 487 510 495 2995
0502 0510 0517 049 0483 0523 0497
050
问题2 分析试验结果及下面数学家大量重复试验数据, 大家有何发现?
试验者
棣莫弗 布丰 费勒 皮尔逊 皮尔逊
抛掷次数n “正面向上” 次数m
课件1:25.3用频率估计概率

应该可以的
因为500千克柑橘损坏51.54千克,损坏率是0.103, 可以近似的估算是柑橘的损坏概率
练习
某农科所在相同条件下做了某作物种子发芽率的试验,结果如下表所示:
种子个数 100 200 300 400 500 600 700 800 900 1000
发芽种子个数 94 187 282 338 435 530 624 718 814 981
25.3 用频率估计概率
一 . 利用频率估计概率
当试验的可能结果有很多并且各种结果发生的可能性相等时,我们可以用
P
(A)
=
m n
的方式得出概率,当试验的所有可能结果不是有限个,或各种可能
结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.
在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐 渐稳定到的常数,可以估计这个事件发生的概率.
成活的频率( m)
n
0.80
50
47
0.94
270
235
0.870
400 750 1500
369 662 1335
0.923 0.883 0.890
3500
3203
0.915
7000 9000 14000
6335 8073 12628
0.905 0.897 0.902
从上表可以发现,幼树移植成活的频率在____9_0_%___左右摆动, 并且随着统计数据的增加,这种规律愈加明显,所以估计幼树 移植成活率的概率为___0_._9___
2 10000 20 2.22元 / 千克
9000
9
设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000
因为500千克柑橘损坏51.54千克,损坏率是0.103, 可以近似的估算是柑橘的损坏概率
练习
某农科所在相同条件下做了某作物种子发芽率的试验,结果如下表所示:
种子个数 100 200 300 400 500 600 700 800 900 1000
发芽种子个数 94 187 282 338 435 530 624 718 814 981
25.3 用频率估计概率
一 . 利用频率估计概率
当试验的可能结果有很多并且各种结果发生的可能性相等时,我们可以用
P
(A)
=
m n
的方式得出概率,当试验的所有可能结果不是有限个,或各种可能
结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.
在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐 渐稳定到的常数,可以估计这个事件发生的概率.
成活的频率( m)
n
0.80
50
47
0.94
270
235
0.870
400 750 1500
369 662 1335
0.923 0.883 0.890
3500
3203
0.915
7000 9000 14000
6335 8073 12628
0.905 0.897 0.902
从上表可以发现,幼树移植成活的频率在____9_0_%___左右摆动, 并且随着统计数据的增加,这种规律愈加明显,所以估计幼树 移植成活率的概率为___0_._9___
2 10000 20 2.22元 / 千克
9000
9
设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000
九年级数学《用频率估计概率》课件

柑橘损坏的 频率(m/n)
0.110 0.105 0.101 0.097 0.097 0.101 0.101 0.098 0.099 0.103
例4
概率伴随着我你他
• 1.在有一个10万人的 小镇,随机调查了 2000人,其中有250人 看中央电视台的早间 新闻.在该镇随便问 一个人,他看早间新 闻的概率大约是多少 ?该镇看中央电视台 早间新闻的大约是多 少人?
(4)古典概型与几何概型的区别:两种模型的基本事件发 生的可能性相等.古典概型要求基本事件发生是有限个, 而几何概型要求基本事件有无限多个.
概率的获取有理论计算和实验估算两种。
数学史话:概率的产生与发展(p112-114)
(1) 概率类型:古典概型与几何概型两类;
(2) 古典概型:随机实验所有可能的结果是有限的, 并且每个基本结果发生的概率是相同的,属于这个模 型叫古典概型(特点:有限性和等可能性), (3)几何概型:如果某个事件发生的概率只与该事件 的长度(面积或体积)成正例,则称这样的概率模型为几 何概型(特点:无限性与等可能性).
m/n
(2)这个射手射击一次,击中靶心
的概率是多少?
0.5
(3)这射手射击1600次,击中靶心的次数是 800 。
例3、某水果公司以2元/千 克的成本新进了10000 千克柑橘,销售人员首 先从所有的柑橘中随机 地抽取若干柑橘,进行 了“柑橘损坏率“统计 ,并把获得的数据记录 在下表中了
问题1:完好柑橘的实际 成本为_2_.2_2___元/千克
解:有题意三辆车开来的先后顺序有如下6种可能情况: (上、中、下)、(上、下、中)、(中、上、下) (中、下、上)、(下、中、上)、(下、上、中);
假定6种顺序出现的可能性相同.我们来研究在各种可 能性的顺序之下,甲、乙二人分别会上哪一辆汽车:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不对。所谓降水概率90%、10%是在大量 的统计记录的条件下,那么它是符合大多数同 等天气条件下的实际情况的,但某些例外也还 是可能的。
2 某射手进行射击,结果如下表所示:
射击次 20 100 200 500 800 数n
击中靶
心次数 13 m
58
104 255 404
击中靶
心频率 0.65 0.58 0.52 0.51 0.55
足够大的,频率 就m n可以作为概率p
的估计值.
频率与概率的关系
区别:1频率反映事件发生的频繁程度; 概率反映事件发生的可能性大小.
2 频率是不能脱离具体的n次试验 的结果,具有随机性;概率是具有确定 性的不依赖于试验次数的理论值. 联系:频率是概率的近似值,概率是频 率的稳定值.
用频率估计概率的基本步骤:
概率的统计定义: 一般地,在大量重复试验中,
如果事件发生的频率(m/n) 会稳定在某个常数 p 附近, 那么,事件发生的概率为 p.
需要注意的是:概率是针对大量重复雅各的布试·伯验努利而(瑞言士的) , 大量试验反映的规律并非在每一次试验中165出4-1现705.
结 论:
更一般地,即使试验的所有可能 的结果不是有限个,或各种可能的 结果发生的可能性不相等,也可以 通过试验的方法去估计一个随机 事件发生的概率.只要试验次数是
4.一个口袋中放有20个球,其中红球6个,白 球和黑球各若干个,每个球出了颜色外没有 任何区别.
(1)小王通过大量反复实验(每次取一个球, 放回搅匀后再取)发现,取出黑球的概率稳 定在1/4左右,请你估计袋中黑球的个数.
(2)若小王取出的第一个是白球,将它放在 桌上,从袋中余下的球中在再任意取一个球, 取出红球的概率是多少?
就可以作为概率的估计值.
3 升华提高
弄清了一种关系------频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的 频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频 率来估计这一事件发生的概率.
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想: 用样本去估计总体 用频率去估计概率
【拓展】 你能设计一个利用频
率估计概率的实验方法估 算该不规则图形的面积的 方案吗?
8 某篮球运动员在最近的几场大赛中罚
球投篮的结果如下:
(1)计算表中 各次比赛进球 的频率; (2)这位运动 员投篮一次, 进球的概率约
投篮次 8 10 12 9 16 10 数n
进球次 6 8 9 7 12 7 数m
3.在有一个10万人的小镇,随机调查了2000人,其中 有250人看中央电视台的早间新闻.在该镇随便问一 个人,他看早间新闻的概率大约是多少?该镇看中央 电视台早间新闻的大约是多少人?
解: 根据概率的意义,可以认为其概率大约等于 250/2000=0.125. 该镇约有100000×0.125=12500人看中央电 视台的早间新闻.
1. 大量重复试验 2. 检验频率是否已表现出稳定性 3. 频率的稳定值即为概率
在大量重复进行同一试验时,事件A发生的频率 m 总是接近于 n
某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率, 记做P(A)
注: (1)求一个事件的概率的基本方法是通过大量的重复试验; (2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率; (3)概率是频率的稳定值,而频率是概率的近似值; (4)概率反映了随机事件发生的可能性的大小; (5)必然事件的概率为1,不可能事件的概率为0.因此0P(A)1
1 天气预报的概率解释
(1)天气预报是气象专家依据观察到的气象资料和专 家们的实际经验,经过分析推断得到的。它是主观概率 的一种,而不是本书上定义的概率。
(2)降水概率 的大小只能说明降水可能性的大小, 概率值越大只能表示在一次试验中发生可能性越大, 并不能保证本次一定发生。
天气预报说下星期一降水概率是90%,下 星期三降水概率是10%,于是有位同学说:下 星期一肯定下雨,下星期三肯定不下雨。你认 为他说的对吗?
(1)试验的次数越多,所得的频率越能反映 概率的大小;
(2)频数分布表、扇形图、条形图、直方图 都能较好地反映频数、频率的分布情况,我 们可以利用它们所提供的信息估计概率.
(3)当试验次数很大时,一个事件发生频 率也稳定在相应的概率附近.因此,我们可 以通过多次试验,用一个事件发生的频率 来估计这一事件发生的概率.
2 048
1 061
0.518
布丰
4 040
2 048 0.506 9
费勒
10 000
4 979
0.497 9
皮尔逊 12 000
6 019
0.501 6
皮尔逊 24 000 12 012 0.500 5
新课
用列举法可以求一些事件概率,还可以利用多 次重复试验,通过统计实验结果去估计概率
例如,历史上曾有人做过抛掷硬币的大量重复试验,结果如 下表 材:料
5 从一定的高度落下图钉,落地后 可能图钉尖着地,也可能图钉尖不找地, 估计一下哪种事件的概率更大,与同学
合作,通过做实验来验证 一下你事先估计是否正确?
你能估计图钉尖朝上的概率 吗?
6 如图,长方形内有一不规则区域,现在玩投掷游戏,如果 随机掷中长方形的300次中,有100次是落在不规则图形内 . (1)你能估计出掷中不规则图形的概率吗? (2)若该长方形的面积为150,试估计不规则图形的面积.
结束寄语:
概率是对随机现象的一种数学描述, 它可以帮助我们更好地认识随机现象,并 对生活中的一些不确定情况作出自己的决 策. 从表面上看,随机现象的每一次观察
结果都是偶然的,但多次观察某个随机现 象,立即可以发现:在大量的偶然之中存 在着必然的规律.
试一试
1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通 过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31% 和42%,则这个水塘里有鲤鱼___31_0___尾,鲢鱼__2_7_0___尾 . 2.动物学家通过大量的调查估计出,某种动物活到20 的概率为0.8,活到25岁的岁概率是0.5,活到30岁的概率 是0.3.现年20岁的这种动物活到25岁的概率为多少?现 年25岁的这种动物活到30岁的概率为多少?
第25章 概率初步
利用频率估计概率
一、回顾
1.概率的定义,事件的分类
2、等可能事件概率公式:
P( A) m n
3、求等可能事件概率的条件:
(1)所有可能结果是有限个;
(2)每种结果的可能性都相等。
思考
有三枚硬币,硬币1的一面涂有红 色,另一面涂有黄色;硬币2的一面涂 有黄色,另一面涂有蓝色;硬币3的一 面涂有蓝色,另一面涂有红色。现将 这三枚硬币随意抛出,求两枚的颜色 相同的概率。
频率 m 0.75 0.75 0.75
n
0.8 0.78 0.7
为多少? 0.75
(1)实验的所有结果是有限个(n)
(2)各种结果的可能性相等. P A m
n
思考:当实验的所有结果不是有限个;
或各种可能结果发生的可能性不相等时. 又该如何求事件发生的概率呢?
如图,有一枚质地均匀的硬币,将 它抛出后,你知道正面朝上的概率吗?
(1)是不是等可能事件? 正 反 所有可能结果是有限个; 每种结果的可能性都相等。 (2)用什么方法求概率? 用列举法求概率。
(4) 在相同情况下随机的抽取若干个 体进行实验,进行实验统计.并计算事件发 生的频率 m 根据频率估计该事件发生 的概率. n
1. 概率的获取有 理论计算和实验估算两种。
2. 本节课的事件概率无法用理论计算来解决,只 能通过概率实验,用 频率来估算。
本节课主要学习了用频率估计概率,
记住:只要试验次数是足够大的,频率
不能.
为了更为准确地为文具厂商提供信息,你 认为抽样调查应注意什么?
抽样调查应更广泛、更有代表性、更有 随意性.
问题2 该文具厂就该笔袋的颜色随机调查 了5000名中学生,并在调查到1000名、2000 名、3000名、4000名、5000名时分别计算了 各种颜色的频率,绘制折线图如下:
某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的 产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生, 并在调查到1 000名、2 000名、3 000名、4 000名、5 000名时 分别计算了各种颜色的频率,绘制折线图如下:
抛掷次数(n)
正面向上次 数(频数m)
频率( m ) n
2048
1061
0.5181
4040
2048
0.5069
12000
6019
0.5016
24000 30000 72088
12012 14984 36124
05005 0.4996 0.5011
“正面向下” 的概率哪
当重复抛掷一枚硬币时,“正面向上”的频率在0.5左右摆动。 随着抛掷次数的增加,一般地频率呈现出一定的稳定性:在0.5 左右摆动的幅度会越来越小。我们称“正面向上”的概率是0.5
用什么方法求概率?
列举的方法:
(1)直接列举法: 事件结果显而易见,可能性较少;
(2)“列表”法: 事件结果较复杂,可能性较多;
(3)“树形图”法: 事件结果较复杂,步骤较多。
画树形图如下:
硬币1
红
黄
硬币2 黄
蓝
黄蓝
硬币3 蓝 红 蓝 红 蓝 红 蓝 红
P(两种颜色相同)= 3
4
用列举法求概率的条件是什么?
条件下,做大量的重复实验时,根据一个随机事件发生的频率所逐 渐稳定的常数,可以估计这个事件发生的概率。
频率稳定性定理
由频率可以估计概率是由瑞士数 学家雅各布·伯努利(1654-1705 )最早阐明的,因而他被公认为 是概率论的先驱之一.
2 某射手进行射击,结果如下表所示:
射击次 20 100 200 500 800 数n
击中靶
心次数 13 m
58
104 255 404
击中靶
心频率 0.65 0.58 0.52 0.51 0.55
足够大的,频率 就m n可以作为概率p
的估计值.
频率与概率的关系
区别:1频率反映事件发生的频繁程度; 概率反映事件发生的可能性大小.
2 频率是不能脱离具体的n次试验 的结果,具有随机性;概率是具有确定 性的不依赖于试验次数的理论值. 联系:频率是概率的近似值,概率是频 率的稳定值.
用频率估计概率的基本步骤:
概率的统计定义: 一般地,在大量重复试验中,
如果事件发生的频率(m/n) 会稳定在某个常数 p 附近, 那么,事件发生的概率为 p.
需要注意的是:概率是针对大量重复雅各的布试·伯验努利而(瑞言士的) , 大量试验反映的规律并非在每一次试验中165出4-1现705.
结 论:
更一般地,即使试验的所有可能 的结果不是有限个,或各种可能的 结果发生的可能性不相等,也可以 通过试验的方法去估计一个随机 事件发生的概率.只要试验次数是
4.一个口袋中放有20个球,其中红球6个,白 球和黑球各若干个,每个球出了颜色外没有 任何区别.
(1)小王通过大量反复实验(每次取一个球, 放回搅匀后再取)发现,取出黑球的概率稳 定在1/4左右,请你估计袋中黑球的个数.
(2)若小王取出的第一个是白球,将它放在 桌上,从袋中余下的球中在再任意取一个球, 取出红球的概率是多少?
就可以作为概率的估计值.
3 升华提高
弄清了一种关系------频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的 频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频 率来估计这一事件发生的概率.
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想: 用样本去估计总体 用频率去估计概率
【拓展】 你能设计一个利用频
率估计概率的实验方法估 算该不规则图形的面积的 方案吗?
8 某篮球运动员在最近的几场大赛中罚
球投篮的结果如下:
(1)计算表中 各次比赛进球 的频率; (2)这位运动 员投篮一次, 进球的概率约
投篮次 8 10 12 9 16 10 数n
进球次 6 8 9 7 12 7 数m
3.在有一个10万人的小镇,随机调查了2000人,其中 有250人看中央电视台的早间新闻.在该镇随便问一 个人,他看早间新闻的概率大约是多少?该镇看中央 电视台早间新闻的大约是多少人?
解: 根据概率的意义,可以认为其概率大约等于 250/2000=0.125. 该镇约有100000×0.125=12500人看中央电 视台的早间新闻.
1. 大量重复试验 2. 检验频率是否已表现出稳定性 3. 频率的稳定值即为概率
在大量重复进行同一试验时,事件A发生的频率 m 总是接近于 n
某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率, 记做P(A)
注: (1)求一个事件的概率的基本方法是通过大量的重复试验; (2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率; (3)概率是频率的稳定值,而频率是概率的近似值; (4)概率反映了随机事件发生的可能性的大小; (5)必然事件的概率为1,不可能事件的概率为0.因此0P(A)1
1 天气预报的概率解释
(1)天气预报是气象专家依据观察到的气象资料和专 家们的实际经验,经过分析推断得到的。它是主观概率 的一种,而不是本书上定义的概率。
(2)降水概率 的大小只能说明降水可能性的大小, 概率值越大只能表示在一次试验中发生可能性越大, 并不能保证本次一定发生。
天气预报说下星期一降水概率是90%,下 星期三降水概率是10%,于是有位同学说:下 星期一肯定下雨,下星期三肯定不下雨。你认 为他说的对吗?
(1)试验的次数越多,所得的频率越能反映 概率的大小;
(2)频数分布表、扇形图、条形图、直方图 都能较好地反映频数、频率的分布情况,我 们可以利用它们所提供的信息估计概率.
(3)当试验次数很大时,一个事件发生频 率也稳定在相应的概率附近.因此,我们可 以通过多次试验,用一个事件发生的频率 来估计这一事件发生的概率.
2 048
1 061
0.518
布丰
4 040
2 048 0.506 9
费勒
10 000
4 979
0.497 9
皮尔逊 12 000
6 019
0.501 6
皮尔逊 24 000 12 012 0.500 5
新课
用列举法可以求一些事件概率,还可以利用多 次重复试验,通过统计实验结果去估计概率
例如,历史上曾有人做过抛掷硬币的大量重复试验,结果如 下表 材:料
5 从一定的高度落下图钉,落地后 可能图钉尖着地,也可能图钉尖不找地, 估计一下哪种事件的概率更大,与同学
合作,通过做实验来验证 一下你事先估计是否正确?
你能估计图钉尖朝上的概率 吗?
6 如图,长方形内有一不规则区域,现在玩投掷游戏,如果 随机掷中长方形的300次中,有100次是落在不规则图形内 . (1)你能估计出掷中不规则图形的概率吗? (2)若该长方形的面积为150,试估计不规则图形的面积.
结束寄语:
概率是对随机现象的一种数学描述, 它可以帮助我们更好地认识随机现象,并 对生活中的一些不确定情况作出自己的决 策. 从表面上看,随机现象的每一次观察
结果都是偶然的,但多次观察某个随机现 象,立即可以发现:在大量的偶然之中存 在着必然的规律.
试一试
1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通 过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31% 和42%,则这个水塘里有鲤鱼___31_0___尾,鲢鱼__2_7_0___尾 . 2.动物学家通过大量的调查估计出,某种动物活到20 的概率为0.8,活到25岁的岁概率是0.5,活到30岁的概率 是0.3.现年20岁的这种动物活到25岁的概率为多少?现 年25岁的这种动物活到30岁的概率为多少?
第25章 概率初步
利用频率估计概率
一、回顾
1.概率的定义,事件的分类
2、等可能事件概率公式:
P( A) m n
3、求等可能事件概率的条件:
(1)所有可能结果是有限个;
(2)每种结果的可能性都相等。
思考
有三枚硬币,硬币1的一面涂有红 色,另一面涂有黄色;硬币2的一面涂 有黄色,另一面涂有蓝色;硬币3的一 面涂有蓝色,另一面涂有红色。现将 这三枚硬币随意抛出,求两枚的颜色 相同的概率。
频率 m 0.75 0.75 0.75
n
0.8 0.78 0.7
为多少? 0.75
(1)实验的所有结果是有限个(n)
(2)各种结果的可能性相等. P A m
n
思考:当实验的所有结果不是有限个;
或各种可能结果发生的可能性不相等时. 又该如何求事件发生的概率呢?
如图,有一枚质地均匀的硬币,将 它抛出后,你知道正面朝上的概率吗?
(1)是不是等可能事件? 正 反 所有可能结果是有限个; 每种结果的可能性都相等。 (2)用什么方法求概率? 用列举法求概率。
(4) 在相同情况下随机的抽取若干个 体进行实验,进行实验统计.并计算事件发 生的频率 m 根据频率估计该事件发生 的概率. n
1. 概率的获取有 理论计算和实验估算两种。
2. 本节课的事件概率无法用理论计算来解决,只 能通过概率实验,用 频率来估算。
本节课主要学习了用频率估计概率,
记住:只要试验次数是足够大的,频率
不能.
为了更为准确地为文具厂商提供信息,你 认为抽样调查应注意什么?
抽样调查应更广泛、更有代表性、更有 随意性.
问题2 该文具厂就该笔袋的颜色随机调查 了5000名中学生,并在调查到1000名、2000 名、3000名、4000名、5000名时分别计算了 各种颜色的频率,绘制折线图如下:
某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的 产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生, 并在调查到1 000名、2 000名、3 000名、4 000名、5 000名时 分别计算了各种颜色的频率,绘制折线图如下:
抛掷次数(n)
正面向上次 数(频数m)
频率( m ) n
2048
1061
0.5181
4040
2048
0.5069
12000
6019
0.5016
24000 30000 72088
12012 14984 36124
05005 0.4996 0.5011
“正面向下” 的概率哪
当重复抛掷一枚硬币时,“正面向上”的频率在0.5左右摆动。 随着抛掷次数的增加,一般地频率呈现出一定的稳定性:在0.5 左右摆动的幅度会越来越小。我们称“正面向上”的概率是0.5
用什么方法求概率?
列举的方法:
(1)直接列举法: 事件结果显而易见,可能性较少;
(2)“列表”法: 事件结果较复杂,可能性较多;
(3)“树形图”法: 事件结果较复杂,步骤较多。
画树形图如下:
硬币1
红
黄
硬币2 黄
蓝
黄蓝
硬币3 蓝 红 蓝 红 蓝 红 蓝 红
P(两种颜色相同)= 3
4
用列举法求概率的条件是什么?
条件下,做大量的重复实验时,根据一个随机事件发生的频率所逐 渐稳定的常数,可以估计这个事件发生的概率。
频率稳定性定理
由频率可以估计概率是由瑞士数 学家雅各布·伯努利(1654-1705 )最早阐明的,因而他被公认为 是概率论的先驱之一.