红外遥控原理及应用
红外遥控技术与应用课件

02
红外报警系统:通过红外传感器检测入侵,发出报警信号
03
红外热成像技术:通过红外线检测物体温度,实现火灾预警
04
红外遥控技术:通过红外线控制安防设备,实现远程控制和自动化控制
谢谢
3
2
4
1
红外线:一种不可见光,具有较强的穿透性
红外遥控应用:家电、汽车、安防等领域
红外遥控:利用红外线进行遥控的技术
红外遥控原理:通过发射和接收红外信号,实现对设备的控制
红外遥控信号传输
红外线:一种不可见光,波长在760nm到1mm之间
红外遥控信号:通过红外线传输的控制信号
红外遥控信号传输原理:利用红外线作为载体,将控制信号调制到红外线上,通过红外线发射器发射出去,再由红外线接收器接收并解调,实现对设备的控制
红外遥控信号传输距离:一般不超过10米,受环境影响较大
红外遥控信号传输速度:一般不超过100Kbps,受红外线传输特性限制
3
4
5
2
红外遥控技术应用
家电控制
01
红外遥控技术在家电中的应用
02
红外遥控器的基本结构和工作原理
03
家电红外遥控技术展趋势
安防监控
01
红外摄像头:通过红外线捕捉图像,实现夜间监控
演讲人
红外遥控技术与应用课件
01.
红外遥控技术原理
02.
红外遥控技术应用
目录
1
红外遥控技术原理
红外线基本概念
4
3
红外线可以穿透物体,实现非接触式测量和控制
红外线在通信、医疗、军事等领域有广泛应用
2
1
红外线是一种电磁波,波长在760nm到1mm之间
红外 遥控器 原理

红外遥控器原理
红外遥控器是一种常见的无线遥控设备,用于控制电子设备,例如电视、音响、空调等。
它通过发送和接收红外光信号来实现远程控制。
红外遥控器的工作原理是利用红外光的特性和传输方式。
红外光是我们肉眼不可见的光谱范围,具有较高的能量和穿透力。
红外遥控器内部有一个红外发射器,它能够产生红外光信号,并且能够通过遥控器上的按键进行调节和控制。
当我们按下遥控器上的按钮时,按钮对应的电路会关闭,使得电流通过红外发射器。
然后红外发射器将电流转变为红外光信号,并通过红外发射器的透镜发射出去。
这个发射出的红外光信号携带着特定编码的数据,例如控制命令和设备标识等信息。
接收端的设备(例如电视机)上有一个红外接收器,通常位于前方或顶部的位置。
红外接收器接收到发射器发射的红外光信号后,将其转换为电信号,并通过电路进行解码。
解码后的信号可以被电子设备识别,并执行相应的操作。
红外遥控器的传输距离通常较短,约在10米左右。
这是因为
红外光的传输很容易受到环境的干扰,如障碍物、光照强度等因素都会影响信号的传输质量。
总的来说,红外遥控器通过红外光信号的发射和接收来实现远程控制功能。
它是一种简单方便的控制方式,广泛应用于家庭娱乐设备和其他电子设备中。
电视遥控器红外线原理

电视遥控器红外线原理电视遥控器是我们日常生活中常用的电子设备之一。
它通过无线红外线技术来实现与电视之间的通信和控制。
本文将深入探讨电视遥控器红外线原理的工作流程以及其在电子设备中的应用。
一、红外线的介绍红外线是一种电磁辐射,其波长范围在700纳米至1毫米之间。
与可见光相比,红外线的波长更长,无法被人眼直接看到。
然而,许多电子设备都能感知和利用红外线的特性。
二、电视遥控器的工作原理1. 发射端电视遥控器的发射端包含了一个红外发射二极管(IR LED),它被用来发射红外线信号。
当我们按下遥控器上的按钮时,相应的按键电路会给红外发射二极管提供电流,使其发射脉冲的红外线信号。
2. 接收端电视机上的接收端包含了一个红外接收二极管(IR Receiver)。
当红外线信号到达接收端时,红外接收二极管会接收并将其转化为电信号。
然后,这些电信号经过一系列处理和解码,最终被传递给电视机的主板。
三、电视遥控器红外线信号编码为了实现不同按键对应不同功能的控制,电视遥控器需要将每个按键输入映射为特定的红外线编码。
这通常通过红外线编码器来实现。
红外线编码器将不同按键的信号转化为特定的红外线编码序列,以便电视机能够正确地识别并执行相应的操作。
常见的红外线编码协议包括NEC、RC-5、RC-6等,每个协议都有自己特定的编码格式和解码规则。
四、电视遥控器的应用除了在电视机上,电视遥控器的原理和技术也被广泛应用在其他电子设备上。
例如空调遥控器、音频设备遥控器、家电遥控器等。
这些设备通常采用类似的红外线原理,使用红外线信号进行通信和控制。
电视遥控器的优势在于它的方便性和灵活性。
通过遥控器,我们可以在不需要亲身接触电子设备的情况下,轻松控制它们的各种功能。
这极大地提高了我们的生活便利性。
总结:电视遥控器通过红外线技术实现了人机交互和设备控制。
发射端的红外发射二极管发射红外线信号,接收端的红外接收二极管接收并转化为电信号。
红外线编码器将按键信号编码为特定的红外线编码序列,以实现不同按键对应不同功能的控制。
红外遥控技术的研究与应用

红外遥控技术的研究与应用红外遥控技术现在已经广泛应用于人们的日常生活中。
无论是控制电视、空调、音响,还是玩具车、机器人,都需要红外遥控技术。
然而,红外遥控技术的发展一直在不断改进,许多领域的专家们也在为红外遥控技术的更好发展而努力着。
一、红外遥控技术的发展历程早在20世纪50年代,人们开始将红外技术应用于遥控领域,当时红外遥控技术主要用于电视控制。
随着科技的发展,红外技术的应用范围不断扩展,现在已经不仅仅是用于电视遥控,同时应用在了遥控车、航模、机器人等领域,并且可以实现在较远的距离内遥控物品。
二、红外遥控技术的原理红外遥控技术是通过红外发射器将控制信号通过空气传输到红外接收器,再由接收器将信号解码成电信号,最终转换成控制信号来控制被操作的设备。
一般情况下,红外遥控技术的信号频率在30kHz-60kHz之间,而在这个频率下人耳听不到。
三、红外遥控技术的应用1. 家庭用品现在的智能家居系统,都是使用红外遥控技术控制各种电器设备的。
而且智能家居可以集成语音识别、智能场景模式、协同控制等技术,使得控制更加便捷。
2. 汽车应用现在的汽车智能化越来越普及,红外遥控技术已经应用到了汽车中,用于打开车门、引擎启动等操作。
汽车智能系统集成了红外遥控技术,方便车主远程操控汽车。
3. 工业用途在一些工业环境中,红外遥控技术也被广泛应用。
例如,生产线上的机器人使用红外遥控技术来控制机械臂的移动和操作。
而且,由于红外信号传输不会受到电磁干扰等环境干扰,使得工业应用的效果更加稳定。
四、红外遥控技术发展的趋势红外遥控技术的发展趋势是便捷、高效、智能化、多模式的特性。
同时还可以集成其他的智能设备和新颖的控制模式。
另外,专家正在研究和开发无线、低功耗和远距离的红外遥控技术,以满足未来的市场需求。
红外遥控技术的不断发展,带来的不仅仅是更加便捷的生活方式,而且还推动各种智能化系统、物联网系统以及工业智能化系统的发展。
总之,红外遥控技术已经成为人们生活中的不可或缺的一部分,并且随着技术的不断迭代,将会有更多的使用场景出现。
电子红外线遥控器工作原理

电子红外线遥控器工作原理红外线遥控器是我们生活中常见的一种电子设备,它能够以无线方式控制电器设备的开关、模式选择等功能。
本文将详细介绍电子红外线遥控器的工作原理及其应用。
一、概述电子红外线遥控器是通过发射和接收红外线信号来实现控制的。
一般来说,遥控器由两部分组成:发射器和接收器。
发射器负责发射红外线信号,接收器则接收信号并解码后转化为相应的控制信号。
二、发射器部分发射器中的主要元件是红外发射二极管,其内部结构是PN结。
当二极管外加正向电压时,电流通过PN结时会产生光。
这种光被称为红外线,它的波长在0.7微米至1000微米之间,我们所用的红外遥控器发射二极管主要发射波长为940纳米的红外线。
发射器通常由发射二极管和相关电路组成。
电路中的振荡器可以产生高频信号,通过驱动电路将高频信号加在二极管上。
二极管进行整流和调制等处理后,发射出经过编码的红外线信号。
三、接收器部分红外线遥控的接收器部分主要由红外接收二极管和解码器组成。
红外接收二极管是一种特殊的二极管,它只对特定波长的光敏感。
当遥控器发射的红外线照射到接收二极管上时,其内部PN结会发生电流变化。
解码器是接收器中的重要组成部分,它能够解析接收到的红外信号并按照特定的编码方式将其转化为相应的二进制码。
一般来说,红外遥控器采用脉冲宽度编码(PWM)或脉冲位置编码(PPM)来实现信号的传输与解码。
解码完成后,信号被转化为数字信号,用于控制电器设备的不同功能。
四、工作原理当我们按下遥控器上的按键时,发射器会发出编码后的红外信号。
该信号经过空气中的传播后,被接收器接收到。
接收器中的红外接收二极管会感应到信号,并将信号转化为电流变化。
经过解码器的解析和转换,最终得到用于控制设备的数字信号。
五、应用电子红外线遥控器广泛应用于家庭电器、音频设备等领域。
通过使用遥控器,我们可以方便地遥控电视、空调、音响等设备,实现开关、音量调节、模式选择等功能。
此外,红外线遥控技术还被应用于安防系统、自动门禁系统等领域。
红外遥控器软件解码及其应用

红外遥控器软件解码及其应用随着现代科技的不断发展,红外遥控器已经成为人们日常生活中的必备工具之一。
不过,很多人并不了解红外遥控器的工作原理以及它是如何通过软件解码来实现遥控效果的。
本文将详细介绍红外遥控器软件解码的相关知识,以及其在实际应用中的作用。
一、红外遥控器的工作原理首先,我们需要了解红外遥控器的工作原理。
简单来说,红外遥控器是一种利用红外线光谱来传输指令的设备,通过在发射端发送编码的红外信号,再在接收端解码后执行相应的指令。
通常,红外遥控器由发射部分与接收部分两个部分组成。
发射部分由红外LED发射器构成,它会通过红外发射现象来发送编码的红外信号。
在接收端,红外接收器则会接收到这些信号,并将其转换成电信号进行解码。
之后,解码器会解析出信号的编码含义,然后执行相应的指令。
这就是红外遥控器的基本工作原理。
二、红外遥控器软件解码的实现在红外遥控器的工作中,软件解码起到了重要的作用。
所谓软件解码,就是在终端设备中运行的一种程序,能够将遥控器发射的红外编码转换成可读的指令。
而这些指令就可以用于控制各种家电、设备等。
软件解码的实现主要有两种方式。
第一种是使用硬件解码器,这需要在终端设备上安装一个专门的硬件解码器,用于解析红外信号,并输出相应的指令。
第二种方法则是使用软件解码器,这需要在终端设备上安装一个软件程序,用于解析红外信号并输出指令。
在软件解码的实现中,最常见的是使用赛贝尔红外编解码库。
这个库已经成为了广泛使用的一种红外编解码方案。
它可以用于各种嵌入式设备、物联网设备、手机、电视机顶盒等多种应用场景中。
三、红外遥控器软件解码的应用目前,红外遥控器软件解码已广泛应用于各种智能家居、物联网设备、工控设备等领域。
下面列举一些具体的应用案例:1、智能家居:通过使用红外遥控器软件解码,可以实现对家中的各种电器、设备的遥控控制。
如电视、空调、照明设备等。
2、物联网设备:红外遥控器软件解码还可以用于物联网设备中,如智能家居中的智能门锁、智能家电等。
红外遥控工作原理

红外遥控工作原理红外遥控是一种利用红外线进行信号传输的遥控技术,它的应用范围非常广泛,例如电视、空调、音响等设备的遥控。
本文将介绍红外遥控的工作原理。
一、红外线的特性红外线是一种电磁辐射,它的频率范围位于可见光之下,但高于无线电波。
红外线具有一些独特的特性,这些特性使得红外线在遥控通信中具有优势。
1、可见光和红外线的关系可见光和红外线都是电磁波,但它们的波长和频率不同。
可见光的波长范围是400-700纳米,而红外线的波长范围是750-1000纳米。
由于波长不同,可见光和红外线在传输过程中的行为也不同。
可见光可以被物体反射,而红外线则能够穿透一些物体。
2、红外线的穿透性红外线的波长较长,因此它能够穿透一些物体,如玻璃、塑料等。
这种特性使得红外线在遥控通信中具有优势,因为遥控器和接收器之间的遮挡物不会影响遥控信号的传输。
3、红外线的安全性红外线不像可见光一样刺眼,因此使用红外线进行遥控通信不会对人的眼睛造成伤害。
此外,由于红外线的波长较长,它的能量较低,因此使用红外线进行遥控通信不会对其他电子设备产生干扰。
二、红外遥控的通信过程红外遥控的通信过程可以分为三个步骤:发送、传输和接收。
1、发送遥控器通过按下按钮等操作发出信号。
这个信号经过编码处理,然后通过红外发射器发射出去。
红外发射器将编码后的信号转化为红外光信号,通过空气传输到接收器。
2、传输在传输阶段,红外光信号通过空气传输到接收器。
由于红外线的波长较长,它的能量较低,因此在这个过程中不会受到其他电磁波的干扰。
3、接收接收器接收到红外光信号后,将其转化为电信号,并进行解码处理。
解码后的信号通过接口传递给被控制的设备,实现遥控操作。
三、总结红外遥控是一种利用红外线进行信号传输的遥控技术。
它的优势在于具有穿透性、安全性和抗干扰能力强等特点。
在遥控通信过程中,遥控器通过按下按钮等操作发出信号,并将信号编码为红外光信号进行传输。
接收器接收到信号后进行解码处理,并将解码后的信号传递给被控制的设备,实现遥控操作。
红外的原理和应用

红外的原理和应用一、红外的原理红外(Infrared Radiation)是指光谱中波长较长而频率较低的电磁波,其波长范围为0.74微米至1000微米。
红外辐射是由物体的热量产生的,并具有热辐射的特点。
红外辐射主要是通过物体的分子和原子之间的振动和旋转来传播的。
物体的温度越高,分子和原子的运动越剧烈,产生的红外辐射能量也越大。
红外辐射的主要特点是不可见、穿透性强、热量生成大、热量传递快。
二、红外的应用红外技术广泛应用于军事、安防、医疗、通信等领域,以下是红外应用的一些常见领域:1.红外测温技术红外测温技术利用物体自身的红外辐射热量来测量物体的温度。
该技术在工业生产、医疗、环境监测等领域有广泛应用。
如工业生产中的高温检测、医疗中测量人体温度等。
2.红外传感器红外传感器是一种能够感知红外辐射的传感器,可用于人体检测、安防监控、智能家居等领域。
通过感知人体的红外辐射,可以实现自动开关门窗、自动灯光等智能控制。
3.红外摄像机红外摄像机是一种能够拍摄红外光线的摄像机,可以在低光环境下拍摄清晰的黑白影像。
红外摄像机广泛应用于夜视监控、防盗系统等领域。
4.红外线遥控器红外线遥控器是一种使用红外辐射进行传输指令的遥控设备,如电视遥控器、空调遥控器等。
通过红外线遥控器,可以实现对各种家电设备的操控。
5.红外通信红外通信是一种利用红外辐射进行数据传输的通信方式,常被应用于近距离无线通信。
红外通信的特点是传输速度快,且不受干扰。
常见的红外通信应用有红外耳机、红外数据传输等。
6.红外天文观测红外天文观测是指利用红外辐射来观测宇宙中的天体。
由于红外辐射能够穿透尘埃和大气层,因此可以观测到隐藏在尘云中的天体,如星云、星际物质等。
7.红外热成像红外热成像是一种利用物体的红外辐射热量来生成热图的技术。
通过红外热成像,可以非接触地检测物体的温度分布,广泛应用于建筑检测、电力设备检修等领域。
以上仅是红外技术在一些常见领域的应用,随着科技的不断发展和创新,红外技术在更多领域将展现出更大的潜力和用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外线遥控接收器的作用是将接收到的红外线遥控信号,经过放大、解调和整形后输出 功能指令信号,送至微处理器进行识别和处理。 其实红外线接收头部分的功效可以简单归纳为消除发射时候的载波波形也不失真的还原 遥控器发射的指令,下面的图非常明确的显示了它的作用:
接收部分的红外接收管是一种光敏二极管。在实际应用中要给红外接收二极管加反向偏 压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得 较高的灵敏度。由于红外发光二极管的发射功率一般都较小并且需要长距离动作,所以 红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。 接收器的基本组成如下图所示,它是由一个红外线光电二极管、前置放大器与解调电路 IC及外围元件所组成。
关联:红外接收头的载波频率/多路控制的红外发射控制功能
红外接遥控的载波频率
1、为什么要有载波频率 红外遥控的部分使用最重要的是“红外”但是一般环境下红外的成分相当的普遍,最显著的例子就 是太阳光,太阳包含全波长范围的光线,红外的成分也是一个非常重要的组成部分;阴天的时候, 由于云层较厚,可见光无法穿透云层,但是红外的穿透能力较强,所以在阴天人们会感觉较热,这 就是因为红外较强的缘故,同样的例子还可以在黄昏时候感受到,黄昏时候可见光已经减弱,但是 红外的成分还是比较强;普通的照明灯来比较白炙灯的红外成分就大大高于日光灯。为了很好的减 少环境红外对使用产品的影响,就需要载波的定义。 另外经过载波的二次调制还可以提高发射效率,达到降低电源功耗的目的。 2、载波频率的确定 在制定遥控器(发射部分)的时候,接收头的载波频率已经由发射端的晶振/振荡部分和定时信号发 射器的分频部分确定下来了。在对晶振进行整数分频的时候一般分频系数选12。 举例说明: 最常见的38KHz载波频率,实际是由发射端455KHz的晶振在由12分频时候: 455/12=37.9KHz≈38KHz 最常见的40KHz载波频率,实际是由发射端480KHz的晶振在由12分频时候: 480/12=40KHz
红外遥控原理及应用
一、红外遥控漫谈
在讲红外遥控之前,首先讲一讲什么是红外线。我们知道,人的眼睛能看到的可见光 按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为 0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光波长还短的光叫紫外线,比 红光波长还长的光叫红外线。红外线遥控就是利用波长为0.76~1.5μm之间的近红外线 来传送控制信号的。 红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积 小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响 设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中, 在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效 地隔离电气干扰。
遥控器的基本组成如图所示。它主要由形成遥控信号的微处理器芯片、晶体振荡器、放大 晶体管、红外发光二极管以及键盘矩阵组成。
注解:微处理器芯片IC1内部的振荡器通过2、3脚与外部的振荡晶体X组成一个高频振荡器,产生高频振荡 信号。此信号送入定时信号发生器后进行分频产生正弦信号和定时脉冲信号。正弦信号送入编码调 制器作为载波信号;定时脉冲信号送致扫描信号发生器、键控输入编码器和指令编码器作为这些电 路的时间标准信号。IC1内部的扫描信号发生器产生五中不同时间的扫描脉冲信号,由5~9脚输出送 至键盘矩阵电路。当按下某一键时,相应于该功能按键的控制信号分别由10~14脚输入到键控编码 器,输出相应功能的数码信号。然后由指编码器输出指令码信号,经过调制器调制在载波信号上, 形成包含有功能信息的高频脉冲串,由17脚输出经过晶体管BG放大,推动红外线发光二极管D发射 出脉冲调制信号
二、红外遥控系统
常用的红外遥控系统一般分发射和接收两个部分。应用编/解码专用集成电路芯片来进行控 制操作,如下图所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包 括光、电转换放大器、解调、解码电路。
红外线遥控系统框图
发射部分的主要元件为红外发光二极管。它实际上是一只特殊的发光二极管;由于其内部 材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是 可见光。目前大量的使用的红外发光二极管发出的红外线波长为940nm左右。
多路控制的红外遥控系统
普通的家用遥控器实际上已经是多路控制红外遥控系统。 多路控制的红外发射部分一般有许多按键,代表不同的控制功能。当发射端按下某一按键时,相应 地接收端有不同地输出状态。接收端的输出状态大致可分为脉冲、电平、自锁、互锁、数据五种形式。 “脉冲” 输出是当按发射端按键时,接收端对应输出端输出一个“有效脉冲”。比如说跳台、音量调 节 等等; “电平” 输出是指发射端按下键时,接收端对应输出端输出“有效电平”消失。此处的“有效脉冲” 和“有效电 平”,可能是高、也可能是低,取决于相应输出脚的静态状况,如静态时为低,则“高”为有 效; 如静态时为高,则 “低”为有效。大多数情况下“高”为有效。比如字幕,语言等等; “自锁” 输出是指发射端每按一次某一个键,接收端对应输出端改变一次状态,即原来为高电平变为 低 电平,原来低电平变为高电平。此种输出适合用作电源开关、静音控制等。有时亦称这种输出 形式为“反相”。 “互锁” 输出是指多个输出互相清除,在同一时间内只有一个输出有效。电视机的选台就属此种情况, 其他如调光、调速、音响的输入选择等。 “数据” 输出是指把一些发射键编上号码,利用接收端的几个输出形成一个二进制数,来代表不同的 按 键输入。一般情况下,接收端除了几位数据输出外,还应有一位“数据有效”输出端,以便以 后适 时地来取数据。这种输出形式一般用于与单片机或微机接口。比如DVD的定时收看; 除以上输出形式外,还有“锁存”和“暂存”两种形式。所谓“锁存”输出是指对发射端每次发的 信号,接 收端对应输出予以“储存”,直至收到新的信号为止;“暂存”输出与上述介绍的“电平”输出类似。 当然这个部分主要是由解码后单片机部分来进行分析处理,遥控器发射端只是需要发出各个按键的
遥D接收到红外线光照射时,所产生的电流经过IC的7脚送入放大器形成信号电压。 ABLC(自动电平限制)电路用来限制输入到放大器信号的电平幅度,防止过载;IC的3脚外接 的LC谐振回路可以设置频率(为40KHz),可将一定频率误差范围之外的频率 (为30KHz~50KHz)范围以为的干扰信号滤除,提高高频信号的增益。放大后的高频信号经限 幅后进入峰值检波器,把已经调制的高频信号重新还原为指令信号,再经过整形放大后由IC的1 脚送入微处理器进行处理。
其他注意事项: 1、载波频率一般选用50%占空比,也有选1/3或者1/4的但是不建议选1/4因为载波太短, 功率就相对减弱很多~~容易收到干扰 2、遥控器选用红外线发射管由于用量大,功率要求低,常常离散性差异较大,直接导致遥 控距离有差异 3、遥控器故障 a)电源故障 当遥控器发生故障时,应该首先检查电源。一般遥控器都使用3V电源,用万用表测量 电压在2.2V以下时,应该更换新电池。如果更换电池后还不能正常工作,就是其它电 路的问题。 b)键盘矩阵电路故障 当发现一个或几个按键不能使用时,可以判断是键盘矩阵电路的问题。键盘是 由印刷 电路板和导电橡胶组成。如果它们之间接触不良,就会导致上述情况发生。 一般是有 灰尘杂物,清除时可用无水酒精进行清洗,凉干后使用。 c)微处理器集成电路故障 当集成电路内部发生故障时,内部的编码脉冲信号没有输出,这时可以用示波器测量 脉冲的输出端。一般故障多发生在微处理器外接的晶体振荡器。可用示波器测量出 450~500KHz的振荡波形。如果晶振损坏,微处理器是不会工作的。 d)驱动放大电路和红外线发光管故障 当发光管或驱动放大电路发生故障时,指令脉冲信号就无法发射。一般是放大管被击 穿或者发光管损坏。可以用万用表测量它们的好坏。 4、遥控部分设计时候还要充分考虑到周边干扰状况,做好结构部分的设计;