红外遥控原理

合集下载

红外遥控原理

红外遥控原理

红外遥控原理是一种常见的远程操作技术,它允许用户通过红外发射机(如遥控器)来控制电器,如电视机、机顶盒等。

这种技术最早是在20世纪20年代发明的,它使得人们可以在家里控制电器,而不必走到设备旁边来操作它们。

红外遥控原理就是利用红外线(Infrared,IR)来传输信号。

红外遥控系统一般由三部分组成:发射机、接收机和电路。

发射机可以是用于发射红外信号的遥控器,也可以是其他类似的设备,比如红外线手电筒等。

接收机是一种接收红外信号的电子器件,它的作用是接收发射机发出的红外信号,并将信号转换成电信号。

最后,电路部分则用于处理电信号,以控制电器。

红外遥控系统的工作原理是,发射机发出一系列编码的红外信号,接收机接收这些信号并将其转换成电信号,然后电路部分对电信号进行处理,从而控制电器的运行。

红外遥控技术具有许多优点,比如遥控器的体积小,操作方便,而且数据传输速度快,能够精确地控制电器,而且能够抗干扰。

综上所述,红外遥控原理是一种非常受欢迎的远程操作技术,它使用户可以通过遥控器或其他类似设备发射红外信号,从而控制电器运行。

红外遥控技术具有许多优点,能够提高用户的操作便利性,是一种实用的远程控制技术。

红外遥控器的工作原理

红外遥控器的工作原理

红外遥控器的工作原理
红外遥控器是一种常见的遥控设备,它与电视、空调、音响等家电设备配对使用。

红外遥控器的工作原理基于红外光信号的发送和接收。

红外遥控器由发送器和接收器两部分组成。

发送器内部有一个红外发射二极管,它能够将电能转换为红外光能并发射出去。

接收器内部则配备了一个红外接收二极管,它能够接收并转换红外光信号为电能。

当用户按下遥控器上的按钮时,发送器会将特定的红外编码信号发送出去。

这些红外编码信号代表了不同的功能,比如开关、音量控制等。

红外光信号在空气中传播,到达电器设备的红外接收器。

电器设备的红外接收器会捕捉到红外光信号,并将其转换为电信号。

接收器内部的电路会对红外编码信号进行解码,识别出用户所执行的操作。

然后,电器设备会根据接收到的指令进行相应的响应,比如打开电源、调节温度等。

红外遥控器通过红外光信号的发送和接收,实现了用户与电器设备之间的无线控制。

它的工作原理简单而高效,使得用户可以轻松地操控各类电器设备。

需要注意的是,不同品牌和型号的电器设备可能采用了不同的红外编码方式和协议。

因此,在选择红外遥控器时,要确保它与所需控制的电器设备兼容,否则可能无法正常使用。

红外遥控器工作原理

红外遥控器工作原理

红外遥控器工作原理
红外遥控器是一种常见的设备,它通过发送红外信号来控制电子设备。

红外遥控器的工作原理主要有以下几个步骤:
1. 按键操作:当用户按下红外遥控器上的按钮时,按键电路会感应到按键动作,并向电路板发送指令。

2.编码和调制:电路板接收到指令后,会将指令转化为数字信号,并对其进行编码和调制。

编码和调制的目的是将数字信号转换为适合传输的红外信号。

3. 发射红外信号:编码和调制之后,红外发射二极管会根据信号的高低电平产生相应的红外光波。

红外信号的频率通常在30kHz至60kHz之间。

4.传输和接收:红外信号在空中传输,当它接近被控制的电子设备时,设备上的红外接收器会接收到信号。

5.译码和解调:被控制的电子设备中的红外接收器会对接收到的红外信号进行译码和解调。

这些信号包含控制设备的指令。

6.设备响应:一旦接收到正确的红外指令,被控制的电子设备便会执行相应的操作,比如开启/关闭、音量调节或频道切换等。

红外遥控器的工作原理基于红外线技术,红外线属于电磁波的一种,其波长较长,无法被人眼所察觉。

通过以上的步骤,红
外遥控器能够将用户的指令通过红外信号传输到被控制的电子设备,从而实现远程控制的功能。

红外 遥控器 原理

红外 遥控器 原理

红外遥控器原理
红外遥控器是一种常见的无线遥控设备,用于控制电子设备,例如电视、音响、空调等。

它通过发送和接收红外光信号来实现远程控制。

红外遥控器的工作原理是利用红外光的特性和传输方式。

红外光是我们肉眼不可见的光谱范围,具有较高的能量和穿透力。

红外遥控器内部有一个红外发射器,它能够产生红外光信号,并且能够通过遥控器上的按键进行调节和控制。

当我们按下遥控器上的按钮时,按钮对应的电路会关闭,使得电流通过红外发射器。

然后红外发射器将电流转变为红外光信号,并通过红外发射器的透镜发射出去。

这个发射出的红外光信号携带着特定编码的数据,例如控制命令和设备标识等信息。

接收端的设备(例如电视机)上有一个红外接收器,通常位于前方或顶部的位置。

红外接收器接收到发射器发射的红外光信号后,将其转换为电信号,并通过电路进行解码。

解码后的信号可以被电子设备识别,并执行相应的操作。

红外遥控器的传输距离通常较短,约在10米左右。

这是因为
红外光的传输很容易受到环境的干扰,如障碍物、光照强度等因素都会影响信号的传输质量。

总的来说,红外遥控器通过红外光信号的发射和接收来实现远程控制功能。

它是一种简单方便的控制方式,广泛应用于家庭娱乐设备和其他电子设备中。

红外线遥控原理

红外线遥控原理

红外线遥控原理红外线遥控原理是指在无线电技术的基础上,利用红外线实现遥控的技术。

其原理是利用红外线发射器将遥控信号发送出去,而接收器则接收这些信号并将其解码成特定指令,从而实现对被控制设备的控制。

红外线遥控技术广泛应用于电视、音响、空调等电子设备中,因其操作简单、可靠性高,被消费者所青睐和广泛应用。

红外线遥控原理的实现需要两个主要组成部分:发射器和接收器。

发射器的作用是将遥控信号转换成高频率的红外线光信号,而接收器的作用则是将红外线信号解码成特定的指令,输出电信号,从而实现与被控制的设备进行通信以及控制。

发射器包括一个发射二极管、发射管、高频脉冲调制电路、电源电路及控制电路等。

当控制器发出遥控信号时,高频脉冲调制电路会将其转换成高频率的信号,然后通过发射管将其发送出去。

在实际使用中,为了增强发射距离和信号可靠性,发射器通常采用红外LED作为发射二极管。

接收器由一个接收二极管、解码电路、电源电路及控制电路等组成。

当发射器发送出高频红外光信号时,接收器的接收二极管将其接收,并将其转换成电信号。

解码电路则会将这些电信号解码成特定的指令,输出到执行器上,控制被控制设备的运转。

红外线遥控原理的优势在于其遥控信号的传输速度快、控制范围广、可靠性高,而且不会干扰其它设备,因此被广泛应用于家庭、办公室、医院等不同场所的电器设备中,为人们的生活带来了很大的方便和便利。

但是,红外线遥控技术也存在一些不足之处。

首先,其遥控距离有限,一般在5-10米之间,如果遥控距离过远,则会信号会变得较弱,出现控制不稳定的情况。

其次,由于红外线遥控信号无法穿透障碍物,因此在控制时必须确保设备之间没有遮挡物,否则信号无法发送。

此外,由于红外线遥控信号容易受到外界光线的干扰,因此在强烈光线照射下,遥控的稳定性也会受到一定的影响。

总之,红外线遥控原理是一种非常实用的技术,它为人们带来便利的同时也存在一些局限性。

不过,随着科技的不断发展和红外线遥控技术的不断改进,人们相信这项技术的优势将会不断得到发挥,为人们的生活带来更多的便利和快捷。

红外 遥控 原理

红外 遥控 原理

红外遥控原理
红外遥控原理是通过发射红外线信号来遥控设备的一种技术。

红外线是一种电磁波,其频率高于可见光,人眼无法直接看到。

通过使用红外发射器将电信号转换为红外光信号,然后使用红外接收器将红外光信号转换回电信号,实现设备的控制。

在红外遥控中,发射器通常由红外发光二极管组成。

当发射器接收到电信号时,它会驱动红外发光二极管产生红外光信号。

这些红外光信号具有特定的编码,可以指示不同的操作。

接收器通常由红外接收二极管和解码器组成。

红外接收二极管可以接收到发射器发出的红外光信号,并将其转换为电信号。

解码器会对接收到的电信号进行解码,将其转换为对应的操作指令。

解码器根据设定的协议,解析红外信号中的编码,以确定应该执行的操作。

在红外遥控中,发射器和接收器之间需要进行频道匹配,确保发射的红外信号能够被接收器正确解码。

此外,遥控设备通常具有不同的按键,每个按键对应着一种操作。

当用户按下按键时,发射器会发送相应的红外信号,接收器接收到信号后将其解码,并执行相应的操作。

红外遥控技术广泛应用于电视、空调、音响、家电等各种设备,为用户提供了方便的操作方式。

红外遥控原理简单而有效,因此被广泛采用。

红外遥控工作原理

红外遥控工作原理

红外遥控工作原理红外遥控是一种利用红外线进行信号传输的遥控技术,它的应用范围非常广泛,例如电视、空调、音响等设备的遥控。

本文将介绍红外遥控的工作原理。

一、红外线的特性红外线是一种电磁辐射,它的频率范围位于可见光之下,但高于无线电波。

红外线具有一些独特的特性,这些特性使得红外线在遥控通信中具有优势。

1、可见光和红外线的关系可见光和红外线都是电磁波,但它们的波长和频率不同。

可见光的波长范围是400-700纳米,而红外线的波长范围是750-1000纳米。

由于波长不同,可见光和红外线在传输过程中的行为也不同。

可见光可以被物体反射,而红外线则能够穿透一些物体。

2、红外线的穿透性红外线的波长较长,因此它能够穿透一些物体,如玻璃、塑料等。

这种特性使得红外线在遥控通信中具有优势,因为遥控器和接收器之间的遮挡物不会影响遥控信号的传输。

3、红外线的安全性红外线不像可见光一样刺眼,因此使用红外线进行遥控通信不会对人的眼睛造成伤害。

此外,由于红外线的波长较长,它的能量较低,因此使用红外线进行遥控通信不会对其他电子设备产生干扰。

二、红外遥控的通信过程红外遥控的通信过程可以分为三个步骤:发送、传输和接收。

1、发送遥控器通过按下按钮等操作发出信号。

这个信号经过编码处理,然后通过红外发射器发射出去。

红外发射器将编码后的信号转化为红外光信号,通过空气传输到接收器。

2、传输在传输阶段,红外光信号通过空气传输到接收器。

由于红外线的波长较长,它的能量较低,因此在这个过程中不会受到其他电磁波的干扰。

3、接收接收器接收到红外光信号后,将其转化为电信号,并进行解码处理。

解码后的信号通过接口传递给被控制的设备,实现遥控操作。

三、总结红外遥控是一种利用红外线进行信号传输的遥控技术。

它的优势在于具有穿透性、安全性和抗干扰能力强等特点。

在遥控通信过程中,遥控器通过按下按钮等操作发出信号,并将信号编码为红外光信号进行传输。

接收器接收到信号后进行解码处理,并将解码后的信号传递给被控制的设备,实现遥控操作。

红外线遥控器的工作原理

红外线遥控器的工作原理

红外线遥控器的工作原理红外线遥控器是我们日常生活中常见的一种电子设备,广泛应用于电视、空调、音响等家电产品中。

它通过发射和接收红外线信号来实现对家电的远程控制。

本文将详细介绍红外线遥控器的工作原理。

一、发射模块红外线遥控器中的发射模块是实现遥控功能的核心部件。

发射模块由红外发射二极管、驱动电路和控制芯片组成。

1. 红外发射二极管:红外发射二极管是一种半导体器件,可以在电流通过的作用下发射红外线信号。

它的发射频率通常在30kHz至60kHz之间,能够覆盖红外光谱中的红外区域。

2. 驱动电路:驱动电路是指红外发射二极管的电流驱动电路,通过对发射二极管施加适当的电压和电流,使其工作在合适的发射频率范围内。

驱动电路中通常包含晶振、稳压电路和功率放大电路等。

3. 控制芯片:控制芯片是红外线遥控器的主控部分,它负责解析遥控器按键的输入信号,并将相应的红外指令发送给发射模块。

控制芯片内部存储有遥控器所支持的不同设备的红外指令码,通过按键输入和红外指令码的匹配,控制芯片能够实现对家电设备的具体操作。

二、接收模块红外线遥控器的接收模块用于接收远程发送的红外信号,并将其解码成对应的指令。

接收模块一般由红外接收二极管、解码电路和传输电路组成。

1. 红外接收二极管:红外接收二极管是一种特殊的光电传感器,它能够接收红外线信号,并将其转换成电信号输出给解码电路。

红外接收二极管的特点是只能接收特定频率范围内的红外信号,因此能够过滤掉其他频率的干扰信号。

2. 解码电路:解码电路是对接收到的红外信号进行解码和处理的电路部分。

接收到的红外信号首先经过滤波电路进行初步处理,去除可能存在的噪音和干扰信号。

然后进入解码电路,解码电路根据事先设定的解码协议和信号特征,将接收到的红外信号解析为具体的指令码。

3. 传输电路:传输电路负责将解码后的指令发送给被控设备,从而实现对设备的控制。

传输电路根据解码后的指令码,通过与被控设备的通信协议进行通信,将指令传输给被控设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外遥控系统原理及单片机解码实例
红外遥控系统原理及单片机解码实例
红外线遥控是目前使用最广泛的一种通信和遥控手段。

由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小
型电器装置上也纷纷采用红外线遥控。

工业设备中,在高压、辐射、有毒气体、粉尘等环境下,
采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。

1 红外遥控系统
通用红外遥控系统由发射和接收两大部分组成。

应用编/解码
专用集成电路芯片来进行控制操作,如图1所示。

发射部分包括键盘
矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、
解调、解码电路。

图1 红外线遥控系统框图
2 遥控发射器及其编码
遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理(一般家庭用的DVD、VC
D、音响都使用这种编码方式)。

当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。

这种遥控码具有以下特征:
采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;
以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。

图2 遥控码的“0”和“1” (注:所有波形为接收端的与发射相反)
上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。

然后再通过红外发射二极管产生红外线向空间发射,如图3所示。

图3 遥控信号编码波形图
UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。

该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。

UPD6121G最多额128种不同组合的编码。

遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。

一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。

图4 遥控连发信号波形
当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个引导码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。

如果键按下超过108ms仍未松开,接下来发射的代码(连发码)将仅由起始码(9ms)和结束码(2.25ms)组成。

图5 引导码图6连发码
3 遥控信号接收
接收电路可以使用一种集红外线接收和放大于一体的一体化红外线接收器,不需要任何外接元件,就能完成从红外线接收到输出与TTL电平信号兼容的所有工作,而体积和普通的塑封三极管大小一样,它适合于各种红外线遥控和红外线数据传输。

接收器对外只有3个引脚:Out、GND、Vcc与单片机接口非常方便,如图7所示。

图 7
① 脉冲信号输出接,直接接单片机的IO 口。

② GND接系统的地线(0V);
③ Vcc接系统的电源正极(+5V);
4 遥控信号的解码
下面是一个对51实验板配套的红外线遥控器的解码程序,它可以把红外遥控器每一个按键的键值读出来,并且通过实验板上P1口的8个LED显示出来,在解码成功的同时并且能发出“嘀嘀嘀”的提示音。

;=================================================
; 红外遥控接收
;=================================================
; 中山单片机学习网智佳科技逸风
;=================================================
ORG 0000H
MAIN:
JNB P2.2,IR ;遥控扫描
LJMP MAIN ;在正常无遥控信号时,一体化红外接收头输出是高电平,程序一直在循环。

;=================================================
; 解码程序
IR:
;以下对遥控信号的9000微秒的初始低电平信号的识别,波形见图5。

MOV R6,#10
IR_SB:
ACALL DELAY882 ;调用882微秒延时子程序
JB P2.2,IR_ERROR ;延时882微秒后判断P2.2脚是否出现高电平如果有就退出解码程序
DJNZ R6,IR_SB ;重复10次,目的是检测在8820微秒内如果出现高电平就退出解码程序
;识别连发码,和跳过4.5ma的高电平。

JNB P2.2, $ ;等待高电平避开9毫秒低电平引导脉冲
ACALL DELAY2400
JNB P2.2,IR_Rp ;这里为低电平,认为是连发码信号,见图6。

ACALL DELAY2400 ;延时4.74毫秒避开4.5毫秒的结果码
;以下32数据码的读取,0和1的识别请看图2
MOV R1,#1AH ;设定1AH为起始RAM区
MOV R2,#4
IR_4BYTE:
MOV R3,#8
IR_8BIT:
JNB P2.2,$ ;等待地址码第一位的高电平信号
LCALL DELAY882 ;高电平开始后用882微秒的时间尺去判断信号此时的高低电平状态
MOV C,P2.2 ;将P2.2引脚此时的电平状态0或1存入C中
JNC IR_8BIT_0 ;如果为0就跳转到IR_8BIT_0
LCALL DELAY1000
IR_8BIT_0:
MOV A,@R1 ;将R1中地址的给A
RRC A ;将C中的值0或1移入A中的最低位
MOV @R1,A ;将A中的数暂时存放在R1中
DJNZ R3,IR_8BIT ;接收地址码的高8位
INC R1 ;对R1中的值加1,换下一个RAM
DJNZ R2,IR_4BYTE ;接收完16位地址码和8位数据码和8位数据, ;存放在1AH/1BH/1CH/1DH的RAM中
;解码成功
JMP IR_GOTO
IR_Rp:
;这里为重复码执行处
;按住遥控按键时,每过108ms就到这里来
JMP IR_GOTO
IR_ERROR:
;错语退出
LJMP MAIN ;退出解码子程序
;=================================================
;遥控执行部份
IR_GOTO:
;这里还要判断1AH和1BH 两个系统码或用户码,用于识别不同的遥控器 ;MOV A,1AH
;CJNE A,#xxH,IR_ERROR ;用户码1不对则退出
;MOV A,1BH
;CJNE A,#xxH,IR_ERROR ;用户码2不对则退出
;判断两个数据码是否相反
MOV A,1CH
CPL A
CJNE A,1DH,IR_ERROR ;两个数据码不相反则退出
;遥控执行部份
;MOV A,1DH ;判断对应按键
;CJNE A,#xxH,$+6
;LJMP -à跳到对应按键执行处
;CJNE A,#xxH,$+6
;LJMP -à跳到对应按键执行处
;.
MOV P1,1DH ;将按键的键值通过P1口的8个LED显示出来! CLR P2.3 ;蜂鸣器鸣响-嘀嘀嘀-的声音,表示解码成功 LCALL DELAY2400
LCALL DELAY2400
LCALL DELAY2400
SETB P2.3 ;蜂鸣器停止
;清除遥控值使连按失效
MOV 1AH,#00H
MOV 1BH,#00H
MOV 1CH,#00H
MOV 1DH,#00H
LJMP MAIN
;================================================= ; 延时子程序
;=============================882
DELAY882: ;1.085x ((202x4)+5)=882
MOV R7,#202
DELAY882_A:
NOP
NOP
DJNZ R7,DELAY882_A
RET
;=============================1000
DELAY1000: ;1.085x ((229x4)+5)=999.285
MOV R7,#229
DELAY1000_A:
NOP
NOP
DJNZ R7,DELAY1000_A
RET
;=============================2400
DELAY2400: ;1.085x ((245x9)+5)=2397.85
MOV R7,#245
DELAY2400_A:
NOP
NOP
NOP
NOP
NOP
NOP
NOP
DJNZ R7,DELAY2400_A
RET。

相关文档
最新文档