北师版七年级数学《数轴知识》单元巩固与提高 知识讲解与练习
走进重高培优讲义北师大七年级上第3讲:数轴和绝对值(概况难点,题型新颖,能力提高,启迪思维)

第三讲:数轴和绝对值思维导图重难点分析重点分析:1.数轴的三要素:原点、正方向、单位长度。
2.理解有理数可以用数轴上的点表示,数轴上的点不一定表示有理数。
3.相反数:实数a与一a互为相反数,0的相反数仍是0.若a,b互为相反数,则a+b=0。
4.绝对值的几何意义:表示这个数所对应的点到原点的距离.0和正数的绝对值是它本身;负数的绝对值是它的相反数。
5.比较有理数大小的两种基本方法:(1)几何法,即利用数轴比较大小,数轴上不同的两个点表示的数,右边的点表示的数总比左边的点表示的数大;(2)代数法,即运用法则比较大小,正数都大于0,负数都小于0,正数一定大于负数,两个负数比较大小,绝对值大的反而小。
难点分析:1.数轴涉及数和形两个方面,是解决许多数学问题的重要工具。
2.绝对值具有非负性,去绝对值问题往往会涉及较复杂的符号问题。
例6:如图一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合。
(1)若将木棒沿数轴向右水平移动,则当它的左端移动到B点时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为5(单位:cm),由此可得到木棒长为______cm.(2)由题(1)的启发,请你能借助“数轴”这个工具帮助小红解决下列问题:问题:一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要34年才出生;你若是我现在这么大,我已经116岁,是老寿星了,哈哈!”,请求出爷爷现在多少岁了?探究提升观察下列每对数在数轴上的对应点间的距离4与−2,3与5,−2与−6,−4与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:______;(2)若数轴上的点A表示的数为x,点B表示的数为−1,则A与B两点间的距离可以表示为______;(3)结合数轴求得|x−2|+|x+3|的最小值为______,取得最小值时x的取值范围为______;(4)满足|x+1|+|x+4|>3的x的取值范围为______.拓展训练A 组1、如图,数轴上点A 所表示的数的相反数的倒数是( )。
北师大版七上数学2.2《数轴》知识点精讲

知识点总结数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
数轴:规定了原点.正方向和单位长度的直线.注意:⑴原点.正方向.单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变.⑶数轴的画法及常见错误分析①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点:③一般确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.2.数轴画法的常见错误举例:3.有理数与数轴的关系:1.一切有理数都可以用数轴上的点表示出来.2.在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.正数都大于0,负数都小于0,正数大于一切负数.注意:数轴上的点不都代表有理数,如π.4.利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数。
做一做(1)规定了______、______和______的______叫数轴。
(2)所有的有理数都能用数轴上的______来表示。
(3)数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。
北师大版七年级上册满分冲刺突破:数轴类动点问题综合(四) (1)

北师大版七年级上册满分冲刺突破:数轴类动点问题综合(四)1.【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=.(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB.【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度;(4)在图2中,点P、Q分别从点O、C位置同时出发,分别以每秒2个单位长度、每秒1个单位长度的速度向右匀速运动,运动时间为t秒,点P追上点Q时,停止运动,当P、C、Q三点中某一点为其余两点所构成线段的圆周率点时,请直接写出t的值.2.已知数轴上的A、B两点所对应的数分别为a、b.P为数轴上的一个动点.其中a,b满足(a﹣1)2+|b+5|=0,(1)若点P为AB的中点,求P点对应的数.(2)若点P从A点出发,以每秒2个单位的速度向左运动,t秒后,求P点所对应的数以及PB的距离.(3)若数轴上点M、N所对应的数为m、n,其中A为PM的中点,B为PN的中点,无论点P在何处,是否为一个定值?若是,求出定值;若不是,请说明理由.3.已知,数轴上有两点A、B对应的数分别为﹣1,5,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、B的距离相等,求点A、B的距离及x的值.(2)数轴上是否存在点P,使得点P到点A、B的距离之和最小?若存在,请求出最小值;并求出取得最小值时x可以取的整数值;若不存在,说明理由.(3)点A、B分别以3个单位长度/秒,2个单位长度/秒的速度向右运动,同时点P以4个单位长度/秒的速度从O点向左运动,当遇到A时,点P立即以不变的速度向右运动,当遇到B时,点P立即以不变的速度向左运动,并不停往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?4.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为40个单位长度?5.已知,如图A,B分别为数轴上的两点,点A对应的数是﹣18,点B对应的数为20.(1)请直接写出线段AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,在数轴上以3个单位/秒的速度向左运动.请解答下面问题:①试求出运动15秒时蚂蚁P到点A的距离.②直接写出运动多少秒时P到B的距离是P到A的距离的2倍,并直接写出P点所对应的数.6.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?7.已知数轴上两点A、B对应的数分别为﹣3、5,点P为数轴上一动点,且点P对应的数为x.(1)若点P到点A、点B的距离相等,则点P对应的数为.(2)数轴上是否存在点P,使点P到点A、点B的距离之和为10?若存在,请求出x 的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和1个单位长度/秒的速度同时向右运动,点P以3个单位长度/秒的速度同时从O点向左运动,当点A与点B之间的距离为2个单位长度时,求点P所对应的数是多少?8.[新定义]:A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的3倍,我们就称点C是[A,B]的幸运点.[特例感知](1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B的距离是1,那么点C是[A,B]的幸运点,①[B,A]的幸运点表示的数是;A.﹣1 B.0 C.1 D.2②试说明A是[C,E]的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则[M,N]的幸运点表示的数为.[拓展应用](3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.有一只电子蚂蚁P从点B出发,以5个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?9.【阅读理解】:A,B,C为数轴上三点,若点C到A的距离CA是点C到B的距离CB的2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离CA是2,到点B的距离CB是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离DA是1,到点B的距离DB是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.【知识运用】:(1)如图1,表示数和的点是(A,B)的好点;(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.①表示数的点是(M,N)的好点;②表示数的点是(N,M)的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动.当t为何值时,P、A 和B中恰有一个点为其余两点的好点?10.如图1,已知数轴上有三点A,B,C.点A,C对应的数分别是﹣40和20,点B是AC 的中点.(1)请直接写出点B对应的数:;(2)如图2,动点P,Q分别从A,C两点同时出发向左运动,点P,Q的速度分别为2个单位长度/秒,3个单位长度/秒,点E为线段PQ的中点.设运动的时间为t秒(t>0).①当t为何值时,点B与点E的距离是5个单位长度?②当点E在点A的右侧时,m▪AE+QC的值不随时间的变化而改变,请求出m的值.参考答案1.解:(1)∵AC=3,BC=πAC∴BC=3π∴AB=AC+BC=3π+3故答案为:3π+3.(2)∵BC=πAC∴当BD=AC时,有AD=πBD即点D是线段AB的圆周率点故答案为:=.(3)由题意可知,点C表示的数是π+1若点M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,则x+πx=π+1解得:x=1∴MN=π+1﹣1﹣1=π﹣1.(4)由题意可知,点P、C、Q所表示的数分别为:2t、π+1、π+1+t当P、C、Q三点中某一点为其余两点所构成线段的圆周率点时,有以下四种情况:①点P在点C左侧,PC=πCQ∴π+1﹣2t=πt解得:t=;②点P在点C左侧,πPC=CQ∴π(π+1﹣2t)=t解得:t=;③点P在点C、点Q之间,且πPC=PQ∴π(2t﹣π﹣1)=π+1+t﹣2t解得:t=④点P在点C、点Q之间,且PC=πPQ∴2t﹣π﹣1=π(π+1+t﹣2t)解得:t=.∴符合题意的t的值为:、、、.2.解:(1)由(a﹣1)2+|b+5|=0,∴a=1,b=﹣5,∴AB=6,∵点P为AB的中点,∴P点对应为﹣2;(2)P点t秒后运动距离2t,∴P点表示1﹣2t,PB=|1﹣2t+5|=|6﹣2t|=.(3)设P点表示的数为x,∵A为PM的中点,∴x=2﹣m,∵B为PN的中点,∴x=﹣10﹣n,∴2﹣m=﹣10﹣n,∴m﹣n=12,∵MN=|m﹣n|=12,∴==2,∴是一个定值,定值为2.3.解:(1)∵两点A、B对应的数分别为﹣1,5,∴点A、B的距离为:5﹣(﹣1)=6,∵点P到点A、点B的距离相等,∴x﹣(﹣1)=5﹣x,解得x=2;(2)当P点在A点左边时,PA+PB=PA+PA+AB=2PA+AB,当P点在A与B点之间(包括A点和B点)时,PA+PB=AB,当P点在B点右边时,PA+PB=AB+PB+PB=AB+2PB,∵2PA+AB>AB,2PB+AB>AB,∴数轴上存在点P,使点P到点A、点B的距离之和最小,其最小值为AB=6,此时点P在线段AB上,∴点P表示的数x的取值范围是﹣1≤x≤5,∴x可以取的整数值为﹣1,0,1,2,3,4,5;(3)设经过a秒钟点A与点B重合,根据题意得:3a=6+2a,解得a=6.6×4=24.答:点P所经过的总路程为24个单位长度.4.解:(1)M点对应的数是(100﹣20)÷2=40,答:点M所对应的数是40;(2)设t秒后相遇,由题意得:5t+3t=120,解得:t=15,所以点C对应的数为﹣20+3×15=25,答:C点对应的数是25;(3)设当它们运动x秒两只蚂蚁间的距离为40个单位长度,相遇前:5x﹣3x=120﹣40,解得:x=40,相遇后:5x﹣3x=120+40,解得:x=80,答:当它们运动40秒或80秒两只蚂蚁间的距离为40个单位长度.5.解:(1)∵点A对应的数是﹣18,点B对应的数为20,∴线段AB的中点M对应的数为=1;(2)①由题意可得:运动15秒时蚂蚁P到点A的距离=﹣18﹣(20﹣3×15)=7;②设经过x秒,P到B的距离是P到A的距离的2倍,当点P在AB之间时,3x=2(38﹣3x),解得:x=,∴P点所对应的数为20﹣3×=﹣.当点P在点A左侧时,3x=2(3x﹣38),解得:x=,∴P点所对应的数为20﹣3×=﹣56,综上所述:当运动s时,P点所对应的数为﹣,当运动s时,P点所对应的数为﹣56.6.解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3;点P返回过程中,由题意可得:3x﹣18+8+x+2=18或3x﹣18+8+x=18+2,解得:x=或;综上所述:当点P运动5或3秒或或时,点P和点Q相距2个单位长度.7.解:(1)依题意,得:5﹣x=x﹣(﹣3),解得:x=1.故答案为:1.(2)当x<﹣3时,﹣3﹣x+5﹣x=10,解得:x=﹣4;当﹣3≤x≤5时,x﹣(﹣3)+5﹣x=8≠10,不符合题意,舍去;当x>5时,x﹣5+x﹣(﹣3)=10,解得:x=6.答:数轴上存在点P,使点P到点A、点B的距离之和为10,x的值为﹣4或6.(3)当运动时间为t秒时,点A对应的数为2t﹣3,点B对应的数为t+5,点P对应的数为﹣3t,依题意,得:|2t﹣3﹣(t+5)|=2,即t﹣8=﹣2或t﹣8=2,解得:t=6或t=10.当t=6时,﹣3t=﹣18;当t=10时,﹣3t=﹣30.答:当点A与点B之间的距离为2个单位长度时,点P所对应的数是﹣18或﹣30.8.解:(1)①由题意可知,点0到B是到A点距离的3倍,即EA=1,EB=3,故选B.②由数轴可知,AC=3,AE=1,∴AC=3AE,∴A是【C,E】的幸运点.(2)设【M,N】的幸运点为P,T表示的数为p,∴PM=3PN,∴|p+2|=3|p﹣4|,∴p+2=3(p﹣4)或p+2=﹣3(p﹣4),∴p=7或p=2.5;故答案为7或2.5;(3)由题意可得,BP=5t,AP=60﹣5t,①当P是[A,B]的幸运点时,PA=3PB,∴60﹣5t=3×5t,∴t=3;②当P是[B,A]的幸运点时,PB=3PA,∴5t=3×(60﹣5t),∴t=9;③当A是[B,P]的幸运点时,AB=3PA,∴60=3×(60﹣5t),∴t=8;④当B是[A,P]的幸运点时,AB=3PB,∴60=3×5t,∴t=4;.∴t为3秒,9秒,8秒,4秒时,P、A、B中恰好有一个点为其余两点的幸运点.. 9.解:(1)设所求数为a,由题意得a﹣(﹣1)=2(a﹣2),或a﹣(﹣1)=2(2﹣a)解得:a=5或1,故答案为:5,1;(1)①设所求数为x,由题意得x﹣(﹣2)=2(4﹣x),或x﹣(﹣2)=2(x﹣4),解得:x=2或10;故答案为:2,10;②设所求数为x,由题意得2[(﹣2)﹣x]=4﹣x或2[x﹣(﹣2)]=4﹣x,解得:x=﹣8或0,故答案为:﹣8或0;(2)设点P表示的数为y,分四种情况:①P为(A,B)的好点.由题意,得(40﹣2t)﹣(﹣20)=2×2t,解得;t=10s②P为(B,A)的好点.由题意,得2[(40﹣2t)﹣(﹣20)]=2t,或2t=2[﹣20﹣(40﹣2t)]解得t=20s或60st=20÷10=2(秒);③B为(A,P)的好点,由题意得:40﹣(﹣20)=2×2t,解得t=15s,④B为(P,A)的好点,由题意得:2t=2[40﹣(﹣20)]t=60s,⑤A为(P,B)的好点,根据题意可得:2t﹣60=2×60,∴t=90⑥A为(B,P)的好点,60=2(60﹣2t)或60=2(2t﹣60),∴t=15或45综上可知,当t为10秒或20秒或60秒或15秒或90秒或45秒时,P、A和B中恰有一个点为其余两点的好点.10.解:(1)点B对应的数是﹣10;故答案为:﹣10(2)①PB=AB+AP=﹣10﹣(﹣40)+2t=30+2tPQ=20﹣(﹣40)+2t﹣3t=60﹣t,∵E是PQ的中点,∴PE=PQ=(60﹣t)=30﹣t当E在B的左侧时,BE=PB﹣PE=30+2t﹣(30﹣)=BE=t=5,∴t=2,当E在B的右侧时∴BE=PE﹣PB=30﹣t﹣(30+2t)=t∴BE=t=5,∴t=﹣2答:当t=2时,点B与点E的距离是5个单位长度.②依题意,得:AE=+40=30﹣t,QC=3t,∴mAE+QC=m(30﹣t)+3t=30m+(m+3)t,∵mAE+QC的值不随时间的变化而改变∴m+3=0,解得:m=;,答:当m=时,mAE+QC的值不随时间的变化而改变。
七年级数学上册2.2数轴教案+学案+练习北师大版

数轴学习目标1.掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。
2.理解相反数的意义及求法。
3.了解数轴的意义及画法。
学习过程1、前置准备:你会读温度计吗?完成课本43页最上面的读温度计的问题。
你能用直线上的点表示有理数吗?课题:数轴2、自主学习:认真阅读课本第43页至45页,完成下列问题(1)画一条水平直线,在直线上取一点C(叫做▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。
(2)如图,指出数轴上A.B.C各点表示的有理数,并用“〈”将它们连接起来:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
B C A-3 –2 –1 0 1 2 35的相反数是▁▁▁;▁▁▁▁的相反数是-3.5。
数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。
比较大小:-3▁▁▁5;0 ▁▁▁-4;-3 ▁▁▁2.5。
3、合作交流什么是数轴?怎样画数轴。
有理数与数轴上的点之间存在怎样的关系?什么是相反数?怎样求一个数的相反数?如何利用数轴比较有理数的大小?4、归纳总结:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
5、当堂训练:(1)下列说法正确的是()数轴上的点只能表示有理数一个数只能用数轴上的一个点表示在1和3之间只有2在数轴上离原点2个单位长度的点表示的数是2(2)语句:①-5是相反数、②-5与+3互为相反数③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0。
上述说法中正确的是()A.①②⑥B.②③⑤C.①④D.③④⑤⑥(3)大于-4而小于4的整数有▁▁▁▁▁▁。
(4)用“﹤”或“﹥”号填空①-5▁▁-7②0 ▁▁-2③0.01▁▁▁-0.1(5)写出下列各数的相反数3.4,-3,0,a,2a-3。
学习笔记1、我的收获:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
2、我的不足:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
北师大版七年级数学上册《2.2数轴》

北师大版七年级数学上册《2.2数轴》一. 教材分析北师大版七年级数学上册《2.2数轴》这一节的内容主要包括数轴的定义、特点、表示方法以及数轴上的距离和相反数等概念。
通过这一节的学习,使学生能够理解数轴的概念,掌握数轴的基本性质,能够利用数轴表示有理数,并能够解决一些与数轴相关的问题。
二. 学情分析学生在进入七年级之前,已经学习了有理数的概念和运算,对数有一定的认识。
但是,对于数轴这一概念,他们可能是初次接触,因此需要通过具体的生活实例和实际操作来帮助他们理解和掌握。
同时,学生可能对于数轴上的距离和相反数等概念有一定的困惑,需要老师进行详细的讲解和解释。
三. 说教学目标1.知识与技能目标:学生能够理解数轴的定义和特点,掌握数轴上的表示方法,能够利用数轴表示有理数。
2.过程与方法目标:通过实际操作和生活实例,学生能够理解数轴的概念,并能够解决一些与数轴相关的问题。
3.情感态度与价值观目标:学生能够体验数学与生活的紧密联系,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:数轴的定义、特点、表示方法以及数轴上的距离和相反数等概念。
2.教学难点:数轴上的距离和相反数的理解,以及如何利用数轴解决实际问题。
五. 说教学方法与手段1.教学方法:采用讲授法、演示法、实践法、讨论法等,通过教师的讲解和学生的实际操作,使学生能够理解和掌握数轴的概念和性质。
2.教学手段:利用多媒体课件、数轴模型、黑板等教学工具,帮助学生直观地理解和掌握数轴的知识。
六. 说教学过程1.导入:通过生活实例,如比较身高、赛跑等,引导学生思考如何用数学工具来表示和比较这些量,从而引入数轴的概念。
2.讲解:讲解数轴的定义、特点和表示方法,通过数轴模型和多媒体课件,使学生直观地理解数轴的结构和作用。
3.实践:让学生亲自动手画出数轴,并尝试表示一些有理数,通过实践加深对数轴的理解。
4.讨论:让学生分组讨论数轴上的距离和相反数等概念,教师进行指导和解答。
专题01 数轴的三种常见考法(解析版)-2024年常考压轴题攻略(7年级上册北师大版)

专题01数轴的三种常见考法【知识点精讲】1.数轴的概念1)数轴:用一条直线上的点表示数,这条直线叫作数轴2)三要素:①原点—参考点,正负数分界点;②方向—一般选取向右为正方向;③单位长度—同一条数轴上的单位长度应当一致2.数轴的读数与画法1)数轴的读数:在原点的左边,则为正数,在数轴的右边,则为负数。
2)画数轴步骤:a .直线b .确定原点c .选正方向(通常从原点向右或向上定位正方向)d .选取单位长度(选取适当长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示-1,-2,-3,…)e .标数(用实心点标数).3.数轴上的点与有理数之间的关系(数形结合)1)数轴上的点并不是都是有理数2)正方向可以不按照常规方向选取3)a >0,与原点的距离是a ,在数轴上可以是±a (存在多解的情况)注:要确定在数轴上的具体位置,必须要距离+方向4.数轴与数的大小1)正方向上,离原点越远,数越大2)负方向上,离原点越近,数越大(负数数字越大,结果反而越小)注:数轴从负方向向正方向,数值逐渐增大。
类型一、利用数轴比较大小例.已知有理数a ,b 在数轴上的位置如图所示,则下列结论中正确的是()A .0a b +>B .0a b ->C .10a ->D .10+>b 【答案】B 【详解】解:根据图示知:101b a <-<<<,10b ∴+<,0a b +<,0a b ->,10a -<.故选:B .【点睛】本题考查了数轴的知识以及不等式的基本性质,解题的关键是利用数形结合的思想得出a ,b 与1,1-的大小关系.A .4B .3【答案】B A .0ab >B .0a b ->A .a b b a a b -<<<+C .b a b a a b<+<<-D .a b b a a b+<<<-【答案】C 【分析】先根据点在数轴上的位置,判断出a 、b 、a b -、a b +的正负,然后再比较出a 、b 、a b -、a b +的大小,最后结合选项进行判断即可.【详解】解:∵0b a <<,a b >-,∴0a b ->,∴a b b ->,∴选项A 不符合题意;∵0b a a b <<>-,,∴0a b ->,∴a b b ->,∴选项B 不符合题意;∵0b a a b <<>-,,∴0a b +>,∴b a b a a b <+<<-,∴选项C 符合题意;∵0b a <<,a b >-,∴0a b +>,∴b a b a a b <+<<-,∴选项D 不符合题意.故选:C .【点睛】此题考查数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,掌握数形结合的数学思想是解题的关键.类型二、基本动点问题【详解】(1)OA=__________cm,OB=__________cm(2)A点表示的数是4、B点表示的数是6、C点表示的数是(3)∵C点坐标是4-,【变式训练2】如图,在数轴上点A 表示的有理数为4-,点B 表示的有理数为6,点P 从点A 出发以每秒2个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒2个单位长度的速度运动至点A 停止运动.设运动时间为t (单位:秒).(1)2t =时点P 表示的有理数为___________;(2)求点P 是AB 的中点时t 的值;(3)请直接写出点P 到点A 的距离(用含t 的代数式表示);(4)请直接写出点P 表示的有理数(用含t 的代数式表示).【答案】(1)0(2)2.5或7.5(3)2t 或(202)t -(4)162t-【分析】(1)当2t =时,点P 的路程与4-的和即为点表示的有理数;(2)求出AB 的长,分两种情况:由A 到B 方向运动时点P 是AB 的中点;由B 到A 方向运动时点P 是AB 的中点;(3)分两种情况:点P 由点A 到点B 的运动过程中,点P 到点A 的距离即点P 的运动路程;点P 由点B 到点A 的运动过程中,点P 到点A 的距离为2AB 与点P 运动路程的差;(4)分两种情况:点P 由点A 到点B 的运动过程中;点P 由点B 到点A 的运动过程中;由(3)的结果及两点间的距离即可求得点P 表示的有理数.【详解】(1)解:点P 表示的有理数为4220-+⨯=;故答案为:0;(2)解:6(4)10AB =--=,1025AP BP ∴==÷=,当由A 到B 方向运动时,52 2.5t =÷=,当由B 到A 方向运动时,(105)27.5t =+÷=.综上,点P 是AB 的中点时 2.5t =或7.5;(3)解:当点P 由点A 到点B 的运动过程中,点P 与点A 的距离AP 的长度为2t ;当点P 由点B 到点A 的运动过程中,点P 与点A 的距离为(202)t -;(4)解:在点P 由点A 到点B 的运动过程中,点P 表示的有理数是42t -+;在点P 由点B 到点A 的返回过程中,点P 表示的有理数是4(202)162t t -+-=-.【点睛】本题考查了数轴上动点问题,两点间距离,数轴上的点表示有理数等知识,注意数形结合.例1.在数轴上,到原点的距离等于5个单位长度的点所表示的数是________.【答案】5或5-【分析】根据数轴上两点间的距离的意义解答即可.【详解】解:设这个数为x ,则|0|5x -=,解得5x =±.故答案为:5或5-.【点睛】本题考查数轴上两点距离的意义,还可以根据相反数的特点解答,即在数轴上到原点的距离相等的点有两个,这两个点表示的数互为相反数.【变式训练1】数轴上A 、B 两点对应的数分别为18-和3-,P 为数轴上一点,若:3:2AP PB =,则点P 表示的数是________.【答案】9-或27【分析】分情况讨论,①当点P 在线段AB 上时,设点P 表示的数是x ,根据数轴上A 、B 两点对应的数分别为18-和3-得(18)18PA x x =--=+,3PB x =--,即可得(18)(3)32x x +--=∶∶;②当点P 在线段AB 延长线上时,设点P 表示的数是x ,根据数轴上A 、B 两点对应的数分别为18-和3-得(18)18PA x x =--=+,3PB x =+,即可得(18)(3)32x x ++=∶∶;分别计算并检验,即可得.【详解】解:①当点P 在线段AB 上时,设点P 表示的数是x ,∵数轴上A 、B 两点对应的数分别为18-和3-,∴(18)18PA x x =--=+,3PB x =--,∴(18)(3)32x x +--=∶∶23693x x+=--545x =-9x =-,经检验,9x =-符合题意;②当点P 在线段AB 延长线上时,设点P 表示的数是x ,∵数轴上A 、B 两点对应的数分别为18-和3-,∴(18)18PA x x =--=+,3PB x =+,∴(18)(3)32x x ++=∶∶23639x x +=+27x =,经检验,27x =符合题意;综上,点P 表示的数是9-或27,故答案为:9-或27.【点睛】本题考查了数轴上两点之间的距离,解题的关键是分情况讨论,正确计算.【变式训练2】在数轴上,点A 表示的数为15-,点M 以每秒3个单位长度的速度从点A 出发沿数轴向右运动经过________秒,点M 与原点O 的距离为6个单位长度.【答案】3或7【分析】根据题意可得出点M 在6-和6的时候与原点O 的距离为6个单位长度,然后利用路程除以速度即可得出时间.【详解】 点M 与原点O 的距离为6个单位长度,点A 表示的数为15-.M ∴在6-和6的时候与原点O 的距离都为6个单位长度.()6159∴---=,61521+=,933∴÷=,2137÷=,故答案为:3或7.【点睛】此题考查两点间的距离,数轴,解题关键在于得出点M 的位置.课后训练1.如图,有理数a ,b ,c ,d 在数轴上的对应点分别是A ,B ,C ,D ,若6b d +=,则a c +()A .b d+B .小于6C .等于6D .大于6【答案】D 【分析】由6b d +=,A 在D 的右边,C 在B 的右边,利用加数与和的关系可知a c +与6的大小关系.【详解】解:∵A 在D 的右边,C 在B 的右边,∴a d >,c b >,A .1-B .1A .向东行驶5个单位长度B .向西行驶单位长度D .向西行驶1个单位长度【答案】C A .a b >-B .0ab <A.1个B.2个【答案】<>【答案】2π1-【分析】由圆的周长为2π,再结合数轴上两点之间的距离可得答案.【答案】4或5或6【分析】由线段总长度及三条线段的长度之比,可得三条线段的长度,再分情况讨论即可.【详解】解:∵线段长为8,这三条线段的长度之比为1:1:。
北师大版七年级上册2.2《数轴》解答题专题

北师大版七年级上册 2.2《数轴》解答题专题一、解答题1. 在图所示的数轴上表示下列各数:0,1.5,3,,-1,并用“>”把这些数连接起来.2. 某水利勘测队,要对一东西走向的河流进行勘测,第一天沿河岸向上游行走 5.5 km,第二天又向上游行走 4.3km.第三天因计划有变,该勘测队开始向下游行走,第三天向下游行走4.8km,第四天又向下游行走 3.2km,你知道四天后,该勘测队在出发点的上游还是下游吗?距离出发点多远?3. 如图,一只蚂蚁从点O(原点)出发,它先向右爬了2个单位长度到达点A,再向右爬3个单位长度到达B,然后向左爬9个单位长度到达点 C.(1)写出A,B,C三点表示的数;(2)如果从点C再向右爬3个单位长度,请说出此时蚂蚁的具体位置.4. 画出数轴并找出表示下列各数的点.,,,,.5. 指出图中数轴上点分别表示的有理数.6. 如图,数轴上有三个点A,B,C,请回答:(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,这时点B所表示的数比点C所表示的数大多少?(4)怎样移动A,B,C中的两个点,才能使三个点表示的数相同?有几种移动方法?7. 数学课上老师让同学们进行画数轴比赛,甲、乙、丙、丁四位同学画出的数轴如图所示:请你当裁判,谁获胜了?8. 一条笔直的马路上,依次有5个卡通人,他们站立的位置在数轴上依次用点表示,如图:(1)点和所表示的有理数是什么?(2)点和间的距离为多少?(3)怎样移动点,使它先到达,再到达,请用文字说明;(4)若原点是一休息游乐所,则5个卡通人到休息游乐所的总路程为多少?9. 一点P从数轴上表示-2的点A开始移动,第一次先由点A向左移动1个单位长度,再向右移动2个单位长度;第二次先由点A向左移动2个单位长度,再向右移动4个单位长度;第三次先由点A向左移动3个单位长度,再向右移动6个单位长度;….(1)写出第一次移动后点P在数轴上表示的数;(2)写出第二次移动后点P在数轴上表示的数;(3)写出第三次移动后点P在数轴上表示的数;(4)写出按上述规律第n次移动后点P在数轴上表示的数.10. 已知A,B两点在数轴上的位置如图所示,设点对应的数分别为.(1)点C在什么位置时,?(2)点C在什么位置时,?(3)点C在什么位置时,?(4)点C在什么位置时,?11. 老师不小心把一瓶墨水洒在了如图1的数轴上,你能帮助老师把这条数轴补充完整吗?并在补好的数轴上标出你喜欢的一个正整数、一个正分数、一个负分数、一个负整数.12. 如图,一只蚂蚁从原点O出发,它先向右爬2个单位长度到达点A,再向右爬3个单位长度到达点B,然后向左爬9个单位长度到达点 C.(1)写出A,B,C三点表示的数.(2)如果从点C再向右爬3个单位长度,请问:此时蚂蚁在什么位置?13. 如图,在数轴上有A,B,C三个点,请回答:(1)将A点向右移动3个单位长度,点C向左移动5个单位长度,它们各自表示什么数?(2)移动A,B,C中的两个点,使得三个点表示的数相同,有几种移动方法?14. 某人从A地向东走10米到达B地,然后向西走4米到达C地,又向东走7米到达D地,问此人现在在A地的哪个方向?距A地多远?15. 比较与的大小.16. 观察图中的5个图形,指出哪条数轴正确,错误的错在哪里.17. 如图,指出数轴上A,B,C,D,E各点分别表示什么数.18. 小林家、晓颖家与新华书店在一条东西走向的公路的同一侧,小林家(点A)在新华书店(点O)西边 2 km处,晓颖家(点B)在距离新华书店 4 km处.(1)以新华书店为原点,向东的方向为正方向,1 km为单位长度,在数轴上表示出小林家、晓颖家及新华书店的位置;(2)根据所画的数轴说说晓颖家位于小林家什么方向及晓颖家距离小林家多少千米.19. 如图,有一根木棒在数轴上水平移动,当A点移动到B点时,B点所表示的数为20;当B点移动到A点时,A点所表示的数为5(单位:cm),由此可得木棒的长为多少厘米?20. 李老师从拉面的制作过程受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段AB,对折后(点A与B重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段AB上的,均变成,变成1).那么在线段AB上(除A,B)的点中,在第二次操作后,求恰好被拉到与1重合的点所表示的数之和.21. 一天,小红去问曾当过数学老师,现在退休在家的邻居爷爷的年龄,爷爷说:“我若是你现在这么大,你还要37年才出生呢;你若是我现在这么大,我已经是老寿星了,131岁了,哈哈!”小红纳闷了,邻居爷爷到底是多少岁呢?现在你能借助于“数轴”这个工具解决这个问题吗?22. 如图,圆的周长为4个单位长度,在圆的四等分点处标上“四”“季”“平”“安”,先让“四”所对应的圆周上的点与数轴上的-1所对应的点重合,再让圆在数轴上向右做无滑动滚动.(1)数轴上20所对应的点会与文字________所对应的圆周上的点重合;(2)数轴上的数2015所对应的点会与文字________所对应的圆周上的点重合.23. 在数轴上有三个点A,B,C分别表示-,0,1,按要求回答:(1)将A点向右移动4个单位长度后,三个点中哪个点表示的数最大?是多少?(2)将C点向左移动个单位长度后,三个点中哪个点表示的数最小?是多少?(3)怎样移动A,B,C中的两个点,才能使三个点表示的数相同,有几种方法?请写出一种.24. 已知数轴上有A和B两点,A,B之间的距离是1,点A与原点O的距离为3,那么所有满足条件的点B与原点O的距离之和是多少?25. 在一条“直”的流水线上有5个机器人,它们站立的位置在数轴上依次用点,,,,表示,如图.(1)怎样将点移动,使它先到达,再到达,请用文字语言说明;(2)若原点是零件的供应点,则5个机器人分别到达供应点取货的总路程是多少?(3)将零件的供应点设在何处,才能使5个机器人分别到达供应点取货的总路程最短?最短路程是多少?北师大版七年级上册 2.2《数轴》解答题专题参考答案1. 【答案】表示题中各数的点的位置如图所示:可以得到各数的大小关系为.2. 【答案】设出发点为原点,向上游走为正,每个单位长度表示,画出数轴,如图所示. 利用数轴分析得,四天后,勘测队在出发点的上游,距离出发点 1.8 km.3.(1) 【答案】点A表示2,点B表示5,点C表示.(2) 【答案】蚂蚁在原点左边1个单位长度处.4. 【答案】如图所示.5. 【答案】点表示,点表示或-1.5,点表示或0.5,点表示3,点表示或4.5.6.(1) 【答案】将点B向左移动3个单位长度后,点B表示的数为-2-3=-5,而点A表示-4,点C表示3,故点B表示的数最小,是-5;(2) 【答案】将点A向右移动4个单位长度后,点A表示的数为-4+4=0,而点B表示-2,点C表示3,故点B表示的数最小,是-2;(3) 【答案】将点C向左移动6个单位长度后,点C表示的数为3-6=-3,而点B表示-2,点B所表示的数比点C所表示的数大1;(4) 【答案】共有三种移动方法:①点A向右移动2个单位长度,点C向左移动5个单位长度;②点A向右移动7个单位长度,点B向右移动5个单位长度;③点B向左移动2个单位长度,点C向左移动7个单位长度.7. 【答案】甲所画的数轴,方向不正确且单位长度不一致;乙所画的数轴,单位长度不一致;丙所画的数轴,-1,-2的位置颠倒了;只有丁所画的数轴正确,所以丁获胜了.8.(1) 【答案】,.(2) 【答案】7.(3) 【答案】先将点向左移动一个单位长度到达点,再向右移动8个单位长度到达点.(4) 【答案】17.5 3 2 2 5=17.9.(1) 【答案】第一次移动后点P在数轴上表示的数是-1;(2) 【答案】第二次移动后点P在数轴上表示的数是0;(3) 【答案】第三次移动后点P在数轴上表示的数是1;(4) 【答案】按照上述规律,第n次移动后点P在数轴上表示的数为n-2.10.(1) 【答案】点C在原点和A之间时,.(2) 【答案】点C在两点之间时,.(3) 【答案】点C在点左侧时,.(4) 【答案】点C在点的右侧时,.11. 【答案】画出完整的数轴,如图,-2与2之间的中点是原点.12.(1) 【答案】点A表示2,点B表示5,点C表示-4.(2) 【答案】蚂蚁在原点的左边1个单位长度,即-1的位置.13.(1) 【答案】移动后,点A表示0,点C表示-2.(2) 【答案】有三种移法:①点A不动,点B向左移动2个单位长度,点C向左移动6个单位长度;②点B不动,点A向右移动2个单位长度,点C向左移动4个单位长度;③点C不动,点A向右移动6个单位长度,点B向右移动4个单位长度.14. 【答案】设A地是原点,向东为正方向,以1米为一个单位长度,由图可知此人现在在A地的正东方向,距A地13米.15. 【答案】方法一(作差法):∵,∴,∴.方法二:∵,,又∵,∴,∴.16. 【答案】①错误,错在单位长度不一致,-1到0的距离应与0到1的距离相等.②错误,无原点.③错误,无正方向.④正确.⑤错误,数在负方向上的单位排列错误.17. 【答案】A表示的数是3,B表示的数是,C表示的数是0,D表示的数是-3,E表示的数是-4.18.(1) 【答案】以数轴的负方向表示西,小林家、晓颖家及新华书店的位置如图①②所示.(2) 【答案】如果晓颖家在新华书店西边,则她家位于小林家西边,距离小林家2km;如果晓颖家在新华书店东边,则她家位于小林家东边,距离小林家6km.19. 【答案】本题运用了数形结合的思想.由图知木棒的长的3倍是20-5=15(cm),则此木棒的长为15÷3=5cm.20. 【答案】第一次操作后,原线段AB上的,均变成.第二次操作后,恰好被拉到与1重合的点所表示的数是和,所以它们的和是 1.21. 【答案】如图所示,借助数轴,把小红与爷爷的年龄差看成木棒AB,小红像爷爷现在这么大时,看成A点移动到B点,此时B点所表示的数为131.爷爷像小红现在这么大时,看成B点移动到A点,此时A点所表示的数为-37.所以可知爷爷比小红大(131+37)÷3=56(岁),可知爷爷的年龄为131-56=75(岁).22.(1) 【答案】季【解析】刚开始圆位于-1所对应的点正上方,先将圆向右滚动到0所对应的点处,如图所示.,没有余数,所以数轴上的20所对应的点应与文字“季”所对应的圆周上的点重合.(2) 【答案】四【解析】的余数是3,所以数轴上2015所对应的点应与文字“四”所对应的圆周上的点重合.23.(1) 【答案】A点向右移动4个单位长度后表示的数是-,>1>0,所以A点表示的数最大,是.(2) 【答案】C点向左移动个单位长度后表示的数是1--,-<-<0,所以A点表示的数最小,是-.(3) 【答案】有三种方法,如将A点向右移动个单位长度,将B点向右移动1个单位长度.24. 【答案】因为点A与原点O的距离为3,所以点A所表示的数为3或-3.当点A表示的数为3时,因为A,B之间的距离是1,所以点B表示的数为4或2,所以点B到原点的距离分别是4,2;当点A表示的数为-3时,因为A,B之间的距离是1,所以点B表示的数为-4或-2,所以点B到原点的距离分别是4,2.所以,所有满足条件的点B与原点的距离之和为4+2+4+2=12.25.(1) 【答案】点先向左移动2个单位,再向右移动6个单位.(2) 【答案】,所以5个机器人分别到达供应点取货的总路程为12个单位.(3) 【答案】当数轴上只有两个点(机器人)时,供应点设在两点之间的任意位置都行,路程之和等于两点之间的距离,当有三个点(机器人)时,供应点设在中间的那一点处最合适,这样路程之和等于两端的点之间的距离.由此得到规律:当点数(机器人数)为奇数时,供应点应设在从左往右数第个点处的位置;当是偶数时,供应点应设在从左往右数第个点与第个点之间的位置,所以供应点设在处可使总路程最短,最短总路程为个单位.第11页共11页。
北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)重点题型巩固练习]
![北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)重点题型巩固练习]](https://img.taocdn.com/s3/m/4c4bc6ee76a20029bc642d03.png)
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】 一、选择题 1.(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D . 2. a b -与a 比较大小,必定为( ).A .a b a -<B .a b a ->C .a b a -≤D .这要取决于b 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =,||2n =,||m n n m -=-,则m n +的值是( ).A .-7B .-3C .-7或-3D .±7或±3 5.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”、“15cm”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x << 6. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、 D 对应的数分别是整数a,b,c,d ,且b-2a=9,那么数轴的原点对应点是 ( ).A .A 点B .B 点C .C 点D .D 点7.有理数a,b,c 的大小关系如图:则下列式子中一定成立的是( ).A .0a b c ++>B .a b c +<C .a c a c -=+D .b c c a ->- 8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( ).A .2004B .2006C .2008D .2010 二、填空题9.已知a 是有理数,有下列判断:①a 是正数;②-a 是负数;③a 与-a 必有一个是负数;④a 与-a 互为相反数,其中正确的有________个.10.(2015春•万州区期末)绝对值小于4,而不小于2的所有整数有 . 11.一种零件的尺寸在图纸上是0.050.027+-(单位:mm ),表示这种零件加工要求最大不超过________,最小不小于________. 12.(2016•巴中)|﹣0.3|的相反数等于 .13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0; 2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米.16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.(2016春•新泰市校级月考)计算: (1)24+(﹣22)﹣(+10)+(﹣13) (2)(﹣1.5)+4+2.75+(﹣5)(3)(﹣8)+(﹣7.5)+(﹣21)+(+3) (4)(﹣24)×(﹣++)18.(2015•燕山区一模)为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的运价为3公里以内10元;超出3公里后每公里2元;单程超过15公里,超过部分每公里3元.小周要到离家10公里的博物馆参观,若他往返都乘坐纯电动出租车,共需付车费多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b 的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议? 【答案与解析】 一、选择题 1.【答案】C.【解析】∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C . 2.【答案】 D 【解析】当b 为0时,a b a -=;当b 为正数时,a b a -<;当b 为负数时,a b a -> 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3- 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C【解析】由图可知:4b a -=,又29b a -=,所以5a =- 7.【答案】C【解析】由图可知:0a b c <<<,且c a c a -=-表示数轴上数a 对应点与数c 对应点之间的距离,此距离恰好等于数a 对应点到原点的距离与数c 对应点到远点的距离之和,所以选项C 正确.8.【答案】C 【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】1【解析】不论a 是正数、0、负数,a 与-a 都互为相反数,∴④正确. 10.【答案】±3,±2.【解析】结合数轴和绝对值的意义,得绝对值小于4而不小于2的所有整数±3,±2. 11.【答案】 7.05mm, 6.98mm【解析】7+0.05=7.05mm, 7-0.02=6.98mm. 12.【答案】-0.3【解析】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3. 故答案为:﹣0.3.13.【答案】>, >, >, < 【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】 10【解析】21-(-39)÷6×1=10(千米). 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+. 三、解答题 17.【解析】 解:(1)24+(﹣22)﹣(+10)+(﹣13)=24﹣22﹣10﹣13 =2﹣23 =﹣21; (2)(﹣1.5)+4+2.75+(﹣5)=﹣1.5﹣5.5+4.25+2.75=﹣7+7 =0;(3)(﹣8)+(﹣7.5)+(﹣21)+(+3)=﹣8﹣21﹣7.5+3.5 =﹣30﹣4=﹣34;(4)(﹣24)×(﹣++)=﹣24×(﹣)﹣24×﹣24×=16﹣18﹣2=﹣4. 18.【解析】解:由3<10<15,得到车费为2[10+2(10﹣3)]=48(元),则共付车费48元. 19.【解析】解:由1,a+b ,a 与0,ba,b 相同, 由ba得:分母有0a ≠,所以0a b += 又由三数互不相等,所以1b =,ba a=化简得:1a =-,1b =,0a b +=,1ab =-∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】 解:(1)10÷500≈0.02(克)答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供11388名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师版七年级数学单元讲解和提高练习知识全面设计合理含答案教师必备数轴知识讲解【学习目标】1.理解数轴的概念及三要素,能正确画出数轴;2.能用数轴上的点表示有理数,初步感受数形结合的思想方法;3.能利用数轴比较有理数的大小.【要点梳理】要点一、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.要点二、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…要点诠释:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.要点三、数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)一般地,在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】类型一、数轴的概念及画法1.如图所示是几位同学所画的数轴,其中正确的是( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4)【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.2.(2015•徐州校级模拟)一只蚂蚁沿数轴从点A向右直爬15个单位到达点B,点B表示的数为﹣2,则点A所表示的数为()A. 15B. 13C. -13D.-17【答案】D【解析】设点A所表示的数为x,x+15=﹣2,解得:x=﹣17,故选:D.【总结升华】本题考查的是数轴的知识,掌握数轴的概念和性质是解题的关键,点在数轴上的运动规律是向左减,向右加.举一反三:【变式】如图为北京地铁的部分线路.假设各站之间的距离相等且都表示为一个单位长.现以万寿路站为原点,向右的方向为正,那么木樨地站表示的数为________,古城站表示的数为________;如果改以古城站为原点,那么木樨地站表示的数变为________.【答案】3,-5,8类型二、利用数轴比较大小3.在数轴上表示2.5,0,34-,-1,-2.5,114,3有理数,并用“<”把它连接起来.【思路点拨】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小.【答案与解析】如图所示,点A、B、C、D、E、F、G分别表示有理数2.5,0,34-,-1,-2.5,114,3.由上图可得:312.5101 2.5344-<-<-<<<<【总结升华】注意数轴上整单位的点一般用细短线表示,而表示题目中的数的点,应画成实心的小圆点.举一反三:【变式1】(2014秋•埇桥区校级期中)有理数a、b在数轴上的位置如图所示,下列各式不成立的是()A .b ﹣a >0B .﹣b <0C .﹣a >﹣bD .﹣ab <0【答案】D【变式2】填空:大于763 且小于767的整数有______个; 比533小的非负整数是____________. 【答案】11;0,1,2,34.若p ,q 两数在数轴上的位置如下图所示,请用“<”或“>”填空.①p______q ; ②-p______0; ③-p______-q ; ④-p______q ;【答案】>;<;<;>【解析】根据相反数的几何意义,将p ,q ,-p ,-q 均表示在数轴上,如下图:然后再根据数轴上右边的数比左边的数大,及原点右边的点表示大于0的正数,而原点左边的点表示小于0的负数,可得上述答案.【总结升华】在数轴上表示的两个数,右边的数总比左边的数大.正数都大于0;负数都小于0;正数大于一切负数.【巩固练习】一、选择题1.如图所示的数轴中,画得正确的是( )2.下列说法正确的是( )A .数轴上一个点可以表示两个不同的有理数B .数轴上的两个不同的点表示同一个有理数C .有的有理数不能在数轴上表示出来D .任何一个有理数都可以在数轴上找到与它对应的唯一点3.(2014•衡阳一模)如图所示,在数轴上点A 表示的数可能是( )A .1.5 B.-1.5 C.-2.6 D.2.64.(2015•东城区二模)如图,数轴上有A ,B ,C ,D 四个点,其中到原点距离相等的两个点是( )A.点B与点DB. 点A与点CC. 点A与点DD. 点B与点C5.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这条数轴上任意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是( )A.2002或2003 B.2003或2004C.2004或2005 D.2005或20066.北京、纽约等5个城市的国际标准时间(单位:小时)可在数轴上表示如图若将两地国际标准时间的差简称为时差,则()A.首尔与纽约的时差为13小时B.首尔与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题7.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.8.数轴上到-3的距离等于2的数是________.9.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为.10.(2014秋•埇桥区校级期中)长为2个单元长度的木条放在数轴上,最多能覆盖个整数点.11.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是.(用含m,n的式子表示)12.已知-1<a<0<1<b,请按从小到大的顺序排列-1,-a,0,1,-b为__________.三、解答题13.把下列各数在数轴上表示出来,并用“>”号把它们连接起来.+2,0,1-32,-2,-1.5,112学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A、B、C、D的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?15.在数轴上有三个点A、B、C(如图).请回答:(1)写出数轴上距点B三个单位的点所表示的数;(2)将点C向左移动6个单位到达点D,用“<”号把A、B、D三点所表示的数连接起来;(3)怎样移动A、B、C中的两个点才能使三个点所表示的数相同(写出一种移动方法即可).【答案与解析】一、选择题1.【答案】B【解析】A错,没有正方向;B正确,满足数轴的三要素;C错,负数排列错误;D错,单位长度不统一.2.【答案】D【解析】A、B、C都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.3.【答案】C【解析】:∵点A位于﹣3和﹣2之间,∵点A表示的实数大于﹣3,小于﹣2.4.【答案】C.5.【答案】C【解析】若线段AB的端点与整数重合,则线段AB盖住2005个整点;若线段AB的端点不与整点重合,则线段AB盖住2004个整点.可以先从最基础的问题入手.如AB=2为基础进行分析,找规律,所以答案:C.6.【答案】B【解析】本题以“北京等5个城市的国际标准时间”为材料,编拟了一道与数轴有关的实际问题.从选项上分析可得:两个城市之间相距几个单位长度,两个点之间的距离即为时差.所以首尔与纽约的时差为14小时,首尔与多伦多的时差为13小时,北京与纽约的时差为13小时,北京与多伦多的时差为12小时,因此答案:B.二、填空题7.【答案】-3【解析】设点A表示的数是x.依题意,有x+7-4=0,解得x=-38.【答案】-5或-1【解析】若该数在-3的左边,这个数为-3-2=-5;若该数在-3右边,则该数为-3+2=-1;所以答案为:-5或-1.9.【答案】-5【解析】首先确定C点应在原点的左边即为负数,又点A与点B之间的距离为4,再由对成性得:点C表示的数为-5.10.【答案】3【解析】如图所示:长为2个单元长度的木条放在数轴上,最多能覆盖3个整数点.11.【答案】n-m【解析】∵n>0,m<0.∵它们之间的距离为:n-m12.【答案】-b<-1<0<-a<1三、解答题13.【解析】解:在数轴上表示出来如图所示.根据这些点在数轴上的排列顺序,从右至左分别用“>”连接为:+2>112>0>-1.5>-2>1-3214.【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.15.【解析】解:(1)因为点B所表示的数是-2,则距点B三个单位的点所表示的数有-2-3=-5,-2+3=1;(2)点C向左移动6个单位到达点D,则点D表示的数为-3,所以-4<-3<-2.(3)把A点向右移动2个单位,C点向左移动5个单位.(答案不唯一)。