实验二进程同步实验

合集下载

操作系统实验二实验报告

操作系统实验二实验报告

操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。

通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。

三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。

2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。

3、为新进程指定可执行文件的路径、命令行参数、进程属性等。

4、编写代码来等待新进程的结束,并获取其退出代码。

(二)进程同步实验1、设计一个生产者消费者问题的模型。

2、使用信号量来实现生产者和消费者进程之间的同步。

3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。

4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。

(三)进程通信实验1、选择使用管道来实现进程之间的通信。

2、创建一个匿名管道,父进程和子进程分别读写管道的两端。

3、父进程向管道写入数据,子进程从管道读取数据并进行处理。

四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。

通过观察进程的创建和执行过程,加深了对进程概念的理解。

(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。

分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。

(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。

数据能够准确地在进程之间传递,验证了管道通信的有效性。

五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。

通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。

(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。

进程同步:实验报告

进程同步:实验报告

进程同步:实验报告1.实验内容(进程的同步)(1) 阅读理解⽰例程序。

(2) 说明⽰例程序是否能适合解决 N 个⽣产者和 1 个消费者问题,并设计实验验证(3) 参照教材修改为 N 个⽣产者和 1 个消费者问题(4) 思考 N 个⽣产者和 M 个消费者问题的解决⽅案(不要求)(5) 利⽤信号量解决同步问题。

2.实验⽬的通过程序模拟及验证⽣产者消费者问题等经典问题,深⼊理解并发中的同步和互斥的概念3.实验原理(1)进程概念:(1.定义:程序的⼀次执⾏过程( 2.三种基本状态 :就绪状态,执⾏状态,阻塞状态(2)进程同步:(1.定义:并发进程在执⾏次序上的协调,以达到有效的资源共享和相互合作,使程序执⾏有可再现性。

( 2.两种形式的制约关系: (⼀:资源共享关系:进程间接制约,需互斥地访问临界资源。

)、(⼆:相互合作关系:进程直接制约)(3.临界资源:⼀次仅允许⼀个进程访问的资源,引起不可再现性是因为临界资源没有互斥访问。

(3)信号量:定义⼀个⽤于表⽰资源数⽬的整型量S,它与⼀般的整型量不同,除初始化外,仅能通过两个标准的原⼦操作 wait(S)和 signal(S)来访问,俗称 P,V操作。

通俗来讲就是⽤P 来访问资源后减去⼀个单位资源,⽤ V 操作来释放⼀个单位资源就是现有资源上加⼀个单位资源。

4.实验内容⼀:说明⽰例程序是否能适合解决 N 个⽣产者和 1 个消费者问题,并设计实验验证答:⽰例程序不能解决多个⽣产者和消费者的问题,它是解决单个消费者和⽣产者的。

如果可以就要修改代码,如“⼆”所说。

⼆:多个消费者和⽣产者的问题⽣产者 1 如上图所⽰:如果要解决多个⽣产者和消费者的问题:第⼀步:分析上图得出了两种关系,分别是异步和同步的关系第⼆步:异步关系的是⽣产者和⽣产者之间的,因为同⼀时刻只能有⼀个⽣产者访问缓冲区,所以我们就可以设置临界资源 .获得临界资源的⽣产者才能把产品放到缓冲区⾥第三步:同步关系有两个,⾸先是⽣产者和缓冲区之间,再是缓冲区和消费者之间。

进程同步实验报告

进程同步实验报告

一、实验目的1. 理解进程同步的概念和原理;2. 掌握进程同步的基本方法和机制;3. 学会使用信号量实现进程同步;4. 通过实验验证进程同步机制的有效性。

二、实验原理1. 进程同步:在多道程序设计中,进程的执行是并发的,但某些情况下需要保证多个进程按照一定的顺序执行,以避免出现数据不一致、死锁等问题。

进程同步是指通过某种机制,协调多个进程的执行顺序,保证它们能够正确、有效地共享资源。

2. 信号量:信号量是一种特殊的变量,用于实现进程同步。

信号量具有两个原子操作:P操作(wait)和V操作(signal)。

P操作用于申请资源,V操作用于释放资源。

3. 互斥锁:互斥锁是一种常见的进程同步机制,用于保证临界资源的互斥访问。

当一个进程进入临界区时,它会尝试获取互斥锁,如果锁已被其他进程获取,则该进程进入等待状态;当进程退出临界区时,它会释放互斥锁。

三、实验内容1. 实验环境:Linux操作系统,C语言编程环境。

2. 实验工具:gcc编译器、gdb调试器。

3. 实验步骤:(1)创建一个互斥锁,用于保护临界资源。

(2)编写两个进程,分别模拟对临界资源的访问。

(3)在进程访问临界资源前,使用P操作尝试获取互斥锁。

(4)在进程访问临界资源后,使用V操作释放互斥锁。

(5)编译并运行程序,观察进程执行情况。

四、实验结果与分析1. 实验结果:(1)在互斥锁的保护下,两个进程能够按照预期顺序访问临界资源。

(2)当其中一个进程正在访问临界资源时,另一个进程会进入等待状态。

(3)当进程访问临界资源完成后,它会释放互斥锁,允许其他进程访问。

2. 实验分析:(1)互斥锁能够有效地保护临界资源,避免数据不一致问题。

(2)信号量P操作和V操作保证了进程的同步,避免了死锁现象。

(3)通过实验验证了进程同步机制的有效性。

五、实验总结本次实验通过使用信号量和互斥锁,实现了进程同步。

实验结果表明,信号量和互斥锁能够有效地保证进程按照预期顺序执行,避免数据不一致和死锁等问题。

进程管理实验报告分析(3篇)

进程管理实验报告分析(3篇)

第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。

为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。

二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。

2. 进一步认识并发执行的实质。

3. 分析进程争用资源的现象,学习解决进程互斥的方法。

4. 了解Linux系统中进程通信的基本原理。

三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。

2. 修改程序,使每个进程循环显示一句话。

3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。

4. 分析利用软中断通信实现进程同步的机理。

四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。

在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。

实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。

2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。

实验结果显示,父进程和子进程的打印顺序仍然是随机的。

这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。

3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。

实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。

这表明signal()和kill()在进程控制方面具有重要作用。

4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。

操作系统实验报告

操作系统实验报告

操作系统实验报告实验项⽬⼆进程管理⼀、实验⽬的1.理解进程的概念,掌握⽗、⼦进程创建的⽅法。

2.认识和了解并发执⾏的实质,掌握进程的并发及同步操作。

⼆、实验内容1.编写⼀C语⾔程序,实现在程序运⾏时通过系统调⽤fork( )创建两个⼦进程,使⽗、⼦三进程并发执⾏,⽗亲进程执⾏时屏幕显⽰“I am father”,⼉⼦进程执⾏时屏幕显⽰“I am son”,⼥⼉进程执⾏时屏幕显⽰“I am daughter”。

2.多次连续反复运⾏这个程序,观察屏幕显⽰结果的顺序,直⾄出现不⼀样的情况为⽌。

记下这种情况,试简单分析其原因。

3.修改程序,在⽗、⼦进程中分别使⽤wait()、exit()等系统调⽤“实现”其同步推进,并获取⼦进程的ID号及结束状态值。

多次反复运⾏改进后的程序,观察并记录运⾏结果。

三、源程序及运⾏结果源程序1:#include#include#includeint main(int argc, char ** argv ){int pid=fork();if(pid < 0)printf("error!");else if( pid == 0 ){printf("I am son!\n");}else{int pid=fork();if (pid < 0)printf("error!");else if( pid == 0 ){printf(“I am daughter! \n");}elseprintf("I am father!\n");}sleep(1);return 0;}运⾏结果:源程序2:#include#include#includeint main(int argc, char ** argv ) {char *message;int n;int pid=fork();if(pid < 0)printf("error!");else if( pid == 0 ){message="I am daughter!"; pid=getpid();n=3;}else{int pid=fork();if (pid < 0)printf("error!");else if( pid == 0 ){message="I am son!";pid=getpid();n=3;}elsemessage="I am father!";n=3;}for(;n>0;n--){puts(message);sleep(1);}return 0;}运⾏结果:四、实验分析与总结1.实验内容1运⾏结果为什么⽆固定顺序,fork()函数创建进程是如何并发执⾏的。

进程同步:实验报告

进程同步:实验报告

1.实验内容(进程的同步)(1)阅读理解示例程序。

(2)说明示例程序是否能适合解决N个生产者和1个消费者问题,并设计实验验证(3) 参照教材修改为N个生产者和1个消费者问题(4) 思考N个生产者和M个消费者问题的解决方案(不要求)(5) 利用信号量解决同步问题。

2.实验目的通过程序模拟及验证生产者消费者问题等经典问题,深入理解并发中的同步和互斥的概念3.实验原理(1)进程概念:(1.定义:程序的一次执行过程(2.三种基本状态:就绪状态,执行状态,阻塞状态(2)进程同步:(1.定义:并发进程在执行次序上的协调,以达到有效的资源共享和相互合作,使程序执行有可再现性。

(2.两种形式的制约关系:(一:资源共享关系:进程间接制约,需互斥地访问临界资源。

)、(二:相互合作关系:进程直接制约)(3.临界资源:一次仅允许一个进程访问的资源,引起不可再现性是因为临界资源没有互斥访问。

(3)信号量:定义一个用于表示资源数目的整型量S,它与一般的整型量不同,除初始化外,仅能通过两个标准的原子操作wait(S)和signal(S)来访问,俗称P,V操作。

通俗来讲就是用P来访问资源后减去一个单位资源,用V操作来释放一个单位资源就是现有资源上加一个单位资源。

4.实验内容一:说明示例程序是否能适合解决N个生产者和1个消费者问题,并设计实验验证答:示例程序不能解决多个生产者和消费者的问题,它是解决单个消费者和生产者的。

如果可以就要修改代码,如“二”所说。

二:多个消费者和生产者的问题如上图所示:如果要解决多个生产者和消费者的问题:第一步:分析上图得出了两种关系,分别是异步和同步的关系第二步:异步关系的是生产者和生产者之间的,因为同一时刻只能有一个生产者访问缓冲区,所以我们就可以设置临界资源.获得临界资源的生产者才能把产品放到缓冲区里第三步:同步关系有两个,首先是生产者和缓冲区之间,再是缓冲区和消费者之间。

他们都满足一前一后的关系,即当缓冲区空间未满时,生产者才可以放产品;缓冲区不为空的时候才可以让消费者取出产品消费。

进程同步实验总结范文

进程同步实验总结范文

进程同步实验总结范文实验三:进程同步实验一、实验任务:(1)掌握操作系统的进程同步原理;(2)熟悉linu某的进程同步原语;(3)设计程序,实现经典进程同步问题。

二、实验原理:(1)P、V操作PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下:P(S):①将信号量S的值减1,即S=S-1;②如果S30,则该进程继续执行;否则该进程置为等待状态,排入等待队列。

V(S):①将信号量S的值加1,即S=S+1;②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。

(2)信号量信号量(emaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。

信号量的值与相应资源的使用情况有关。

当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。

注意,信号量的值仅能由PV操作来改变。

一般来说,信号量S30时,S表示可用资源的数量。

执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。

而执行一个V操作意味着释放一个单位资源,因此S的值加1;若S£0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。

(3)linu某的进程同步原语①wait();阻塞父进程,子进程执行;②#include<y/type.h>#include<y/ipc.h>key_tftok(char某pathname,charproj);它返回与路径pathname相对应的一个键值。

③intemget(key_tkey,intnem,intemflg)参数key是一个键值,由ftok获得,唯一标识一个信号灯集,用法与mgget()中的key相同;参数nem指定打开或者新创建的信号灯集中将包含信号灯的数目;emflg参数是一些标志位。

操作系统进程调度和进程同步实验要求

操作系统进程调度和进程同步实验要求

0711操作系统进程调度和进程同步实验要求实验内容:用线程模拟进程,实现进程调度和进程同步。

在任意操作系统中,用c、c++或者java 编写程序。

并且完成相应的实验报告。

实验要求:实验一:进程调度⑴ 主线程,创建子线程,保存子线程的虚拟PCB(参见恐龙书P74)、要求运行多少时间(可随机产生)、已经等待多少时间(初始化为0),优先级(可随机产生)等信息,并负责子线程的调度。

调度的基本时间单位为1 S。

⑵ 创建20个线程(可以只用一个线程函数,传递不同的参数即上述数据结构)分别实现FCFS调度、SJF调度、RR调度、优先级调度和多级队列调度,并且计算每个调度的平均等待时间。

其中,多级队列调度要求设计4个调度队列,每个队列5个线程,队列内部分别采用FCFS、SJF、RR和优先级调度。

时间片的长度可以随机生成为n S。

⑶ 对于每个子线程,在其运行期间,输出其占用的时间标号(例如,第3个线程占用了第10秒的CPU时间,输出为:“Thread 3: 10”,格式可自行设计)。

实验二:进程同步⑴ 模拟哲学家就餐问题:设置5个子线程模拟5个哲学家,设置5个互斥区为筷子。

⑵ 输出问题解决方法:在每个哲学家线程中输出其获得的筷子标号与时间(可以读取系统时间,或者自行设置时间标准),例如:哲学家2在第n秒获得筷子1,在第m秒获得筷子2。

实验报告要求:写明实验目的、实验设计步骤、实验结果、总结。

附录:windows线程基本操作以windows线程函数为例介绍线程基本操作,以下函数都必须包含windows.h头文。

如果想更深入地了解线程,请参见《c++编程艺术》等相关书籍。

线程创建函数:HANDLE CreateThread (LPSECURITY_ATTRIBUTES secAttr,SIZE_T stackSize,LPTHREAD_START_ROUTINE threadFunc,LPVOID param,DWORD flags,LPDWORD threadID);在此,secAttr是一个用来描述线程的安全属性的指针。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二进程同步
一、实验目的:
掌握基本的同步算法,理解经典进程同步问题的本质;学习使用Linux的进程同步机制,掌握相关API的使用方法;能利用信号量机制,采用多种同步算法实现不会发生死锁的哲学家进餐程序。

二、实验平台:
虚拟机:VMWare9以上
操作系统:以上
编辑器:Gedit | Vim
编译器:Gcc
三、实验内容:
(1)以哲学家进餐模型为依据,在Linux控制台环境下创建5个进程,用semget函数创建一个信号量集(5个信号量,初值为1),模拟哲学家的思考和进餐行为:每一位哲学家饥饿时,先拿起左手筷子,再拿起右手筷子;筷子是临界资源,为每一支筷子定义1个互斥信号量;想拿到筷子需要先对信号量做P操作,使用完释放筷子对信号量做V操作。

伪代码描述:
semaphore chopstick[5]={1,1,1,1,1};
•第i位哲学家的活动可描述为:
do{
printf("%d is thinking\n",i);
printf("%d is hungry\n",i);
wait(chopstick[i]); 当哲学家的左、右两只筷子均可用时,才允许他拿起筷子进餐;b.至多只允许有4位哲学家同时去拿左边的筷子,最终能保证至少有一位哲学家能够进餐;c.规定奇数号哲学家先拿起他左手的筷子,然后再拿起他右手的筷子,而偶数号哲学家则先拿起他右手的筷子,然后再拿起他左手的筷子。

方法a在示例程序中给出,请用方法b和c写出不会发生死锁的哲学家进餐程序。

(3)设计程序,实现生产者/消费者进程(线程)的同步与互斥。

在该程序中创建4个进程(或线程)模拟生产者和消费者,实现进程(线程)的同步与互斥。

实验结果:
使用a方法结果哲学家就餐问题
使用b方法解决哲学家就餐问题源码如下:
#include <>
#include <>
#include <>
#include <>
#include <>
#include <>
#include <>
#include <sys/>
#include <sys/>
#include <sys/>
#include <sys/>
#include <sys/>
union semun
{
int val;
struct semid_ds *buf; unsigned short *array;
struct seminfo *_buf;
};
#define ERR_EXIT(m) \
perror(m); \
exit(EXIT_FAILURE); \
} while(0)
like: \t", id, in);
buff[in] = 1;
print();
++in;
pthread_mutex_unlock(&mutex);
sem_post(&full_sem);
}
/* 消费者方法 */
void *prochase()
{
int id = ++prochase_id;
while(1)
{
like: \t", id, out);
buff[out] = 0;
print();
++out;
pthread_mutex_unlock(&mutex);
sem_post(&empty_sem);
}
}
int main()
{
pthread_t id1[N];
pthread_t id2[N];
int i;
int ret[N];
// 初始化同步信号量
int ini1 = sem_init(&empty_sem, 0, M);
int ini2 = sem_init(&full_sem, 0, 0);
if(ini1 && ini2 != 0)
{
printf("sem init failed \n");
exit(1);
}
//初始化互斥信号量
int ini3 = pthread_mutex_init(&mutex, NULL);
if(ini3 != 0)
{
printf("mutex init failed \n");
exit(1);
}
// 创建N个生产者线程
for(i = 0; i < N; i++)
{
ret[i] = pthread_create(&id1[i], NULL, product, (void *)(&i));
if(ret[i] != 0)
{
printf("product%d creation failed \n", i);
exit(1);
}
}
//创建N个消费者线程
for(i = 0; i < N; i++)
{
ret[i] = pthread_create(&id2[i], NULL, prochase, NULL);
if(ret[i] != 0)
{
printf("prochase%d creation failed \n", i);
exit(1);
}
}
//销毁线程
for(i = 0; i < N; i++)
{
pthread_join(id1[i],NULL);
pthread_join(id2[i],NULL);
}
exit(0);
}
执行结果:
实验总结
哲学家进餐的问题
是操作系统信号量同步的经典例题了。

这次我通过解决哲学家进餐的哲学问题从而对进程同步有一个更好的理解,解决这个问题书中给出了三种解决方法。

我在实验中也是用这三种方法去定义信号量解决死锁问题。

通过信号量的获取与wait操作去控制进餐,a方法是控制哲学家左右手都有筷子时才能进餐,b中则是通过互斥信号量的获取,若没有信号量便不能执行,而且只有四个哲学家能同时进餐也避免了死锁的出现。

c中是让奇数的哲学家先拿左筷子执行wait和signal操作,偶数号的虽然也执行该操作但是只能拿右筷子。

相关文档
最新文档