第五章桥梁抗震延性设计APPT课件

合集下载

桥梁工程抗震设计课件

桥梁工程抗震设计课件
5.5 桥梁抗震加固
• 桥梁加固技术主要可分为两大类,一种是传统的 针对缺陷构件通过加固提高其强度、变形能力的 加固技术;
• 另一种是减隔震技术,是通过整体降低地震对结 构构件的抗震需求使当前构件能够承担给定的地 震需求。
• 对于具体的桥梁加固,宜经过详细分析比较来决 定选取这两种方法的一种或二者结合的加固方法。
桥梁工程抗震设计
桥梁抗震加固参考以下规范 • 《公路桥梁加固设计规范》 • 《公路桥梁加固施工技术规范》
桥梁工程抗震设计
5.5.1 桥梁场地加固
• 危险的场地条件在地震作用下对任何桥梁结构都 会产生很大的力或相对位移。这样的场地条件包 括临近活动断层、不稳定的陡坡和可能液化的砂 土或淤泥砂土。
• 对于这些条件的加固技术措施是很少的,且很少 能够得到现场证实。
9 承台倾覆抗力的提高可通过扩大承台的平面尺寸、增加 抗拉桩(桩数)、直接锚固到地基或基岩等措施实现。
桥梁工程抗震设计
5.5.3 桥台加固
1 当桥台的破坏影响重要桥梁的使用功能时,宜考 虑对桥台进行加固。
• 桥台破坏很少导致桥梁结构倒塌的,除非是发生 液化破坏。桥台挡土的侧向移动可能影响桥梁的 使用功能,这对于特别重要的桥梁可能是不允许 的。
桥梁工程抗震设计
桥梁工程抗震设计
5.5.4 墩柱的加固
既有桥梁的钢筋混凝土桥墩、柱弯曲强度、延性变形能力 和剪切强度的抗震能力的加固可采用钢管外包加固方法、 复合材料加固方法、加大截面方法等一些加固技术进行。 • 钢管外包技术:最初是针对圆柱桥墩提出。采用两块半
圆形的钢管现场沿竖向接缝焊接,钢管内径比桥墩直径 略大,空隙中灌注添加微膨胀剂的水泥沙浆,钢管的下 端与承台顶面有3-5cm 的间隙,防止桥墩在地震作用下 弯曲时因钢管的受压而增加截面的弯曲强度。 • 钢管提供有效的被动约束应力,这种力来自于混凝土受 压而引起的膨胀受到钢管环向强度和刚度的限制。

延性设计教学课件PPT

延性设计教学课件PPT
左图为延性结构的荷载-位 延性结构的荷载-位移曲线 移曲线,延性结构即是能维
持承载能力而又具有较大塑 性变形能力的结构。
结构延性能力通常用顶点水 平位移延性比来衡量。
延性比定义:
μ=Δu/Δy
其中:Δy——结构屈服时的 顶点位移;
Δu——能维持承载能 力的最大顶点位移。
h
13
延性结构在结果中等烈度的地震作用后,加以修复任可以重新使1)在结构的竖向,应该重点提高楼房中可能出现塑性变形 集中的相对柔弱楼层的构件延性。
提高延性的重点楼层
(a)大底盘建筑;(b)框托墙结构体系
h
11
( 2 )在平面位置上,应该着重提高房屋周边转角处、平面 突变处以及复杂平面各翼相接处的构件延性。对于偏 心结构,应加大房屋周边特别是刚度较弱一端构件的延 性。
+ 必须指出的是,延性抗震在经济上的优势是以结 构出现一定程度的损坏为代价的。这也是延性抗 震设计的一个主要缺陷。
h
5
延性抗震设计方法简介
+ 要保证延性结构在大震下以延性的形式反应,能 够充分发挥延性构件的延性能力,就必须确保不 发生脆性的破坏模式(如剪切破坏),以及防止脆性 构件和不希望发生非弹性变形的构件发生破坏。 要达到这一目的,就要采用能力设计方法进行延 性抗震设计。这一方法,目前正逐渐为世界各国 的规范所接受。
样,地震造成结构倒塌的原因,在于它激起的反
复的弹塑性变形,超出了结构的滞回延性。因此,
如果通过设计,使结构具有能够适应大震弹塑性
变形的滞回延性,则结构在遭遇大地震时,尽管 可能严重损坏,但结构抗震设防的最低目标—— 免于倒塌破坏,却始终能得到保证。这种思想即 为延性抗震设计的基本思想。
h
4

桥梁抗震课件

桥梁抗震课件
地震灾害对人类社会和经济造成巨大的损失。除了人员伤亡 外,地震还会破坏基础设施、造成交通中断、通讯不畅等, 影响人们的生产和生活。
地震对桥梁的影响
桥梁在地震中的反应
桥梁在地震中会受到不同程度的震动和位移,如果桥梁设计不合理或抗震能力不足,就可能发生损坏或倒塌。
桥梁抗震设计
为了减轻地震对桥梁的影响,需要进行抗震设计。抗震设计需要考虑桥梁的结构形式、材料、基础等因素,采取 有效的抗震措施,如加强桥梁的支撑结构、设置减震装置等。同时,还需要进行抗震性能评估和抗震加固等工作 。
以提高桥梁的整体抗震性能。
新型抗震材料的应用
高性能混凝土
采用高强度、高韧性、高耐久性的混凝土材料, 提高桥梁的承载能力和延性。
复合材料
利用纤维增强复合材料(FRP)的轻质、高强和抗 疲劳性能,对桥梁进行加固和修复。
阻尼器
利用阻尼器的能量吸收和耗散能力,降低地震对 桥梁的冲击。
新型抗震结构的优势与挑战
பைடு நூலகம்地震的分类
根据不同的分类标准,地震可以分为不同的类型。如根据震源深度,地震可分 为浅源地震、中源地震和深源地震;根据成因,地震可分为构造地震、火山地 震、塌陷地震和人工地震等。
地震波的传播
地震波的传播方式
地震波主要通过三种方式传播: 横波、纵波和面波。横波和纵波 是地球内部传播的体波,面波则 是在地表传播的波。
抗震设计的优化策略
加强关键部位
对桥梁的关键部位如桥墩 、支座等采取加强措施, 提高其抗震能力。
设置减震装置
在桥梁结构中设置减震支 座、阻尼器等减震装置, 减小地震对桥梁的冲击。
优化施工方法
采用合理的施工方法和技 术,确保桥梁结构的整体 性和稳定性,提高其抗震 性能。

ch5 桥梁延性抗震设计解读

ch5 桥梁延性抗震设计解读

(a)
(b)M
(C)屈服
(d)极限状态
图 5.4 悬臂墩曲率分布
p l p (u y )
p p (l 0.5l p ) (u y )l p (l 0.5l p )
7 2019/2/25
桥梁抗震

y p y
1
p y
1 3( 1)
ty
y
单墩模型:结构的屈服位移和
极限位移分别对应于墩底截面到 达屈服曲率和极限曲率时。
假定只有桥墩发生非弹性变形:
ty y b f y b T r C y
C 1 T r b 1 y
(a)具有可变形的基础和弹性支座
0
5
10 15 20 25 30 35 40 45
40
墩顶横向位移(mm)
模型3
30 20
横向力(KN)
10 0 -10 -20 -30 -40 -45 -40 -35 -30 -25 -20 -15 -10 -5
·轴压比:20% ·含箍率:0.57% ·配筋率:1.54% ·砼强度:19.4
实测恢复力曲线
图5.3 柔性高墩与延性矮墩的比较
桥梁抗震
5.1.4 曲率延性系数与位移延性系数的关系
( x)dxdx
墩底截面刚刚屈服时
( x) y
x l
2 y 1 l 3 y
等效塑性铰长度 l p :假设在墩底附近存在一 个长度为 l p 的等塑性曲率段,在该段长度内截 面的塑性曲率等于墩底截面的最大塑性曲率
开裂点
y
u

图5.1 截面弯矩-曲率关系示意图
钢筋混凝土截面的屈服曲率:

桥梁抗震ppt课件

桥梁抗震ppt课件
3. 计算等效单自由度{系Fe统rr}的等c c效orr 刚度和等效粘滞阻尼比;
4. 利用反应谱方法计算结构特征力效应和特征位移效应-需求分析;
5. 进行需求/能力比计算,评估结构的抗震性能。
精品课件
32
单振型反应谱法
反应谱的概念
根据D’Alembert原理,单自由度振子的振动方程可以表示为:
上述振动方程的m 解(可g 以y 用) 杜cy 哈美k( y0 Duhay m e2 l)积y 分公2y式 来g 表示:
抗震设防标准制定原则
桥梁工程的抗震设防标准,即为如何确定“地震荷载”的 标准。荷载定得越大,即抗震设防标准要求越高,桥梁在 使用寿命期间为抗震设防需要投入的费用也越大。然而, 桥梁在使用寿命期间遭遇抗震设防标准所期望的地震总是 少数。这就是决策的矛盾点:一方面要求保证桥梁抗震安 全,另一方面又要适度投入抗震设防的费用,使投入费用 取得最好的效益 。
精品课件
33
单振型反应谱法
反应谱的概念
由于地震加速度是不规则的函数,上述积分公式难以直接求积, 一般要通过数值积分的办法来求得反应的时程曲线。对不同周期和阻 尼比的单自由度体系,在选定的地震加速度输入下,可以获得一系列
的相对位移y、相对速度 y 和绝对加速度 y 的反应时程曲线,并可从
中找到它们的最大值。以不同单自由度体系的周期Ti为横坐标,以不 同阻尼比C为参数.就能绘出最大相对位移、最大相对速度和最大绝对 加速度的谱曲线,分别称为相对位移反应谱、拟相对速度反应谱和拟 加速度反应谱(分别可简称为位移反应谱、速度反应谐和加速度反应谱), 并用符号记为SD、PSV和PSA,这三条反应谱曲线合起来简称为反应谱。
称为动力放大系数,其值可以直接由标准化反应谱曲线确定。上

桥梁结构抗震设计PPT120页

桥梁结构抗震设计PPT120页

图中的横坐标为结构自振周期T(以秒为单位)
根据设计反应谱计算的单质点地震作用为:
FE CiCzkhG CiCz1G(5 3)
kh | xg |max / g
G mg
| xg x* |max / | xg |max (5 4)
1 kh
式中,水平地震系数Kh和动力放大系数β的乘积即为 水平地震作用影响系数α1 (无量纲);
i 1
i 1
第i个质点的地震作用Fi为
Fi CiCzkH 11Gi Hi / H (5 10)
5.2
桥桥梁梁按按反反应应谱谱理理论论的的计计算算方方法法
四. 桥梁构件截面抗震验算--按反应谱方法
1、抗震荷载效应组合下截面验算设计表示式:
Sd b Rd
Sd Sd g Gk ; q Qdk ;
H≤12米时 整个结构采用 1 H>12米时 随结构高度而变,底面
1,墩台顶面及顶面以上 2 ;中间任一点处的 I 1 Hi / H0
式中H对于桥墩为墩顶面至基底(即基础底面)的高 度(以米计),对于桥台则自桥台道碴槽顶面至基底 的高度。
Hi为验算截面以上任一质量的重心至墩台底(即基础 底面)的高度(以米计)。
桥梁按反应谱理论的计算方法
表5—2 综合影响系数Cz
桥梁和墩、台类型
桥墩计算高度H (米)
H 10≤H< 20≤H<
<10 20
30
柔性 柱式桥墩、排架桩墩、薄 墩 壁桥墩

实体 墩
天然基础和沉井基础上实 体桥墩

多排桩基础上的桥墩
0.3 0
0.2 0
0.2 5
0.33 0.25 0.30
0.35 0.30 0.35

桥梁地震震害与抗震设计136页PPT

桥梁地震震害与抗震设计136页PPT
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭

第五讲桥梁抗震设计

第五讲桥梁抗震设计

落梁破坏
地震时桥墩受 到地震力的作 用,梁墩之间 产生相对错位, 导致桥面梁体 从墩顶下落
5.1 震害及其分析
1、上部结构震害
百花大桥 小半径曲线桥、桥墩刚度变化大
5.1 震害及其分析
1、上部结构震害
落梁破坏
美国1971年圣 费尔南多地震 中,依据1957 年的抗震规范 设计和建造的 桥梁桥面板严 重脱落,促使 美国抗震规范 全面修改。
从20 世纪70 年代后期起,延性概念在结构抗震设计中不断得到重 视。为了最大限度地避免地震动的不确定性,保证结构在大震下 能以延性的形式反应,新西兰学者提出了结构延性抗震设计中的 一个重要原理—能力设计原理。
基于能力设计原理的设计方法(能力设计法),在新西兰最先得 到了应用;其他国家也先后在各自的结构抗震设计规范中,采纳 应用了能力设计原理的一些基本概念。
各类公路桥梁抗震措施等级
地震基本烈度
6
7
8
9
桥梁分类 A
0.05g 0.1g 0.15g 0.2g
7
8
9
9
0.3g
0.4g
更高,专门研究
B
7
8
8
9
9
≥9
C
6
7
7
8
8
9
D
6
7
7
8
8
9
5.2 公路桥梁抗震设防要求
5.2.1 公路桥梁抗震设防措施等级
根据工程的重要性和修复(抢修)难易程度,将公路桥梁抗震设防划分为四个类别,对于A类、 B类、C类桥梁采用两水平设防、两阶段设计;D类桥梁采用一水平设防、一阶段设计。 第一阶段的抗震设计,采用弹性抗震设计; 第二阶段的抗震设计,采用延性抗震设计方法,并引入能力保护设计原则。 通过第一阶段的抗震设计,即对应E1地震作用的抗震设计,可达到和原规范基本相当的抗 震设防水平。 通过第二阶段的抗震设计,即对应E2地震作用的抗震设计,来保证结构具有足够的延性能 力,通过验算,确保结构的延性能力大于延性需求。通过引入能力保护设计原则.确保塑 性铰只在选定的位置出现,并且不出现剪切破坏等破坏模式。通过抗震构造措施设计,确 保结构具有足够的位移能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
从变形的角度看,地震造成结构损坏的原因,在 于它激起的变形超出了结构的弹性极限变形;同
样,地震造成结构倒塌的原因,在于它激起的反
复的弹塑性变形,超出了结构的滞回延性。因此,
如果通过设计,使结构具有能够适应大震弹塑性
变形的滞回延性,则结构在遭遇大地震时,尽管 可能严重损坏,但结构抗震设防的最低目标—— 免于倒塌破坏,却始终能得到保证。这种思想即 为延性抗震设计的基本思想。
从能量的观点看,结构延性抗震设计的基本原理, 是将结构部分构件设计成具有较好的滞回延性, 在预期的地震动作用下,通过延性构件发生的反 复弹塑性变形循环耗散掉大量的地震输入能量, 从而保证结构的抗震安全。
必须指出的是,延性抗震在经济上的优势是以结 构出现一定程度的损坏为代价的。这也是延性抗 震设计的一个主要缺陷。
5.1.2延性指标
在利用延性概念设计抗震结构时,首先必 须确定度量延性的量化指标,即延性指标。 最常用的延性指标为:曲率延性系数(简 称曲率延性)和位移延性系数(简称位移 延性)。
(1)曲率延性系数 (2)位移延性系数
曲率延性系数
钢筋混凝土延性构件的非弹性变形能力, 来自塑性铰区截面的塑性转动能力,因此 可以采用截面的曲率延性系数来反映。
第7章 桥梁延性抗震 设计
20世纪60年代,以纽马克(Newmark)为首的学者 基于结构的非线性地震反应研究,提出用“延性” 的概念来概括结构物超过弹性阶段后的抗震能力。 他们认为在抗震设计中,除了强度与刚度之外, 还必须重视加强结构延性。
另一方面,人们也从震害中认识到了结构的延性。 震害调查显示,在强烈的地震动作用下,按规范 进行抗震设计的结构很多情况下并不具备抵抗强 震的足够强度,但有些结构却没有倒塌,甚至没 有发生严重破坏。这些结构能够在地震中幸存, 是因为结构的初始强度能够基本维持,没有因非 弹性变形的加剧而过度下降,也即具有较好的延 性。
7.3延性抗震设计方法简介
5.2.1能力设计方法
采用能力设计方法一般分下面四步:
➢根据桥梁结构体系的受力特点以及结构的预期性 能要求,选择合适的延性构件。
5.2.2延性构件与能力保护构件的选择
地震力传力路径:主梁产生水平地震力通 过支承连接构件至盖梁以及桥墩,再到基 础,最终至地基。抗震设计中,一般要保 证传力路径不中断和保证震后桥梁的行车 功能。故:主梁、支座、盖梁和桥梁基础 一般作为能力保护构件。而长宽比比较大 的桥墩则设计为延性构件。
目前,抗震设计方法正在从传统的强度理
论向延性抗震理论过渡,大多数多地震国
家的桥梁抗震设计规范已采纳了延性抗震
理论。延性抗震理论不同于强度理论的是, 它是通过结构选定部位的塑性变形(形成塑 性铰)来抵抗地震作用的。利用选定部位的 塑性变形,不仅能消耗地震能量,还能延 长结构周期,从而减小地震反应。
5.1延性的基本概念
5.1.1延性的定义 通常定义为在初始强度没有明显退化情况下的非
弹性变形能力。它包括两个方面的能力,一是承 受较大的非弹性变形,同时强度没有明显下降的 能力;二是利用滞回特性吸收能量的能力。
从延性的本质来看,它反映了一种非弹性变形的 能力,即结构从屈服到破坏的后期变形能力,这 种能力能保证强度不会因为发生非弹性变形而急 剧下降。
5.2.3潜在塑性铰位置的选择
5.3延性构件的强度设计与验算
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
曲率延性系数定义为截面的极限曲率与屈 服曲率之比,即:
5.1.3延性、位移延性系数与变形能力
ቤተ መጻሕፍቲ ባይዱ
5.1.4曲率延性系数与位移延性系数的关 系
5.1.5桥梁结构的整体延性与局部延性的 关系
5.2桥梁延性抗震设计基本理论
地震之所以造成结构损坏甚至倒塌,在于 它激起的地震惯性力超过了结构的强度。 如果纯粹依靠强度来抵抗地震作用,无疑 会造成材料的巨大浪费。因此,在工程抗 震中,一般都希望利用结构和构件的延性 抗震,即利用塑性铰减小地震力,并耗散 能量。
相关文档
最新文档