椭圆综合测试题(含答案)

合集下载

(完整版)椭圆的简单性质练习题及答案

(完整版)椭圆的简单性质练习题及答案

椭圆一、选择题(本大题共10小题,每小题5分,共50分) 1.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线ca x 2=和定点F(c ,0)的距离之比为ac 的点的轨迹是椭圆C .到定点F(-c ,0)和定直线ca x 2-=的距离之比为ac (a >c>0)的点的轨迹 是左半个椭圆D .到定直线ca x 2=和定点F (c ,0)的距离之比为ca (a >c 〉0)的点的轨迹是椭圆2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x3.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.椭圆12222=+by a x 和k b y a x =+2222()0>k 具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ( )A .41B .22 C .42 D . 217.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( )A .516B .566C .875D .8778.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .109.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是 ( )A .25B .27C .3D .410.过点M (-2,0)的直线m 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为 ( )A .2 B .-2 C .21 D .-21 二、填空题(本题共4小题,每小题6分,共24分) 11.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ 。

椭圆综合测试题含答案

椭圆综合测试题含答案

椭圆综合测试题含答案题目一已知椭圆的长轴长为12cm,短轴长为8cm。

求椭圆的周长和面积。

解答一椭圆的周长计算公式为:周长= π * (a + b)其中,a和b分别表示椭圆的长轴和短轴长。

将已知数据代入公式进行计算:周长= π * (12 + 8)≈ 3.1416 * 20≈ 62.832cm椭圆的面积计算公式为:面积= π * a * b将已知数据代入公式进行计算:面积= π * 12 * 8≈ 3.1416 * 96≈ 301.592cm²因此,椭圆的周长约为62.832cm,面积约为301.592cm²。

题目二已知椭圆的焦点到准线的距离为3cm,椭圆的长轴长为10cm。

求椭圆的短轴长。

解答二根据椭圆的定义,焦点到准线的距离与长轴、短轴的关系满足以下公式:c² = a² - b²其中,c表示焦点到准线的距离,a和b分别表示椭圆的长轴和短轴长。

将已知数据代入公式进行计算:3² = 10² - b²9 = 100 - b²b² = 100 - 9b² = 91b ≈ √91b ≈ 9.54cm因此,椭圆的短轴长约为9.54cm。

题目三已知椭圆的长轴长为16cm,短轴长为12cm。

求椭圆的离心率和焦距。

解答三根据椭圆的定义,离心率的计算公式为:离心率 = c / a其中,c表示焦点到准线的距离,a表示椭圆的长轴长。

焦距的计算公式为:焦距= √(a² - b²)将已知数据代入公式进行计算:离心率 = c / a = 0.8焦距= √(16² - 12²)= √(256 - 144)= √112≈ 10.583cm因此,椭圆的离心率约为0.8,焦距约为10.583cm。

以上就是关于椭圆综合测试题的解答,希望对您有所帮助!。

(完整版)椭圆练习题(含答案)

(完整版)椭圆练习题(含答案)

解析几何——椭圆精炼专题一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A . 22B . 2C . 2D . 16.已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( ) A .112814422=+y x 或114412822=+y x B . 14622=+y x C .1323622=+y x 或1363222=+y x D . 16422=+y x 或14622=+y x 7. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴8.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .89.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍B .5倍C .7倍D .3倍10.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.过点M (-2,0)的直线M 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2C .21 D .-21 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m +=的离心率为12,则m = . 14.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 . 15.直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .16.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 .三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.) 17.已知三角形ABC 的两顶点为(2,0),(2,0)B C ,它的周长为10,求顶点A 轨迹方程.18.椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.19.点P 到定点F (2,0)的距离和它到定直线x =8的距离的比为1:2,求点P 的轨迹方程,并指出轨迹是什么图形.20.中心在原点,一焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点横坐标是21,求此椭圆的方程.21.已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程22.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.(1)求2211b a +的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.椭圆练习题参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDDABD13、3或316 14、 4 , 1 15、5382 16、121425422=+yx17、3)(x 15922±≠=+y x 18、解:(1)当A (2,0)为长轴端点时,a =2 , b =1,椭圆的标准方程为: ;(2)当为短轴端点时,,,椭圆的标准方程为: ;19.解:设P (x ,y ),根据题意,|PF|=(x-2)2-y 2,d=|x-8|,因为|PF|d =12 ,所以 (x-2)2-y 2 |x-8| = 12 .化简,得3x 2+4y 2=48,整理,得x 216 +y 212=1,所以,点P 的轨迹是椭圆。

椭圆 经典题型练习 (精选题) 含答案

椭圆 经典题型练习 (精选题) 含答案

椭圆经典题型练习一.选择题(共13小题)1.设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆与直线bx+y=b2相切,则该椭圆的离心率为()A.B.C.D.2.已知方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)表示焦点在y轴上的椭圆,则实数m的取值范围为()A.(1,2)B.(2,3)C.(﹣∞,1)D.(3,+∞)3.已知椭圆的两个焦点分别为F1,F2,P是椭圆上一点,且∠F1PF2=60°,则△F1PF2的面积等于()A.B.C.6D.34.椭圆=1的左、右焦点分别为F1、F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2﹣y1|的值是()A.B.C.D.5.已知点M(﹣4,0),椭圆的左焦点为F,过F作直线l(l的斜率存在)交椭圆于A,B两点,若直线MF恰好平分∠AMB,则椭圆的离心率为()A.B.C.D.6.设椭圆(a>b>0)的一个焦点F(2,0)点A(﹣2,1)为椭圆E内一点,若椭圆E上存在一点P,使得|PA|+|PF|=8,则椭圆E的离心率的取值范围是()A.B.C.D.7.已知椭圆的左焦点为F1,离心率为,P是椭圆C上的动点,若点Q(1,1)在椭圆C内部,且|PF1|+|PQ|的最小值为3,则椭圆C的标准方程为()A.B.C.D.8.在平面直角坐标系xOy中,过椭圆C:=1(a>b>0)的右焦点F作x 轴的垂线,交C于点P,若=2,cos∠OPF=,则椭圆C的方程为()A.=1B.=1C.=1D.=1 9.设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则|AF|+|BF|的值是()A.2B.C.4D.10.设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则△AFB周长的取值范围是()A.(2,4)B.C.(6,8)D.(8,12)11.已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.椭圆的左右焦点分别为F1,F2,A为椭圆上一动点(异于左右顶点),若△AF1F2的周长为6且面积的最大值为,则椭圆的标准方程为()A.B.C.D.13.已知点A(0,0),B(2,0).若椭圆上存在点C,使得△ABC为等边三角形,则椭圆W的离心率是()A.B.C.D.二.填空题(共7小题)14.已知点P圆C:(x﹣4)2+y2=4上,点Q在椭圆上移动,则|PQ|的最大值为.15.已知点A在椭圆+y2=1上,且O、A、P三点共线(O是坐标原点),=24,则线段OP在x轴上的投影长度的最大值为16.直线y=kx+k与焦点在y轴上的椭圆+=1总有两个公共点,则实数m的取值范围是.17.过直线l:y=x+9上的一点P作一个长轴最短的椭圆,使其焦点为F1(﹣3,0),F2(3,0),则此椭圆的离心率为18.椭圆右焦点为F,存在直线y=t与椭圆C交于A,B 两点,使得△ABF为等腰直角三角形,则椭圆C的离心率e=.19.已知F1,F2是长轴长为4的椭圆的左右焦点,P是椭圆上一点,则△PF1F2面积的最大值为.20.已知点P(x,y)在椭圆上运动,则最小值是三.解答题(共10小题)1.已知F1,F2分别为椭圆+y2=1的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2.(Ⅰ)求△ABF2的周长;(Ⅱ)若AF2⊥BF2,求△ABF2的面积.2.已知p:实数m使得椭圆的离心率.(1)求实数m的取值范围;(2)若q:t≤m≤t+9,p是q的充分不必要条件,求实数t的取值范围.3.已知椭圆C:=1(a>b>0)的离心率为,短轴端点到焦点的距离为2.(1)求椭圆C的方程;(2)设A,B为椭圆C上任意两点,O为坐标原点,且OA⊥OB.求证:原点O 到直线AB的距离为定值,并求出该定值.4.已知椭圆C:+=1(a>b>0)的离心率为,F1,F2分别是其左、右焦点,P为椭圆C上任意一点,且|PF1|+|PF2|=4(1)求椭圆C的标准方程;(2)过F1作直线l与椭圆C交于A、B两点,点Q(m,0)在x轴上,连结QA、QB分别与直线x=﹣2交于点M、N,若MF1⊥NF1,求m的值.5.已知椭圆的离心率为且经过点.(1)求椭圆方程;(2)直线y=kx+m交椭圆于不同两点A,B,若,△OAB(O是坐标原点)的面积等于,求直线AB的方程.6.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2且离心率为,过左焦点F1的直线l与C交于A,B两点,△ABF2的周长为16.(1)求椭圆C的方程;(2)已知过点P(2,1)作弦且弦被P平分,则此弦所在的直线方程.7.设F1,F2分别是椭圆C:的左、右焦点,M是C上一点,且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率.(2)若直线MN在y轴上的截距为3,且|MN|=7|F1N|,求a,b.8.已知椭圆C:+=1(a>b>0)的离心率为,且C过点(1,).(1)求椭圆C的方程;(2)若斜率为k(k<0)的直线l与椭圆C交于P,Q两点,且直线OP,l,OQ 的斜率成等比数列,求k值.9.已知椭圆的焦点分别为F1(﹣2,0)、F2(2,0),长轴长为6,设直线x﹣y+2=0交椭圆于A,B两点,求线段AB的中点坐标.10.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的右焦点F(1,0),过F且垂直于x轴的弦长为3,直线l与圆(x﹣1)2+y2=1相切,且与椭圆C交于A,B两点,Q为椭圆的右顶点.(1)求椭圆C的方程;(2)用S1,S2分别表示△ABF和△ABQ的面积,求S1•S2的最大值.椭圆练习参考答案与试题解析一.选择题(共13小题)1.【解答】解:椭圆=1(a>b>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆x2+y2=c2,以F1F2为直径的圆与直线bx+y=b2相切,可得:,即a2﹣c2=ac,因为e=∈(0,1),所以e=.故选:C.2.【解答】解:方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m),即,方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)表示焦点在y 轴上的椭圆,可得m﹣1>3﹣m>0,解得2<m<3.故选:B.3.【解答】解:如图所示,椭圆,可得a=5,b=3,c==4.设|PF1|=m,|PF2|=n,则m+n=2a=10,在△F1PF2中,由余弦定理可得:(2c)2=m2+n2﹣2mncos60°,可得(m+n)2﹣3mn=6即102﹣3mn=64,解得mn=12.∴△F1PF2的面积S=mnsin60°==3.故选:B.4.【解答】解:由椭圆=1,可得a=5,b=4,c==3.如图所示,设△ABF2的内切圆的圆心为G.连接AG,BG,GF2.设内切圆的半径为r,则2πr=π,解得r=.则==•|F1F2|,∴4a=|y2﹣y1|×2c,∴|y2﹣y1|==.故选:D.5.【解答】解:设F(﹣c,0),A(x1,y1),B(x2,y2),直线AB的方程为y=k(x+2),代入椭圆方程,可得(b2+4k2)x2+8ck2x+4k2c2﹣4b2=0,即有x1+x2=﹣,x1x2=,由直线MF恰好平分∠AMB,可得k AM+k BM=0,即有+=0,可得k(x1+c)(x2+4)+k(x2+c)(x1+4)=0,化为2x1x2+(c+4)(x1+x2)+8c=0,可得2•+(c+4)•(﹣)+8c=0,化简可得c=1,则椭圆的离心率e==,故选:C.6.【解答】解:椭圆(a>b>0)的一个焦点F(2,0),另一个焦点为F'(﹣2,0),由椭圆的定义可得2a=|PF|+|PF'|,即|PF'|=2a﹣|PF|,可得|PA|﹣|PF'|=8﹣2a,由||PA|﹣|PF'||≤|AF'|=1,可得﹣1≤8﹣2a≤1,解得≤a≤,又c=2,可得e=∈[,],故选:A.7.【解答】解:如图所示,设右焦点为F2.|PF1|+|PQ|=2a﹣(|PF2|﹣|PQ|)≥2a﹣|QF2|=3,∴2a﹣=3,=a2=b2+c2,联立解得a=2,c=1,b2=3.∴椭圆C的标准方程为=1.故选:A.8.【解答】解:∵|OF|=c,PF⊥x轴,cos∠OPF=,∴sin∠OPF=,∴cos∠OPF=,|OP|===c,∵=2,∴|OP|•c•cos∠OPF=|OP|•c•=c•c•=2,解得c2=2,即c=∴|OP|=,∴|PF|=×=1,∴P(,1),∴+=1∵a2﹣b2=c2=2,∴a2=4,b2=2,∴+=1故选:B.9.【解答】解:如图,设F2是椭圆的右焦点,∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,∴AF=BF2.∴|AF|+|BF|=丨BF丨+丨BF2丨=2a=4,故选:C.10.【解答】解:∵椭圆的左焦点为F(﹣,0),右焦点F2(,0),直线l:y=kx(k≠0)与椭圆C交于A,B两点,连结BF2,则AF=BF2,AB=2OB,由一的定义可知:BF+BF2=2a=4,OB∈(1,2)则△AFB周长的取值范围是(6,8).故选:C.11.【解答】解:F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,可得椭圆的焦点坐标F2(c,0),所以P(c,c).可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e=.故选:D.12.【解答】解:由椭圆的定义可得2(a+c)=6,所以a+c=3①,当A在上(或下)顶点时,△AF1F2的面积取得最大值,即最大值为bc=②,由①②及a2=c2+b2联立求得a=2,b=,c=1,椭圆方程为+=1,故选:A.13.【解答】解:过点C做x轴垂线,垂足为D,根据正三角形性质可知D为A,B的中点,C坐标为(1,),C点的坐标代入椭圆方程得,解得m=6,所以椭圆的离心率为:=.故选:C.二.填空题(共7小题)14.【解答】解:∵点Q在椭圆上移动,∴可设Q(cosθ,2sinθ),由圆C:(x﹣4)2+y2=4,可得圆心C(4,0),半径r=2.∴|CQ|===≤5,当且仅当cosθ=﹣1时取等号.∴|PQ|的最大值=5+r=7.故答案为:7.15.【解答】解:∵O、A、P三点共线(O是坐标原点),=24,∴|OA|•|OP|=24,设OP与x轴夹角为θ,设A(x,y)在第一象限,B为点A 在x轴的投影,则OP在x轴上的投影长度为|OP|cosθ==24×=24×=24×≤24×=8.当且仅当x=时等号成立.则线段OP在x轴上的投影长度的最大值为8.故答案为:8.16.【解答】解:直线y=kx+k恒过(﹣1,0),直线与焦点在y轴上的椭圆+=1总有两个公共点,可得:解得m∈(1,4).故答案为:(1,4).17.【解答】解:设直线l上的占P(t,t+9),取F1(﹣3,0)关于l的对称点Q (﹣9,6),根据椭圆定义,2a=|PF1|+|PF2|=|PQ|+|PF2|≥|QF2|==6 ,当且仅当Q,P,F2共线,即,即=﹣时,上述不等式取等号,∴t=﹣5.∴P(﹣5,4),据c=3,a=3,离心率为:e==.故答案为:.18.【解答】解:要使△ABF为等腰直角三角形,则B(c,2c).,又a2=b2+c2,∴b2=2ac,⇒c2+2ac﹣a2=0,⇒e2+2e﹣1=0,且0<e<1,∴e=﹣1.故答案为:﹣1.19.【解答】解:F1,F2是长轴长为4的椭圆的左右焦点,a=2,b2+c2=4,P是椭圆上一点,△PF1F2面积的最大值时,P在椭圆的短轴的端点,此时三角形的面积最大,S=bc≤=2,当且仅当b=c时,三角形的面积最大.故答案为:2.20.【解答】解:根据题意,点P(x,y)在椭圆上运动,则有,变形可得:+=,变形可得x2+2(y2+1)=5,则=[x2+2(y2+1)]()=×[1+4++]=×[5++]≥(5+2×2)=;即最小值是,故答案为:三.解答题(共10小题)1.【解答】解:(I)∵F1,F2分别为椭圆+y2=1的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2.∴△ABF2的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=4.…(3分)(II)设直线l的方程为x=my﹣1,由,得(m2+2)y2﹣2my﹣1=0.设A(x1,y1),B(x2,y2),则y1+y2=,y1y2=﹣,…(5分)∵AF2⊥BF2,∴•=0,∴•=(x1﹣1)(x2﹣1)=(my1﹣2)(my2﹣2)+y1y2=(m2+1)y1y2﹣2m(y1+y2)+4=﹣2m×+4==0∴m2=7.…(10分)∴△ABF2的面积S=×|F1F2|×=.2.【解答】解:(1)当0<m<2时,∵,又,∴,∴,当m>2时,∵,又,∴解得4<m<8.综上所述实数m的取值范围:或4<m<8.(2)∵q:t≤m≤t+9,p是q的充分不必要条件,∴⊆[t,t+9],∴,解得.3.【解答】解:(1)由题意知,e==,a==2,又a2=b2+c2,所以a=2,c=,b=1,所以椭圆C的方程为+y2=1;(2)证明:当直线AB的斜率不存在时,直线AB的方程为x=±;此时,原点O到直线AB的距离为;当直线AB的斜率存在时,设直线AB 的方程为y=kx+m,A(x1,y1),B(x2,y2).代入椭圆方程x2+4y2=4,得(1+4k2)x2+8kmx+4m2﹣4=0,则△=(8km)2﹣4(1+4k2)(4m2﹣4)=16(1+4k2﹣m2)>0,x1+x2=﹣,x1x2=,则y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•+km(﹣)+m2=,由OA⊥OB得k OA k OB=﹣1,即x1x2+y1y2=0,所以=0,即m2=(1+k2),所以原点O到直线AB的距离为d==,综上,原点O到直线AB的距离为定值.4.【解答】解:(1)由题意可得:=,|PF1|+|PF2|=4=2a,a2=b2+c2.联立解得:a=2,c==b.∴椭圆C的标准方程为:+=1.(2)如图所示,设直线l的方程为:ty=x+,A(x1,y1),B(x2,y2).联立,化为:(t2+2)y2﹣2ty﹣2=0,∴y1+y2=,y1y2=.直线QA的方程为:y=(x﹣m),可得:M.直线QB的方程为:y=(x﹣m),可得N.∵MF1⊥NF1,∴•=0.又F1(﹣,0).∴+•=0,化为:2[x1x2﹣m(x1+x2)+m2]+=0,∵x1+x2=t(y1+y2)﹣2,x1x2=(ty2﹣)=t2y1y2﹣t(y1+y2)+2.∴(2t2+8+4m+m2)y1y2﹣(2+2mt)(y1+y2)+4+4m+2m2=0,∴(2t2+8+4m+m2)•﹣(2+2mt)+4+4m+2m2=0,化为:(m2﹣4)(t2﹣1)=0.∵∀t∈R上式都成立,∴m2﹣4=0,解得m=±2.5.【解答】解:(1)椭圆的离心率为且经过点,可得e==,+=1,a2﹣b2=c2,解得a=,b=1,则椭圆方程为+y2=1;(2)直线y=kx+m与椭圆x2+2y2=2联立,可得(1+2k2)x2+4kmx+2m2﹣2=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,可得|AB|=•==•=,①由△OAB(O是坐标原点)的面积等于,设O到AB的距离为d,可得|AB|d=,即d=,即有=,即3m2=2+2k2②联立①②解得m=1,k=±;m=﹣1,k=±,则直线AB的方程为y=±x+1或y=±x﹣1.6.【解答】解:(1)如图所示,椭圆C:=1的离心率为,∴=,△ABF2的周长为|AB|+|AF2|+|BF2|=4a=16,∴a=4,∴c=2,∴b2=a2﹣c2=4,∴椭圆C的方程+=1;(2)设过点P(2,1)作直线l,l与椭圆C的交点为D(x1,y1),E(x2,y2),则,两式相减,得(﹣)+4(﹣)=0,∴(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,∴直线l的斜率为k==﹣=﹣=﹣,∴此弦所在的直线方程为y﹣1=﹣(x﹣2),化为一般方程是x+2y﹣4=0.7.【解答】解:(1)根据及题设知,5b2=24ac将b2=a2﹣c2代入5b2=24ac解得或(舍去),故C的离心率为;………………………………………………(4分)(2)由题意得,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,3)是线段MF1的中点,故,即b2=6a①………………………………………………(7分)由|MN|=7|F1N|得|DF1|=3|F1N|,设N(x1,y1)则,即代入C的方程,得②……………………………………………(10分)将①及代入②得解得故8.【解答】解:(1)由题意可得,解得,因此,椭圆C的方程为;(2)由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+m(m≠0),由,消去y整理得(1+4k2)x2+8kmx+4(m2﹣1)=0,∵直线l与椭圆交于两点,∴△=64k2m2﹣4(1+4k2)(m2﹣1)=4(4k2﹣m2+1)>0,设点P、Q的坐标分别为(x1,y1)、(x2,y2),则,,∴y1+y2=(kx1+m)(kx2+m)=,∵直线OP、l、OQ的斜率成等比数列,∴,整理得,∴,又m≠0,所以,,结合图象可得,故直线l的斜率为定值.9.【解答】解:椭圆的焦点分别为F1(﹣2,0)、F2(2,0),长轴长为6,焦点在x轴上,设椭圆C的方程为:(a>b>0),a=3,b2=a2﹣c2=9﹣8=1,∴椭圆C的方程为:;由,消y整理得:10x2+36x+27=0,由△=362﹣4×10×27=216>0,∴直线与椭圆有两个不同的交点,设A(x1,y1),B(x2,y2),中点E(x0,y0),则x1+x2=﹣,由中点坐标公式可知:x0==﹣,y0=x0+2=,故线段AB的中点坐标为(﹣,).10.【解答】解:(1)由已知c=1,,又a2=b2+c2,解得.∴椭圆C的方程为:;(2)当l斜率不存在时,AB=,得S1•S2=6.当l斜率存在时,设为直线为y=kx+m,由l与圆(x﹣1)2+y2=1相切,得m2+2km=1…(*)联立,得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则.|AB|=.Q到直线的距离,S1•S2==.将(*)式代入得S1•S2=,令t=m2+1∈(1,+∞).∴S1•S2==.综上,S1•S2的最大值为6.。

椭圆专题训练卷(含解析)

椭圆专题训练卷(含解析)

椭圆专题训练卷一、单选题1.(2019·宁波市第四中学高二期中)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .102.(2020·全国高三课时练习(理))设x 、y ∈R ,则“|x |≤4且|y |≤3”是“216x +29y ≤1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.(2019·浙江省春晖中学高二月考)已知椭圆221102x y m m +=--的焦点在y 轴上,且焦距为4,则m 等于( ) A .4B .5C .7D .84.(2020·雅安市教育科学研究所高三一模(理))已知椭圆()222210x y a b a b+=>>的左顶点为A ,上顶点为B ,且OA (O 为坐标原点),则该椭圆的离心率为( )A B C D5.(2020·四川资阳 高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=6.(2020·全国高三课时练习(理))已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13B .12C .23D .347.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b +=>>,焦距为2c ,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( )A .2B .34C .12D .148.(2020·甘肃城关 兰大附中高三月考(理))已知1F ,2F 分别为椭圆221168x y +=的左、右焦点,M 是椭圆上的一点,且在y 轴的左侧过点2F 作12F MF ∠的角平分线的垂线,垂足为N ,若2ON =(O 为坐标原点)则21MF MF -等于( )A .4B .2C D 9.(2020·黑龙江南岗 哈师大附中高三其他(文))已知1F 、2F 是椭圆22143x y +=的左、右焦点,点P 是椭圆上任意一点,以1PF 为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则12QF QF ⋅=( )A .B .4C .3D .110.(2019·宁波市第四中学高二期中)设椭圆22221x y a b+=0)a b >>(的左、右焦点分别为12(,0)(,0)F c F c -,,点(,)2aN c 在椭圆的外部,点M 是椭圆上的动点,满足11232MF MN F F +<恒成立,则椭圆离心率e 的取值范围是( )A .(0B .1)C .5)6, D .5(,1)6二、多选题11.(2019·江苏省苏州实验中学高二月考)已知椭圆22221(0)x y a b a b+=>>的左焦点F ,焦距为2,过点F的弦长最小值不小于2,则该椭圆的离心率可以是( ) A .45B .23C .12D .1312.(2019·辽宁葫芦岛 高二月考)椭圆C :2211612x y +=的右焦点为F ,点P 是椭圆C 上的动点,则||PF 的值可能是( ) A .1B .3C .4D .813.(2020·岳麓 湖南师大附中高二期末)设椭圆22:143x y C +=的左、右焦点分别为12,F F ,点P 为椭圆C上一动点,则下列说法中正确的是( ) A .当点P 不在x 轴上时,12PF F ∆的周长是6 B .当点P 不在x 轴上时,12PF F ∆面积的最大值为3 C .存在点P ,使12PF PF ⊥ D .1PF 的取值范围是[1,3]14.(2020·山东中区 济南外国语学校高三月考)我们通常称离心率为512-的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b+=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F 三、单空题15.(2020·商丘市回民中学高二期末(理))若椭圆的方程为221102x y a a +=--,且此椭圆的焦距为4,则实数a =________.16.(2020·河北桃城 衡水中学高三其他(文))已知椭圆C 的中心在原点,焦点在x 轴上,若C 的短轴长为2个相邻的五等分点,则此椭圆的标准方程为________.17.(2020·河南中原 郑州一中高三其他(文))已知A 、F 分别是椭圆C :22221x y a b+=()0a b >>的下顶点和左焦点,过A 且倾斜角为60︒的直线l 分别交x 轴和椭圆C 于M ,N 两点,且N 点的纵坐标为35b ,若FMN 的周长为6,则FAN 的面积为_____.四、双空题18.(2019·浙江高二学业考试)椭圆2214x y +=的离心率是___________,焦距长是________.19.(2020·上海高二课时练习)椭圆22192x y +=的焦点为F 1,F 2,点P 在椭圆上,若14PF =,2PF =_______;12F PF ∠的小大为__________.20.(2019·浙江高二期中)若方程22121x y m m+=+-表示椭圆,则实数m 的取值范围是______;当1m =-时,椭圆的焦点坐标为______.21.(2020·福建高三其他(理))已知椭圆22:143x y C +=的焦点是12,F F ,,A B 是C 上(不在长轴上)的两点,且1//2F A F B .M 为1F B 与2F A 的交点,则M 的轨迹所在的曲线是______;离心率为_____. 五、解答题22.(2020·上海高二课时练习)已知椭圆的中心在原点,焦距为6,且经过点(0,4).求它的标准方程.23.(2019·于都县第二中学高二月考(文))焦点在x 轴上的椭圆的方程为2214x ym+=,点(2,1)P 在椭圆上.(1)求m 的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率. 24.(2019·永济市涑北中学校高二月考(理))设点是椭圆上一动点,椭圆的长轴长为,离心率为.(1)求椭圆的方程; (2)求点到直线距离的最大值.25.(2019·河南宛城 南阳中学高二月考(理))已知椭圆的两焦点为12(1,0),(1,0)F F -,P 为椭圆上一点,且12F F 是1PF 与2PF 的等差中项. (1)求此椭圆方程;(2)若点P 满足1260F PF ︒∠=,求12PF F ∆的面积.26.(2019·牡丹江市第三高级中学高二期末(文))已知点(2,1)P -在椭圆()222:102x yC a a +=>上,动点,A B 都在椭圆上,且直线AB 不经过原点O ,直线OP 经过弦AB 的中点. (1)求椭圆C 的方程; (2)求直线AB 的斜率.27.(2018·西藏拉萨中学高二期末(理))椭圆C 的中心在坐标原点,焦点在x 轴上,右焦点F 的坐标为(2,0),且点F 6. (1)求椭圆C 的方程;(2)过点F 作斜率为k 的直线l ,与椭圆C 交于A 、B 两点,若43OA OB ⋅>-,求k 的取值范围.一、单选题1.(2019·宁波市第四中学高二期中)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .2.(2020·全国高三课时练习(理))设x 、y ∈R ,则“|x |≤4且|y |≤3”是“216x +29y ≤1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】“|x |≤4且|y |≤3”表示的平面区域M 为矩形区域,“216x +29y ≤1”表示的平面区域N 为椭圆216x +29y ≤1及其内部, 则如图显然N 在M 内, 故选:B .3.(2019·浙江省春晖中学高二月考)已知椭圆221102x y m m +=--的焦点在y 轴上,且焦距为4,则m 等于( ) A .4 B .5C .7D .8【答案】D 【解析】∵ 椭圆221102x y m m +=--的焦点在y 轴上,∴ 22a m =-,210b m =-, ∵ 焦距为4, ∴ 24c =即24c =,在椭圆中:222a b c =+即2(10)4m m -=-+,解得:8m =, 故选:D4.(2020·雅安市教育科学研究所高三一模(理))已知椭圆()222210x y a b a b+=>>的左顶点为A ,上顶点为B ,且OA (O 为坐标原点),则该椭圆的离心率为( )A .3B .3C .2D .3【答案】B 【解析】依题意可知3ab ,即3b =,又c ===,所以该椭圆的离心率3c e a ==. 故选:B5.(2020·四川资阳 高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=【答案】A 【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选:A 点睛:求椭圆标准方程的两种思路方法(1)定义法:根据椭圆的定义,确定22a b ,的值,结合焦点位置可写出椭圆方程.(2)待定系数法:这种方法是求椭圆方程的常用方法,具体思路是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a b ,的方程组.如果焦点位置不确定,也可把椭圆方程设22100()mx ny m n m n >>≠+=,,的形式.6.(2020·全国高三课时练习(理))已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .34【答案】A 【解析】试题分析:如图取P 与M 重合,则由2(,0),(,)b A a M c a--⇒直线22:()(0,)bb a AM y x a Ec a a c=+⇒-+-同理由222221(,0),(,)(0,)33b b b b B a Mc G a c e a a c a c a c -⇒⇒=⇒=⇒=+-+,故选A.7.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b +=>>,焦距为2c ,直线2:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) A .32B .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A ,则24y x =由2AB c =,可知22OA x y c =+=2224x x c ⎛⎫+= ⎪ ⎪⎝⎭,解得22x =, 所以221,33A c ⎛⎫ ⎪ ⎪⎝⎭把点A 代入椭圆方程得到222222131c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=,因01e <<,所以可得3e =故选A 项.8.(2020·甘肃城关 兰大附中高三月考(理))已知1F ,2F 分别为椭圆221168x y +=的左、右焦点,M 是椭圆上的一点,且在y 轴的左侧过点2F 作12F MF ∠的角平分线的垂线,垂足为N ,若2ON =(O 为坐标原点)则21MF MF -等于( ) A .4 B .2C .32D .332【答案】A 【解析】延长2F N 交1MF 的延长线于点P ,作图如下:因为MN 为12F MF ∠的角平分线,且2F N MN ⊥, 所以2MF MP =,所以2111MF MF MP MF F P -=-=, 因为,O N 分别为122,F F F P 的中点, 所以ON 为12PF F ∆的中位线, 所以1122ON F P ==, 所以21124MF MF F P ON -===. 故选:A9.(2020·黑龙江南岗 哈师大附中高三其他(文))已知1F 、2F 是椭圆22143x y +=的左、右焦点,点P 是椭圆上任意一点,以1PF 为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则12QF QF ⋅=( )A .23B .4C .3D .1【答案】C 【解析】连接2PF ,设椭圆的基本量为,,a b c ,()()()()2212121QF QF QO OF QO OF QO QF ⋅=+⋅+=-,()221222222322PF PF QN NO c c a c b ⎛⎫=+-=+-=-== ⎪⎝⎭故答案为:C10.(2019·宁波市第四中学高二期中)设椭圆22221x y a b+=0)a b >>(的左、右焦点分别为12(,0)(,0)F c F c -,,点(,)2aN c 在椭圆的外部,点M 是椭圆上的动点,满足11232MF MN F F +<恒成立,则椭圆离心率e 的取值范围是( ) A .2(0, B .21) C .25)6, D .5(,1)6【答案】D 【解析】∵点,2a N c ⎛⎫ ⎪⎝⎭在椭圆的外部,∴222214c a a b +>,2212b a < ,由椭圆的离心率22121122c b e a a ==--=> ,122MF MN a MF MN +=-+, 又因为2MF MN -+≤2NF ,且22aNF =,要11232MF MN F F +<恒成立,即22a MF MN -+≤32222a a c +<⨯,则椭圆离心率的取值范围是5,16⎛⎫⎪⎝⎭.故选D . 二、多选题11.(2019·江苏省苏州实验中学高二月考)已知椭圆22221(0)x y a b a b+=>>的左焦点F ,焦距为2,过点F的弦长最小值不小于2,则该椭圆的离心率可以是( ) A .45B .23C .12D .13【答案】CD 【解析】由22c =,则1c =.过点F 的弦长最小值为222b a≥,即22b a ≥即有222a c a -≥,即2210a a --≥,解得:a ≥或152a(舍),122c e a=≤=. 故选: CD.12.(2019·辽宁葫芦岛 高二月考)椭圆C :2211612x y +=的右焦点为F ,点P 是椭圆C 上的动点,则||PF 的值可能是( ) A .1 B .3C .4D .8【答案】BC 【解析】由题意可得4a =,16122c ,则26a cPF a c .故选:BC .13.(2020·岳麓 湖南师大附中高二期末)设椭圆22:143x y C +=的左、右焦点分别为12,F F ,点P 为椭圆C上一动点,则下列说法中正确的是( )A .当点P 不在x 轴上时,12PF F ∆的周长是6B .当点P 不在x 轴上时,12PF F ∆C .存在点P ,使12PF PF ⊥D .1PF 的取值范围是[1,3] 【答案】ABD 【解析】由椭圆方程可知,2,a b ==,从而1c ==. 据椭圆定义,1224PF PF a +==,又1222F F c ==, 所以12PF F ∆的周长是6,A 项正确. 设点()()000,0P x y y ≠,因为122F F =, 则12120012PF F S F F y y ∆⋅==.因为003y b <=,则12PF F ∆项正确. 由椭圆性质可知,当点P 为椭圆C 短轴的一个端点时,12F PF ∠为最大. 此时,122PF PF a ===,又122F F =,则12PF F ∆为正三角形,1260F PF ︒∠=,所以不存在点P ,使12PF PF ⊥,C 项错误.由图可知,当点P 为椭圆C 的右顶点时,1PF 取最大值,此时13PF a c =+=; 当点P 为椭圆C 的左顶点时,1PF 取最小值,此时11PF a c =-=, 所以1[1,3]PF ∈,D 项正确, 故选:ABD .14.(2020·山东中区 济南外国语学校高三月考)我们通常称离心率为12的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b+=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F 【答案】BD 【解析】2222:1(0)x y C a b a b+=>>()()()()1212,0,,0,0,,0,A a A a B b B b ∴--,()()12,0,,0F c F c -对于A :111222||,||,||A F F F F A 为等比数列则2112212||||||A F F A F F ⋅=()()222a c c ∴-=2a c c ∴-=13e ∴=不满足条件,故A 错误; 对于B :11290F B A ∠=︒222211112A F B F B A ∴=+ ()2222a c a a b ∴+=++220c ac a ∴+-=即210e e ∴+-=解得e =或e = 故B 正确;对于C :1PF x ⊥ 轴,且21//PO A B2,b P c a ⎛⎫∴- ⎪⎝⎭21POA B k k =即2b c ab a =--解得bc =222a b c =+2c e a ∴===不满足题意,故C 错误; 对于D :四边形1221A B A B 的内切圆过焦点12,F F 即四边形1221A B A B 的内切圆的半径为c ,ab ∴=422430c a c a ∴-+=42310e e ∴-+=解得232e +=(舍去)或232e =e ∴=故D 正确 故选:BD 三、单空题15.(2020·商丘市回民中学高二期末(理))若椭圆的方程为221102x y a a +=--,且此椭圆的焦距为4,则实数a =________. 【答案】4或8 【解析】因为221102x y a a +=--是椭圆的方程,所以100a ->且a 20->,所以210a <<,由椭圆的方程可得()2c 102122a a a =---=-,又2c 4=,所以1224a -=,解得4a =或8a =. 故答案为4或816.(2020·河北桃城 衡水中学高三其他(文))已知椭圆C 的中心在原点,焦点在x 轴上,若C 的短轴长为2个相邻的五等分点,则此椭圆的标准方程为________.【答案】2212524x y +=【解析】椭圆的短轴长为,即2b =,∴b = .∵两个焦点恰好为长轴的2个相邻的五等分点,∴1225c a =⨯,得5a c =, 又因为222a b c =+,故可解得1c =,5a =,故该椭圆的标准方程为2212524x y +=.故答案为:2212524x y +=.17.(2020·河南中原 郑州一中高三其他(文))已知A 、F 分别是椭圆C :22221x y a b+=()0a b >>的下顶点和左焦点,过A 且倾斜角为60︒的直线l 分别交x 轴和椭圆C 于M ,N 两点,且N 点的纵坐标为35b ,若FMN 的周长为6,则FAN 的面积为_____.【解析】 如图所示,由题意得,()0,A b -,(),0F c -,直线MN 的方程为3y x b =-,把35y b =代入椭圆方程解得45x a =,∴4355N a b ⎛⎫ ⎪⎝⎭,, ∵N 在直线MN 上,∴34355b a b =-,解得3b a =又222a b c =+,∴222)3b c =+,解得3b c =, 令3y x b =-=0,则3M ⎫⎪⎭,即(),0M c ,∴M 为椭圆的右焦点,∴2FM c =, 由椭圆的定义可知,2NF NM a +=, ∵FMN 的周长为6,∴226a c +=, ∵3b a =2a c =,∴1,2,3c a b === ∴()13883255FANSFM b b c b ⎡⎤=⋅⋅--=⋅=⎢⎥⎣⎦故答案为:35. 四、双空题18.(2019·浙江高二学业考试)椭圆2214x y +=的离心率是___________,焦距长是________.323【解析】椭圆2214x y +=得:2,1,a b c ===2214x y +=椭圆的焦距长为:19.(2020·上海高二课时练习)椭圆22192x y +=的焦点为F 1,F 2,点P 在椭圆上,若14PF =,2PF =_______;12F PF ∠的小大为__________.【答案】2 ;23π; 【解解:因为由椭圆的定义,我们可知1221222121212121222||||cos 21642812422PF PF a PF a PF PF PF F F PF F F PF PF PF +=∴=-+-∆∠=⨯+-==-⨯⨯中,20.(2019·浙江高二期中)若方程22121x y m m+=+-表示椭圆,则实数m 的取值范围是______;当1m =-时,椭圆的焦点坐标为______. 【答案】11(2,)(,1)22---; (0,1),(0,1)-. 【解析】①根据椭圆的方程特征,方程22121x y m m+=+-表示椭圆,则201021m m m m+>⎧⎪->⎨⎪+≠-⎩解得:11(2,)(,1)22m ∈---; ②1m =-时,椭圆的方程2212y x +=,焦点在y 轴,其坐标分别为(0,1),(0,1)-故答案为:①11(2,)(,1)22m ∈---;②(0,1),(0,1)- 21.(2020·福建高三其他(理))已知椭圆22:143x y C +=的焦点是12,F F ,,A B 是C 上(不在长轴上)的两点,且1//2F A F B .M 为1F B 与2F A 的交点,则M 的轨迹所在的曲线是______;离心率为_____. 【答案】椭圆 45【解析】设()11,A x y ,()22,C x y 则()22,B x y --,1AF 的斜率不为0,可设1:1AF l x my =- 则122:11BF y y l x x =+-①,211:11AF y y l x x =--② 所以()12121221212121211112224y y y y y y y y x x x x my my m y y m y y ⋅=⋅=⋅=+------++ 联立221143x my x y =-⎧⎪⎨+=⎪⎩得2242303m y my ⎛⎫+--= ⎪⎝⎭,得122243m y y m +=+,122343y y m -=+ 所以222316133y x m -=--+由①②得()12122112y y x x m y y y y ++-+=-,所以35x m y = 所以22231316353y x x y -=-⎛⎫-+⎪⎝⎭整理得222215344x x +=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以M 的轨迹所在的曲线是椭圆,14554e == 故答案为:椭圆;45.五、解答题22.(2020·上海高二课时练习)已知椭圆的中心在原点,焦距为6,且经过点(0,4).求它的标准方程.【答案】2212516x y +=或221167y x +=【解析】(1)若椭圆的焦点在x 轴上,设椭圆的标准方程为22221(0)x ya b a b+=>>.将点(0,4)代入,得4b =.由26c =,解得3c =.22225∴=+=a b c ,从而椭圆方程为2212516x y +=; (2)若椭圆的焦点在y 轴上,设椭圆的标准方程为22221(0)y xa b a b+=>>.将点(0,4)代入,得4a =.由26c =,解得3c =,2227b a c =-=,从而椭圆方程为221167y x +=. 综上所述,椭圆的标准方程为2212516x y +=或221167y x +=.23.(2019·于都县第二中学高二月考(文))焦点在x 轴上的椭圆的方程为2214x ym+=,点2,1)P 在椭圆上.(1)求m的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率.【答案】(1)2(2)长轴长4、短轴长22、焦距22、离心率2 2【解析】(1)由题意,点(2,1)P在椭圆上,代入,得222114m+=,解得2m=(2)由(1)知,椭圆方程为22142x y+=,则2,2,2a b c===椭圆的长轴长24a=;’短轴长222b=;焦距222c=;离心率22cea==.24.(2019·永济市涑北中学校高二月考(理))设点是椭圆上一动点,椭圆的长轴长为,离心率为.(1)求椭圆的方程;(2)求点到直线距离的最大值.【答案】(1);(2)【解析】(1)由已知得,得椭圆(2)设,则当时,.25.(2019·河南宛城 南阳中学高二月考(理))已知椭圆的两焦点为12(1,0),(1,0)F F -,P 为椭圆上一点,且12F F 是1PF 与2PF 的等差中项.(1)求此椭圆方程;(2)若点P 满足1260F PF ︒∠=,求12PF F ∆的面积.【答案】(1) 22143x y +=;(2) 3【解析】(1)设所求椭圆方程为22221(0,0)x y a b a b+=>>, 根据已知可得2221212242,2,413F F PF PF a a b a c =∴+==∴==-=-=, 所以此椭圆方程为22143x y +=; (2)在12PF F ∆中,设12,PF m PF n ==,由余弦定理得:22242cos604()22cos60163m n mn m n mn mn mn︒︒=+-⋅∴=+--⋅=- 121134sin 6004322PF F mn S mn ︒∆=∴=⋅=⨯=26.(2019·牡丹江市第三高级中学高二期末(文))已知点(2,1)P -在椭圆()222:102x y C a a +=>上,动点,A B 都在椭圆上,且直线AB 不经过原点O ,直线OP 经过弦AB 的中点.(1)求椭圆C 的方程;(2)求直线AB 的斜率.【答案】(1)22182x y +=;(2)12. 【解析】(1)将(2,1)P -代入22212x y a +=, 得()2222112a -+=,28a =. 故椭圆方程为22182x y +=. (2)当直线AB 斜率不存在时不合题意,故设直线:AB y kx m =+,1122(,),(,)A x y B x y ,AB 的中点为00(,)M x y ,由22182y kx m x y =+⎧⎪⎨+=⎪⎩得222()148480k x kmx m +++-=, 0122()14214km x x x k +=-=+,00214m y kx m k =+=+, 直线OP 经过弦AB 的中点,则OM OP k k =,0012y x =-, 142m km =--,12k ∴=,即直线AB 的斜率为12. 27.(2018·西藏拉萨中学高二期末(理))椭圆C 的中心在坐标原点,焦点在x 轴上,右焦点F 的坐标为(2,0),且点F 到短轴的一个端点的距离是6.(1)求椭圆C 的方程;(2)过点F 作斜率为k 的直线l ,与椭圆C 交于A 、B 两点,若43OA OB ⋅>-,求k 的取值范围. 【答案】解(I )(II ) 【解析】(I )由已知,;,故椭圆C 的方程为………………4分(II )设则A、B坐标是方程组的解.消去,则,………………7分所以k的取值范围是………………12分。

(完整版)椭圆综合测试题(含答案)

(完整版)椭圆综合测试题(含答案)

椭圆测试题一、选择题:(本大题共12小题,每小题5分,共60分) 1、离心率为32,长轴长为6的椭圆的标准方程是( ) (A )22195x y += (B )22195x y +=或22159x y += (C )2213620x y += (D )2213620x y +=或2212036x y += 2、动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为( )A.椭圆B.线段12F FC.直线12F F D .不能确定3、已知椭圆的标准方程22110y x +=,则椭圆的焦点坐标为( )A.(B.(0,C.(0,3)±D.(3,0)±4、已知椭圆22159x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是( )A.3B.2C.3D.6 5、如果22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为( ) A.(2,)-+∞ B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R6、关于曲线的对称性的论述正确的是( )A.方程220x xy y ++=的曲线关于X 轴对称 B.方程330x y +=的曲线关于Y 轴对称 C.方程2210x xy y -+=的曲线关于原点对称 D.方程338x y -=的曲线关于原点对称7、方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22221x y a b+=(a >b >0)表示的椭圆( ). A.有相同的离心率B.有共同的焦点C.有等长的短轴.长轴D.有相同的顶点.8、已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B (C (D )29、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.54 B.53 C. 52 D. 51 10、若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( )A .2B .3C .6D .811、椭圆()222210x y a a b+=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )(A )(0,2] (B )(0,12] (C )1,1) (D )[12,1)12 若直线y x b =+与曲线3y =b 的取值范围是( )A.[1-1+B.[1C.[-1,1+D.[1-二、填空题:(本大题共5小题,共20分.)13 若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是14 椭圆2214924x y +=上一点P 与椭圆两焦点F 1, F 2的连线的夹角为直角,则Rt △PF 1F 2的面积为 . 15 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D , 且D F F B 2=,则C 的离心率为 .16 已知椭圆22:12x c y +=的两焦点为12,F F ,点00(,)P x y 满足2200012x y <+<,则|1PF |+2PF |的取值范围为三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)已知点M 在椭圆221259x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂足为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹方程.18.(12分)椭圆221(045)45x y m m+=<<的焦点分别是1F 和2F ,已知椭圆的离心率e =O 作直线与椭圆交于A ,B 两点,O 为原点,若2ABF 的面积是20,求:(1)m 的值(2)直线AB 的方程19(12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.20(12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I) 求椭圆C 的离心率; (II) 如果|AB|=154,求椭圆C 的方程.21(12分)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-. (Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。

椭圆试题(含答案)

椭圆试题(含答案)

椭圆测试题(含详解)姓名:_______________班级:_______________考号:_______________一、选择题(每题5分,共65分)1、是方程为的曲线表示椭圆时的 ( )(A )充分条件 (B )必要条件 (C )充分必要条件 (D) 非充分非必要条件2、如果椭圆上两点间的最大距离是8,那么等于( )(A )32 (B )16 (C )8 (D) 43、椭圆的焦点为和,且椭圆过点,则椭圆的方程是 ( )(A ) (B )(C ) (D)4、设椭圆的两个焦点为、,过做椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是 ( )(A ) (B ) (C ) (D)5、直线x -2y +2=0经过椭圆12222=+by a x (a >b >0)的一个焦点和一个顶点,则该椭圆的离心率为( )A. B. C. D.6、若点O 和点F 分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为( )(A )2 (B )3 (C )6 (D )87、若AB 是过椭圆12222=+by a x (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与两坐标轴均不平行,k AM ,k BM 分别表示直线AM ,BM 的斜率,则BM AM K K ⋅=( ).A .-22a cB .-22a bC .-22b cD .-22ba8、若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( ).A .圆B .椭圆C .双曲线D .抛物线9、设F 1,F 2分别是椭圆11625x 22=+y 的左、右焦点,P 为椭 圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( ).A .4B .3C .2D .510、已知A 、B 为椭圆C :12+m x +m y 2=1的长轴的两个端点,P 是椭圆C 上的动点,且∠APB 的最大值是π32,则实数m 的值是( )A. B. C. D.11、若直线y= -x+m 与曲线只有一个公共点,则m 的取值范围是( )(A )-2≤m <2 (B )-52≤m ≤52(C )-2≤m <2或m=5 (D )-52≤m <52或m=512、已知命题p :∃m ∈R ,m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∨q 为假命题,则实数m 的取值范围是( )A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤213、已知(4,2)是直线l 被椭圆193622=+y x 所截得的线段的中点,则l 的方程是( ) A .x -2y =0 B .x +2y -4=0 C .2x +3y +4=0 D .x +2y -8=0 题号 12345678910111213答案二、填空题(每空5分,共25分)14、若C (-,0),D (,0),M 是椭圆42x +y 2=1上的动点,则的最小值为________.15、已知椭圆+=1的两个焦点是F1、F2,点P 在该椭圆上,若|PF1|-|PF2|=2,则△21F PF 的面积是 .16、已知椭圆C :12222=+by a x (a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =,则C 的离心率e =________.17、已知椭圆C :12222=+by a x (a >b >0),F (,0)为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2,则椭圆C 的方程为________.18、若命题“”是真命题,则实数的取值范围为 .三、简答题(每题15分,共60分)19、已知命题p :存在实数m ,使方程x 2+mx +1=0有两个不等的负根;命题q :存在实数m ,使方程4x 2+4(m -2)x +1=0无实根.若“p ∨q ”为真,“p ∧q ”为假,求m 的取值范围.20、已知点P是椭圆上一点,,为两焦点,且,若点P到两焦点的距离分别为6和8,求椭圆的方程.21、已知,是椭圆的两个焦点,P是椭圆上任一点(1)若,求的面积;(2)求的最大值;22、已知直线l:(m R)和椭圆C:, 椭圆C的离心率为,连接椭圆的四个顶点形成四边形的面积为2.⑴求椭圆C的方程;⑵直线l/与椭圆C有两个不同的交点,求实数的取值范围;⑶当时,设直线l与y轴的交点为P,M为椭圆C上的动点,求线段PM长度的最大值。

完整版)椭圆经典练习题两套(带答案)

完整版)椭圆经典练习题两套(带答案)

完整版)椭圆经典练习题两套(带答案)A组基础过关1.选择题1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于多少?A。

2B。

2/3C。

1/2D。

1/3解析:由题意得2a=2b,所以a=b,又a²=b²+c²,所以b=c,所以a=2c,e=c/a=1/2,答案为C。

2.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是什么?A。

(x²/81)+(y²/72)=1B。

(x²/81)+(y²/9)=1C。

(x²/81)+(y²/45)=1D。

(x²/81)+(y²/36)=1解析:依题意知2a=18,所以a=9,2c=3×2a,所以c=3,所以b=a-c=81-9=72,所以椭圆方程为(x²/81)+(y²/72)=1,答案为A。

3.椭圆x²+4y²=1的离心率是多少?A。

2/3B。

2C。

1/2D。

3解析:先将x²+4y²=1化为标准方程,得(x/1)²+(y/(1/2))²=1,所以a=1,b=1/2,所以c=√(a²-b²)=√(3)/2,所以e=c/a=√(3)/2,答案为A。

2.解答题1.设F₁、F₂分别是椭圆4x²+y²=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF₁⊥PF₂,则点P的横坐标为多少?解析:由题意知,点P即为圆x²+y²=3与椭圆4x²+y²=1在第一象限的交点,解方程组x²+y²=3和4x²+y²=1,得点P的横坐标为√(2/3),答案为√(2/3)。

2.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为2,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程是什么?解析:依题意设椭圆G的方程为a²x²+b²y²=1(a>b>0),因为椭圆上一点到其两个焦点的距离之和为12,所以2a=12,所以a=6,又因为椭圆的离心率为2,所以c=a/2=3,所以b=√(a²-c²)=3√5,所以椭圆G的方程为36x²+45y²=1,答案为C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆测试题一、选择题: ( 本大题共 12 小题,每小题 5 分,共 60 分) 1、离心率为2 3,长轴长为 6 的椭圆的标准方程是( )(A )22x y 951(B )2 2x y 951或2 2x y 591(C )2 2x y 36 201(D )2 2x y 36 201或2 2x y 20 3612、动点 P 到两个定点F (- 4 ,0)、 F 2 (4,0)的距离之和为 8,则 P 点的轨迹为()1A. 椭圆B. 线段F FC. 直线 F 1F 2D .不能确定1 23、已知椭圆的标准方程2y 21x,则椭圆的焦点坐标为( )10A. (10,0)B. (0, 10)C. (0, 3)D. ( 3,0)4、已知椭圆 22xy 591上一点 P 到椭圆的一焦点的距离为 3,则 P 到另一焦点的距离是( )A. 2 5 3B.2C.3D.65、如果 2 2xy 21aa 2 表示焦点在 x 轴上的椭圆,则实数 a 的取值范围为( )A. ( 2, )B.2, 1 2, C. ( , 1) (2, )D.任意实数 R6、关于曲线的对称性的论述正确的是( ) A. 方程 22 0 x xy y 的曲线关于 X 轴对称B.方程 33 0 x y 的曲线关于 Y 轴对称C.方程 22 10 x xy y 的曲线关于原点对称D.方程 33 8 x y 的曲线关于原点对称7、方程 22xy 221(a >b >0,k >0 且 k ≠1)与方程ka kb22xy221(a >b >0)表示的椭圆().a bA.有相同的离心率B.有共同的焦点C.有等长的短轴 .长轴D. 有相同的顶点 .8、已知椭圆2 2x y C :1(a b 0)> > 的离心率为2 2ab3 2,过右焦点 F 且斜率为 k( k >0) 的直线与 C 相交于A 、B 两点.若 AF 3FB ,则 k ()(A )1(B )2(C )3(D )29、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()A. 45B.35C.25D.1510、若点O和点 F 分别为椭圆值为( )2 2x y4 31的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大A.2 B.3 C.6 D.811、椭圆2 2x y2 2 1 a>b>0 的右焦点为F,其右准线与x轴的交点为A.在椭圆上存在点P 满足线段a b第 1 页共 4 页AP 的垂直平分线过点F,则椭圆离心率的取值范围是( )(A)(0,22] (B)(0,12] (C)[ 2 1,1)(D)[12,1)12 若直线y x b与曲线 2y 3 4x x 有公共点,则 b 的取值范围是( )A.[ 1 2 2 ,1 2 2 ]B.[ 1 2 ,3]C.[-1, 1 2 2 ]D.[ 1 2 2 ,3]二、填空题:(本大题共 5 小题,共20 分.)13 若一个椭圆长轴的长度. 短轴的长度和焦距成等差数列,则该椭圆的离心率是2 2x y14 椭圆1上一点P 与椭圆两焦点F1, F2 的连线的夹角为直角,则Rt△PF 1F2的面积为.49 2415 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2 F D ,则C 的离心率为.16 已知椭圆围为2x2c : y 1 F ,F P(x , y ),22x0 20 y 1,则| PF1|+ PF2 |的取值范2三、解答题:(本大题共 6 小题,共70 分.解答应写出文字说明,证明过程或演算步骤.)17.(10 分)已知点M 在椭圆2 2x y25 91 上,M ' P 垂直于椭圆焦点所在的直线,垂足为' P ,并且M 为线段P ' P 的中点,求P 点的轨迹方程.18.(12 分)椭圆2 2x y45 m1(0 m 45) 的焦点分别是F1 和F2 ,已知椭圆的离心率5e 过中心O 作直3线与椭圆交于A,B 两点,O 为原点,若ABF 的面积是20,求:(1)m的值(2)直线AB 的方程2第 2 页共 4 页19(12 分)设 F ,F2 分别为椭圆1 C2 2x y: 12 2a b(a b 0) 的左、右焦点,过F2 的直线l 与椭圆C 相交于A, B 两点,直线l 的倾斜角为60 ,F到直线l 的距离为 2 3 .1(Ⅰ)求椭圆C的焦距;(Ⅱ)如果AF2 2F2B, 求椭圆C的方程.20(12 分)设椭圆C:2 2x y2 2 1( 0)a ba b的左焦点为F,过点 F 的直线与椭圆 C 相交于 A ,B 两点,o直线l 的倾斜角为60 , AF 2FB .(I) 求椭圆 C 的离心率;(II) 如果|AB|= 154,求椭圆 C 的方程.第 3 页共 4 页21(12 分)在平面直角坐标系xOy 中,点 B 与点A(-1,1 )关于原点O对称,P 是动点,且直线AP与BP的斜率之积等于1 3 .( Ⅰ) 求动点P 的轨迹方程;( Ⅱ) 设直线AP和BP分别与直线x=3 交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。

22 (12 分)已知椭圆2 2x y2 2 1a b(a>b>0)的离心率e=32,连接椭圆的四个顶点得到的菱形的面积为 4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆相交于不同的两点A、B,已知点 A 的坐标为(-a,0) .(i )若4 2| |= ,求直线l 的倾斜角;AB5(ii )若点Q(0,y0)在线段AB 的垂直平分线上,且QA QB 4 求y0 的值.,第 4 页共 4 页椭圆参考答案1.选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B B C C B C A B B C D D8【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线, e 为离心率,过 A ,B 分别作AA 1,BB1 垂直于l,A 1,B 为垂足,过B 作BE 垂直于AA 1 与E,由第二定义得,,由,得,∴即k= ,故选 B.910【解析】由题意,F(-1 ,0),设点P(x , y ) ,则有0 02 2x y0 0 14 3, 解得2x2 0y0 3(1 ) ,4因为FP (x 1,y ) ,0 0 OP (x ,y ) ,所以0 02OP FP x x y0 ( 0 1) 0= OP FP x0 (x0 1)2x3(1 )4=2x4x0 3 ,此二次函数对应的抛物线的对称轴为x,因为0 22 x 2,所以当x0 2时,O P FP 取得最大值2242 3 6 ,选C。

【命题意图】本题考查椭圆的方程、几何性质、平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力。

11 解析:由题意,椭圆上存在点P,使得线段AP 的垂直平分线过点 F ,即F 点到P 点与 A 点的距离相等而| FA| =2 2a bcc c第 5 页共 4 页| PF| ∈[ a -c, a +c]于是2b c∈[ a -c, a +c]即 ac -c2≤ b 2≤ ac +c 2∴222ac ca c222ac ac cc a 1c c 1或aa1 2又 e ∈( 0, 1) 故 e ∈ 1,12答案: D 12(2010 湖北文数)9.若直线 y x b 与曲线2y 3 4xxA.[ 12 2 ,1 2 2 ] B.[ 1 2 ,3] C.[-1, 12 2 ]D.[ 12 2 ,3]二、填空题: (本大题共 4 小题,共 16 分.) 13 若一个椭圆长轴的长度 . 短轴的长度和焦距成等差数列,则该椭圆的离心率是14 椭圆 22 x y 49 24 1上一点Cuur uur于点 D , 且 BF 2FD,则 C 的离心率为. 3【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、,数形3 结合思想、方程思想 ,本题凸显解析几何的特点: “数研究形,形助数” ,利用几何性质可寻题的第 6页共 4 页B 捷径.【解析1】如图, 2 2| BF | b c a ,作uur uurDD y 轴于点D1, 则由BF 2FD1,得O FD D1x| OF | |BF | 2 |DD | | BD | 313 3| DD | |OF | c, ,所以 12 2即3cx ,由椭圆的第二定义得D22 3 3 2a c c| FD | e( ) ac 2 2a又由| BF | 2 |FD |, 得23ca 2a ,ae33【解析 2 】设椭圆方程为第一标准形式2 2x y2 2 1a b,设D x2, y2 ,F 分BD 所成的比为 2 ,0 2x 3 3 b 2y3y b 3 0 b b2 2 cx x x c; y y ,代入c 2 c c 21 2 2 2 1 2 2 2 22 29 c 1 b2 2 4 a 4 b 1 e,3316(2010 湖北文数)15.已知椭圆2x2c : y 1 的两焦点为F1 ,F2 ,点P( x0, y0 )满足22x0 20 y 1 ,则2| PF1|+ PF2|的取值范围为_______。

2, 2 2 ,0【答案】【解析】依题意知,点P 在椭圆内部.画出图形,由数形结合可得,当P 在原点处时(| PF1 | | PF2 |)max 2 ,当P 在椭圆顶点处时,取到(| PF1 | | PF2 |)max 为( 2 1) ( 2 1) =2 2 ,故范围为2,2 2 .因为( x0 , y0 ) 在椭圆2x22 1y的内部,则直线x x2y y0 1上的点(x, y)均在椭圆外,故此直线与椭圆不可能有交点,故交点数为0 个.二.填空题:13 3514 24 1533162, 2 2 ,0三. 解答题:B 捷径.【解析1】如图, 2 2| BF | b c a ,作uur uurDD y 轴于点D1, 则由BF 2FD1,得O FD D1x| OF | |BF | 2 |DD | | BD | 313 3| DD | |OF | c, ,所以 12 2即3cx ,由椭圆的第二定义得D22 3 3 2a c c| FD | e( ) ac 2 2a又由| BF | 2 |FD |, 得23ca 2a ,ae33【解析 2 】设椭圆方程为第一标准形式2 2x y2 2 1a b,设D x2, y2 ,F 分BD 所成的比为 2 ,0 2x 3 3 b 2y3y b 3 0 b b2 2 cx x x c; y y ,代入c 2 c c 21 2 2 2 1 2 2 2 22 29 c 1 b2 2 4 a 4 b 1 e,3316(2010 湖北文数)15.已知椭圆2x2c : y 1 的两焦点为F1 ,F2 ,点P( x0, y0 )满足22x0 20 y 1 ,则2| PF1|+ PF2|的取值范围为_______。

相关文档
最新文档