光电效应与康普顿效应
光电效应与康普顿效应的区别

光电效应与康普顿效应的区别光电效应与康普顿效应是物理学领域两种重要的现象,它们都涉及到光与物质的相互作用。
本文将详细讨论光电效应与康普顿效应的区别,并解释它们的原理、实验结果以及在实际应用中的重要性。
光电效应是指当一束光照射到金属表面时,如果光的频率大于或等于金属的功函数,即从金属表面将有电子被逸出。
这一效应在1905年由爱因斯坦提出,并为他赢得了诺贝尔物理学奖。
光电效应表明了光可以作为粒子(光子)来描述,且每个光子具有确定的能量。
根据经典电磁理论,当光照射到金属表面时,光的能量应该被均匀地传递给金属晶格中的电子,然后电子通过热激励被逸出。
然而实验观察到,只有当光的频率大于某个临界频率时,才会发生电流的流动。
这与光的频率无关,而与光的强度有关。
根据经典电磁理论,这是无法解释的。
为了解释光电效应,爱因斯坦提出了光的粒子性理论,即光的能量以离散的方式传递给金属表面的电子,而不是以连续的方式。
当光子的能量大于金属的功函数时,能量差将被转化为电子的运动能量,电子被逸出。
由此可见,光电效应是一种粒子-物质相互作用的过程。
与之相比,康普顿效应是光与物质中的自由电子相互作用的现象。
康普顿效应通过散射光子研究了光的波粒二象性。
当X射线或伽马射线与物质中的电子碰撞时,光子的能量部分被电子吸收,并导致电子获得动能。
根据经典波动理论,散射光子的波长应与入射光子的波长相等,而不应该发生波长的移动。
然而实验观察到,入射光子的波长会发生变化,并且变化的波长与散射角度有关,而与入射光子的能量无关。
这一现象表明光也具有粒子性的特征,光的粒子被称为光子。
康普顿效应的理论解释是基于相对论和量子力学的。
根据康普顿散射定律,入射光子与电子的相互作用结果是光子被散射,其动量和能量发生变化。
根据相对论关系式和能量守恒定律,可以推导出康普顿散射公式,即散射光子的波长变化与散射角度和光子的初始波长有关。
康普顿效应表明光是以粒子的形式通过物质传播的,且光子具有动量和能量。
光电效应与康普顿散射的区别

2.康普顿效应的实验事实与公式推导
• 2.1实验事实 • 当频率的光场入射时,其振动的电场分量将迫使电子在电场
振荡方向发生振荡,电子的受迫振荡将辐射出频率的辐射, 其中。经典理论预言,散射电磁波的频率与电子入射频率的 作用时间,以及辐射强度有关。 然而康普顿的实验结果表明,散射电磁波的频率与入射X射 线的强度及曝光时间完全相关,仅与散射角度无关。经典图 像失效! • 用量子物理来解释:光子的粒子特性使康普顿效应的解释变 得非常直接。X射线光子的部分能量通过碰撞给予了电子, 因此,散射的光子频率降低。
间没有外加电场,有光电子具有足够的动能从阴极飞到阳极,从而形
成光电流;只有当加一个反向电压,并且足够大以至于等于-时,就
是那些具有最大初动能的光电子,也必须将其初动能全部用于克服外
电场力做功,从而在外电场的作用下刚刚到达阳极,就返回阴极,使
其在回路中不形成光电流。
2020/11/29
历史意义
康
普 顿
光电效应康普顿效应两者区别现代应用1爱因斯坦对光电效应的理论解释2光电效应的实验验证11经典理论的困难12爱因斯坦光量子假说21光电效应的实验原理22光电效应的实验规律应效电光2018101411经典理论的困难?经典物理学认为光强越大饱和电流应该越大光电子的初动能也越大
光电效应与康普顿散射的区别
康普顿效应:康普顿效应是美国物理学家康普顿在 研究x射线通过实物物质发生散射的实验时,发现了 一个新的现象,即散射光中除了有原波长λ0的x光外, 还产生了波长λ>λ0的x光,其波长的增量随散射角的 不同而变化。这种现象称为康普顿效应。
康普顿效应:目前没 有大规模的工业应用, 主要运用于电子显微镜、 CT等实验设备,还有无 损探伤,在不便布设传 感器时测量物体厚度等; 亦可被应用于放射疗法, 探测物质中的电子波函 数等。
光电效应与康普顿效应的区别

光电效应与康普顿效应的区别一、选题的依据、意义和理论或实际应用方面的价值光电效应和康普顿效应是光学课程最主要的内容之一,在大学本科层次的光学教学中的光学教学中,我们对光的反射、折射现象和成像规律已比较熟悉。
但对光的波动性、干涉和衍射现象,还是比较生疏的,理论解释也比较困难,光与物质相互作用的光电效应和康普顿效应更抽象,因此,不易讲解,我们在理解过程中存在一些概念的错误和混淆。
光的本质是电磁波,它具有波动的性质。
近代物理又证明,光除了具有波动性之外还具有另一方面的性质,即粒子性。
光具有粒子性,最好的例证就是著名的“光电效应”和“康普顿效应”。
光电效应与康普顿效应研究的都是光子与电子之间的相互作用,都是光具有粒子性的体现,但两者存在重要的不同。
光电效应是指电子在光的作用下从金属表面发射出来的现象. 我们把逸出来的电子称为光电子. 而康普顿效应是指在X 射线的散射现象中, 发现散射谱线中除了波长和原射线相同的成分以外, 还有一些波长较长的成分, 两者差值的大小随散射角的大小而改变, 其间有确定关系的这种波长改变的散射. 上述两种效应都牵涉到光子和个别电子的相互作用,用简单的波动理论是是很难解释这些微观世界的相互作用, 这必须用量子概念来解释. 还可以从光的粒子性出发, 谈谈对光电效应和康普顿效应的不同。
所以科学家将光信号(或电能)转变成电信号(或电能)的器件叫光电器件。
现已有光敏管、光敏电阻、光敏二极管、光敏三极管、光敏组件、色敏器件、光敏可控硅器件、光耦合器、光电池等光电器件。
这些器件已被广泛应用于生产、生活、军事等领域。
二、本课题在国内外的研究现状光电效应是当光照在金属中时,金属里的表面有电子逸出的现象。
而康普顿效应是让光波射入石墨,石墨中的价电子对光进行散射,然而散射光比入射光波长略大,这是由于光子和电子碰撞时将一部分能量转移给电子。
这样,光的能量减小,波长便增加。
而且如果将光子当做实物粒子的话,计算结果与实验结果符合。
光电效应和康普顿效应

例:求波长为20 nm 紫外线光子的能量、动量及质量。
解:
能量
动量
质量
二、康普顿效应
1.光的散射
光束通过光学性质不均匀的介质时,从侧面可以看到光的现象称为光的散射。
光在各个方向上散射光强的分布与光的波长有关,光的偏振状态也不同。
2.康普顿效应
在 X 射线通过物质散射时,散射线中除有与入射线波长相同的射线外,还有比入射线波长更大的射线,其波长的改变量与散射角有关,而与入射线波长0和散射物质都无关。
可对微弱光线进行放大,可使光电流放大105~108 倍,灵敏度高,用在工程、天文、科研、军事等方面。
2.光电倍增管
由相对论光子的质能关系
光子的质量
5.光子的质量、能量和动量
由相对论质速关系
有
所以,光子的静止质量为零。
光子的能量就是动能。
由狭义相对论能量和动量的关系式
光子的能量和动量的关系式为:
光子的动量:
三、光的波粒二象性
光具有波动性,又有粒子性,即波粒二象性。
光在传播过程中表现出波动性,如干涉、衍射、偏振现象。
光在与物质发生作用时表现出粒子性,如光电效应,康普顿效应。
光子能量和动量为
上两式左边是描写粒子性的 E、P;右边是描写波动性的 、。 h 将光的粒子性与波动性联系起来。
一、光电效应
由于半导体表面的电子吸收外界的光子, 使其导电性能增强的现象。
外光电效应
内光电效应
阳极
阴极
石英窗
光线经石英窗照在阴极上,便有电子逸出----光电子。
光电子在电场作用下形成光电流。
将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。
2.光电效应的实验规律
光电效应和康普顿散射效应的关系

光电效应和康普顿散射效应的关系光电效应和康普顿散射效应是现代物理学中两个十分重要的概念,它们在物理学和工程学中都有着广泛的应用。
本文将探讨光电效应和康普顿散射效应之间的关系。
一、光电效应光电效应是指当一个物质中的电子通过吸收光子的能量而跃迁到更高的能级时,它能够从物质中释放出来。
光电效应的物理基础是光电子现象,即光子在相互作用中能够产生、消失或转换为相反方向的光子。
光电效应不仅具有理论位于,而且在实际应用中也有广泛的应用。
例如,光电效应被广泛用于光能转换,如太阳能电池板和光电二极管等。
二、康普顿散射康普顿散射是指当一束X射线与介质中的自由电子碰撞时,X射线的能量留在自由电子中,造成X射线散射,其散射角度与原始射线角度有关。
康普顿散射的基本物理原理是能量守恒和动量守恒。
康普顿散射同样具有非常广泛的应用,如用于测量材料的密度和厚度,以及用于医学影像诊断等。
三、光电效应与康普顿散射的关系光电效应和康普顿散射都是X射线和伽马射线与物质相互作用的两个主要过程。
虽然光电效应和康普顿散射本质上是截然不同的两个物理过程,但它们之间是密不可分的。
当一个光子与原子中的电子相互作用时,如果光子的能量足够高,那么这个光子将充满光电效应的概率,即该光子将吸收并将其所有能量转移到该电子。
而如果光子的能量比电子束缚能量低得多,光子就很可能被散射或透射而不会被吸收。
康普顿散射则是在高能量辐射与物质相互作用时产生的。
这项过程中的散射粒子是电子,并且散射中的光子产生的是康普顿效应,这种效应是利用从X射线中散射相对较小的能量,在医疗和科学中产生重要的应用。
总之,光电效应和康普顿散射都是现代物理学中非常重要的概念,在各种领域都有着广泛的应用。
光电效应和康普顿散射之间的关系可以帮助我们更好地理解这两种现象的本质和特征,也可以为我们在实践中更好地利用它们的特性提供指导。
光电效应和康普顿效应的区别和联系

光电效应和康普顿效应的区别和联系
曲成宽
( 北京印刷学院基础课部 )
光电效应和康普顿效应都是光子和电子相撞产生的现象, 作为光的粒子性的证明, 爱因斯坦和 康普顿分别作出了很好的解释。但是, 一个光子和一个电子相撞究竟产生哪种效应 , 是否两种效应 兼而有之, 却常常使初学者感到迷惑不解。本文运用经典的能量守恒理论和相对论理论分析与这 两种效应相联系的有关因素, 明确指出了两种效应产生的条件以及它们之间的区别和联系, 希望有 助于深刻理解这两种效应的机制和本质。为叙述简便 , 下面将分别用 G 效应和 K 效应表示光电效 应和康普顿效应。
m0v hc + m0c
2 4
( 11 ) 。
所得两个速率并不相等, 说明真空中的自由电子吸收光子的过程并非同时遵守两个守恒定律 , 因此 该过程是不会发生的。 同样, 也可以证明真空中运动的自由电子不能吸收光子。 只有处于束缚态的 电子 ! ! ! 束缚在原子中需电离而损失一定能量, 束缚在金属中需克服逸出功而损失一定能量 , 才 能满足能量守恒定律 h + m 0 c2 - W = m 0 c2 ( 12 ) 即具有一定束缚能(- W ) 的电子才能吸收光子而产生 G 效应。 当 v < < c 时, 式 ( 12 ) 则可过渡为 1 mv 2 + W 。 前面提到 , G 效应容易产生在钠、 钾、 铷和锶、 钡等拥有大量自 2 由电子的碱金属和碱土金属中。 以上各种金属的 W 不同 , 对电子束缚的程度也不同。 因此 , G 效应 爱因斯坦方程形式 h = 和作为靶的物质元素紧密相关。 紫外线有一定的穿透能力 , 金属深处的电子, 在离开金属表面以前 和晶格碰撞要失去一部分能量。 此外, 金属的温度、 金属内的杂质、 光子的偏振态和入射角都对 G 效 应产生影响。 爱因斯坦方程中的电子动能是等于 eV 的最大动能 , 它摒弃了上述因素的影响 , 只考 虑金属表面静止的仅受逸出电势束缚的自由电子。 爱因斯坦在解释 G 效应时 , 仅考虑到能量守恒 , 而没有考虑动量守恒。 按能量守恒方程 h = 1 2 能量守恒仅考虑光子、 电子和金属体, 而动量守恒就不能 2 m v + A 是无法得出动量守恒结果的。 h = m v 这一和能量守恒方程相悖的动量守恒方程。 前面以相 c & h 0 h 对论理论分析得到的和能量守恒方程相容的动量守恒方程 [ 式( 6) ] P e = n^ n 中 , 与 W 相关 ^ c c 0 h 0 的等效 动量 ^n 0 , 则通过电子传递给束缚它的金属晶格。 所以, 碰撞应以动量守恒的观点去加以 c 考虑, 看作是在光子与包括电子在内的金属之间进行。 这再次说明电子是被束缚的 , 并且可以定量 仅把光子和电子作为系统 , 去得到 地了解束缚程度。 K 效应是以动量和能量均守恒作为假设前提的。 康普顿认为光子和一静止的电子相撞 , 由于动 88
光电效应与康普顿效应

光电效应与康普顿效应
光电效应和康普顿效应都是描述光与物质相互作用的现象。
光电效应是指当光照射到金属等一些物质表面时,如果光的能量足够大,就会把一部分光子的能量转移到金属上的电子上,使电子从金属中逸出。
这个现象表明光具有粒子性,并且能量和动量可以借由光子传递给物质。
康普顿效应是指当X射线或伽马射线与物质相互作用时,将发生一种散射现象,其中光子的能量和动量发生改变。
在康普顿散射过程中,光子与物质中的自由电子相互作用,使光子发生能量和方向的改变。
这个现象表明光也具有波粒二象性,能量和动量也可以通过光子与物质的相互作用来传递。
光电效应和康普顿效应的发现和研究为量子力学的发展提供了重要的实验证据,也为后续研究光与物质相互作用的原理和应用提供了基础。
这些效应在实际应用中有着广泛的应用,比如光电传感器、X射线成像和伽马射线治疗等。
17-2光电效应和康普顿效应

0 2 0.0243 sin
2
2
(Å)….(11)
注意: 上式与实验符合得很好,波 长偏移与散射物质无关, 仅决定于散射角。 散射光中有原来入射波波长 mV 是光子和束缚很强的电子 (即整个原子)相互作用的结果。 原子质量小的物质,原子对电 子的束缚也较小 相对而言, 自由电子多,康普顿散射强
G
K2
U
R
E K1
iH
ip
IS3 IS2 I S1
U
1)光电子数与入射光强成正比;
2)光电子数的初动能与入射光的频率有 关,而与入射光强度无关。 3)光照后,光电子可立即从金属中逸出。
二)爱因斯坦光子假设(1905年) 光是一束以C运动着的粒子流,每一个光子 所带能量=h,不同的频率的光子具有不同 的能量。
Compton实验否定了这一说法。 一)康普顿实验 早在1904年伊夫(AS . Eve)发现射线 被物质散射后波长变长的现象,康普顿 相继研究了射线及X射线的散射,他先 确定了伊夫的发现又用自制的X射线分 光计,测定了X射线经石墨沿不同方向的 散射的定量关系,1923年发表论文作出了解释.
1)实验装置 0.71Å
(mV ) (
2 2 2
mC h( 0 ) m0C (3) h 0 2 h 2 h 0 h 2
C ) ( C ) 2 C C
2 2 2 0 2
cos (4)
m V C h h 2h 0 (1 cos )(5)
式(3)2-(5)
即光不仅在发射和吸收时表现出量子性,而且在空间 传播时也表现出量子性---提出了辐射的电磁场也具有量 子性。
1 2 h mvmax A0 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电效应与康普顿效应专业:机械设计制造及其自动化学号:5901108267 姓名:李庆摘要本文对光电效应和康普顿效应进行了简单介绍,分别对光电效应和日康普顿效应的基本原理和其实验类推法进行了简单的概述,介绍了爱因斯坦光电方程和用X 射线投射石墨实验。
同时本文对光电效应和康普顿效应的相同之处和不同之处进行了分析。
两者的物理本质相同,但是两者观测的条件和对光量子能量的吸收程度不同,两者在过程中产生的粒子也不同。
关键词:光电效应;康普顿效应;爱因斯坦光电方程;光电子;散射Photoelectric effect and Compton effectAbstractThis article has carried on the simple introduction to the photoelectric effect and the Compton effect respectively, of the photoelectric effect and Compton effect on the basic principles and its experimental analogy method a simple overview describes the Einstein photoelectric equation and use X-ray projection of graphite experiments. And on the photoelectric effect and Compton effect of the similarities and differences were analyzed. The physical nature of both the same, but the two observation conditions and the optical absorption of quantum energy in varying degrees, both in the process produced particles are also different.Keyword:photoelectric effect; Compton effect; Einstein's photoelectric equation; optoelectronics; scattering一、引言1877年赫兹在实验室中发现了光电效应,并且证明了电磁波的存在。
德国科学家普朗克在研究“电磁场辐射的能量分布”、时发现,只有认为电磁波的发射和吸收不是连续的。
而是一份一份的才符合他所观察到的实验现象。
1905年,爱因斯坦从普朗克的能量子假说中得到启发,提出了光量子的概念和光电效应方程,成功的解释了光电效应的实验规律。
1916年密立根作出了全面的实验验证,光量子学说才开始得到人们的承认。
康普顿效应是人们在研究X射线时发现的。
1897年塞格纳克发现了X射线在照射物质上时会产生二次辐射,这为以后进一步研究X射线的性质打下了基础。
随着欧洲各国科学家对科学的痴迷,许多科学家致力于研究X射线的领域。
1912年劳厄在实验室中发现了X射线衍射现象,这对X射线波动说提供了有力证据。
1923年康普顿在总结前人的基础上再加上自己的对X射线的研究和认识发表了《X射线受轻元素散射的量子理论》。
他在这篇文章里提出了康普顿效应,并且运用爱因斯坦的光亮子假说对其做出了解释说明。
二、光电效应与康普顿效应简介1光电效应原理所谓光电效应就是当光照射到一个洁净的金属或半导体材料表面上时,入射光的频率v超过某一值时,就有明显的电子发射出。
逸出的电子称为光电子。
每个光量子具有能量hv其中h是普朗克常数,v是光的频率。
在光辐照下,光子进入物体后与电子作用,如果电子是自由的,则吸收光子能量的电子,克服物体表面垒势阻挡而逸出物体表面进而产生光电子。
图表 1光电效应示意图光电效应分为光电子发射、光电导效应。
前一种现象发生在物体表面,又称外光电效应。
后种现象发生在物体内部,称为内光电效应。
光电效应光的电效应里,电子的射出方向不是完全定向的,只是大部分都垂直于金属表面射出,与光照方向无关,光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响.2光电效应的实验类推法—————爱因斯坦光电方程光电效应根据爱因斯坦的光电理论,当光子照射到物体表面上时,光子的能量能够被物体中一些特殊的自由电子完全吸收。
电子吸收光子的能量后,能量增加,如果电子吸收的能量h v足够大能够满足电子脱离原子所需的能量和托物体表面时的逸出功,那么电子将脱离物体表面成为光电子。
爱因斯坦方程hυ=(1/2)mv^2+I+W方程式中(1/2)mv^2是脱出物体的光电子的初动能。
金属内部有大量的自由电子,这是金属的特征,因而对于金属来说,I项可以略去,爱因斯坦方程成为hυ=(1/2)mv^2+W 假如hυ<W,电子就不能脱出金属的表面。
对于一定的金属,产生光电效应的最小光频率(极限频率) υ0。
由hυ0=W确定。
相应的极限波长为λ0=C/υ0=hc/W。
发光强度增加使照射到物体上的光子的数量增加,因而发射的光电子数和照射光的强度成正比。
3康普顿效应原理X射线通过轻物质发生散射时,散射光中还有一种波长比入射光波长略大的射线,其波长的增量随散射角的不同而变化。
这种现象称为康普顿效应。
美国物理学家康普顿在研究石墨中的电子对X射线的散射时发现,有些散射波的波长比入射波的波长略大,他认为这是光子和电子碰撞时,光子的一些能量转移给了电子。
他假设光子和电子、质子这样的实物粒子一样,不仅具有能量,也具有动量,碰撞过程中能量守恒,动量也守恒。
他按照这个假设列出方程,并求出了散射前后的波长差,结果跟实验数据完全符合。
这不仅证明了他的假设,还证明了微观粒子同样遵守能量守恒定理和动量守恒定理。
图表 2康普顿效应示意图4康普顿效应类推法-用X射线投射石墨实验康普顿将X射线投射到石墨上,然后在不同的角度测量被石墨分子散射的X光强度。
当角θ=0时,只有等于入射频率的单一频率光。
当θ≠0(如45°、90°)时,发现存在两种频率的散射光。
一种频率与入射光相同,另一种频率则比入射光低。
后者随角度增加偏离增大。
实验结果(1)散射光中除了和原波长λ0相同的谱线外还有λ>λ0的谱线。
(2)波长的改变量Δλ=λ-λ0随散射角φ(散射方向和入射方向之间的夹角)的增大而增加.(3)对于不同元素的散射物质,在同一散射角下,波长的改变量Δλ相同。
波长为λ的散射光强度随散射物原子序数的增加而减小。
康普顿利用光子理论成功地解释了这些实验结果。
X射线的散射是单个电子和单个光子发生弹性碰撞的结果。
碰撞前后动量和能量守恒,化简后得到Δλ=λ-λ0=(2h/m0c)sin^2(φ/2)称为康普顿散射公式。
λ=h/(m0c)称为电子的康普顿波长。
三、光电效应与康普顿效应的相同之处光电效应和康普顿效应在物理本质上是相同的,它们研究的对象不是整个所有的入射光束和散射光束,而是光束中的个别光子与散射物质中的个别特殊电子之间产生相互作用。
它们都是光子与原子系统的碰撞,只是由于入射光子的能量不同才产生的结果。
光电效应主要是产生电子,而康普顿效应的产生物主要是波长改变了的散射光,并且也产生了向电子传递动能。
并且两种效应所对应的爱因斯坦方程和康普顿公式都是建立在光子假设的基础上的。
另外在研究两种效应时都用到了能量守恒定律。
四、光电效应与康普顿效应不同之处1两者观测的条件不同根据爱因斯坦光电效应方程:hυ=(1/2)mv^2+I(I表示使自由电子从金属中逸出所需的最小能量、υ表示光电子的速率、m为电子的静质量),判断物体是否会发生光电效应,其不但决定了入射光子的能量,还决定于金属对自由电子的束缚力,但是只要入射光子的能量大于自由电子从金属中逸出所须的能量,光电效应就可以发生。
因此每一种金属要发生光电效应对其照射光的波长要求都有一个极限波长,即每一种金属都有一个极限波长,对应的光子的能量一般为2-5ev相当于波长620-248nm,即在可见光区和紫外线光区。
如果入射光的光波更短即频率更大,光子能量大于中等原子中某一只空壳电子结合能时主要是吸收方式。
如果入射光的光子能量等于某一支壳电子结合能时,吸收的几率最大(如k吸收峰,发生在原子从k层释放一个电子所需的最少能量处)但是当光子能量小于电子结合能时,则不能发生。
在理论上来说一切光频率范围内的光都会发生康普顿效应。
它被散射后光波波长的减少量与散射角的余弦值成正比。
但是在可见光的区间内,由于谱线太宽,散射光强度太弱因此人们无法观察到,但是对于所有的物质当光子能量在1-3Mev区间时康普顿效应明显易于观察,而对于轻元素来说要到达10Mev或者更高能量才会很显著。
但是如果光子能量大于或等于1.02Mev的情况下,光子会和物质还会发生另一种现象,电子对的产生,也就是一个光子消失了,同时产生一对正负电子。
由此可见,在可见光和紫外区,一般只能满足观察到明显的光电效应,而能量较高的X射线和能量较低的Y射线照射到物质上时,同时可以观察到原子的光电效应和康普顿效应。
如果能量更高时,可能会在同时发生光电效应、康普顿效应和电子对的产生。
但是三者发生的比重跟元素的原子系数相关很大。
2两者对光量子能量的吸收程度不同在光电效应中,一个自由的电子会完全吸收一个光子的能量,然后克服金属对它的束缚作用,从金属表面逸出。
原来的光子消失了。
在原子的某层电子吸收一个光子的能量,然后从原子中逃出来,在这个过程中光子也随着电子吸收其所有的能量后消失了。
由此可知,无论是什么样光电效应,都是一个受束缚的自由电子,完全吸收某一光子的所有能量,克服各种阻力做功,从而摆脱金属对它的束缚从其表面逸出,成为真正的自由的光电子。
在康普顿效应中,X射线被散射后,除了其部分波长不变外,还会有其他部分波长会变长。
这说明光子在和电子发生相互作用时原来的光子消失了,电子吸收了光子的能量,一部分能量表现为电子的动能,其余部分的能量表现为新光子的形式。
显而易知新光子的能量小于入射光子的能量,所以散射光中出现了波长较长的一些光子。
这个过程可以看成一个光子与一个原来静止的自由电子发生完全弹性碰撞,从而产生一个新的光子的过程。
所以说在康普顿效应中,电子吸收了光子的一部分能量。
五、参考文献(References)[1]杨际青.爱因斯坦方程与光电效应实验外推法[R].大学物理,003(22):25-45.[2]刘彦安.光电效应与康普顿效应的异同[J]技,2008(23):199-201.[3]王先明,朱配平,艾尔肯,查新未.光电效应中金属与光电子的分析[R].大学物理,2007(26):35-40.[4]李咏梅.光电效应与康普顿散射中光子和电子的相互作用[J]. 曲阜师范大学学报,2009(35):83-85.[5]陈星,李剑龙,韩文琪,曹思雁.γ射线做康普顿散射测量[J].理实验2006(6)[6]张贞,杨延宁,李福星.光电效应和康普顿效应的微观本质差异[R].延安大学学报,2004(23):30-32.。