广西柳州市八中2019—2020学年度 上学期 九年级段考数学试卷(pdf版,无答案))

合集下载

【35套试卷合集】广西柳州市鱼峰区第八中学2019-2020学年数学九上期末模拟试卷含答案

【35套试卷合集】广西柳州市鱼峰区第八中学2019-2020学年数学九上期末模拟试卷含答案

2019-2020学年九上数学期末模拟试卷含答案一、选择题(本大题共6小题,每小题3分,共18分) 1.下列电视台的台标,是中心对称图形的是( )A .B .C .D .2.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .必有5次正面朝上 B . 可能有5次正面朝上 C .掷2次必有1次正面朝上D . 不可能10次正面朝上3.用配方法解方程x 2-2x -3=0时,配方后所得的方程为( ) A 、(x -1)2=4 B 、(x -1)2=2 C 、(x +1)2=4 D 、(x +1)2=24.九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意列出方程为( ) A 、12 x(x -1)=2070 B 、12 x(x +1)=2070 C 、x(x +1)=2070 D 、x(x -1)=20705.小明想用一个圆心角为120°,半径为6cm 的扇形做一个圆锥的侧面(接缝处忽略不计),则做成的圆锥底面半径为( )A 、4 cmB 、3 cmC 、2 cmD 、1 cm6.已知抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象如图,其中正确的是( )A B C D 二、填空题(本大题共8小题,每小题3分,共24分) 7.一元二次方程x 2=x 的解为 。

8.如图,若AB 是⊙O 的直径,AB =10,∠CAB =30°, 则BC = 。

9.如图所示的五角星绕中心点旋转一定的角度后能与 自身完全重合,则其旋转的角度至少为 。

10.某品牌手机两年内由每台2500元降低到每台1600元, 则这款手机平均每年降低的百分率为 。

11.若正方形的边长为6cm ,则其外接圆半径是 。

12.林业工人为调查树木的生长情况,常用一种角卡工具, 可以很快测出大树的直径,其工作原理如图所示,已知AC 和AB 都与⊙O 相切,∠BAC =60°,AB =0.6m ,则这棵大树CAB·O的直径为 。

广西柳州2019中考试题-数学(解析版)

广西柳州2019中考试题-数学(解析版)

广西柳州2019中考试题-数学(解析版)【一】选择题〔本大题共12小题,每题3分,共36分,在每题列出的四个选项中,只有一个选项是正确的,每题选对得3分,选错、不选或多项选择均得零分〕1、李师傅做了一个零件,如图,请你告诉他那个零件的主视图是〔A〕A、B、C、D、【考点】简单组合体的三视图、【专题】推理填空题、【分析】依照主视图的定义,从前面看即可得出答案、【解答】解:依照主视图的定义,从前面看,得出的图形是一个正六边形和一个圆,应选A、【点评】此题考查了简单组合体的三视图的应用,通过做此题培养了学生的理解能力和观看图形的能力,同时也培养了学生的空间想象能力、2、小张用手机拍摄得到甲图,经放大后得到乙图,甲图中的线段AB在乙图中的对应线段是〔D〕A、FGB、FHC、EHD、EF【考点】相似图形、【分析】观看图形,先找出对应顶点,再依照对应顶点的连线即为对应线段解答、【解答】解:由图可知,点A、E是对应顶点,点B、F是对应顶点,点D、H是对应顶点,因此,甲图中的线段AB在乙图中的对应线段是EF、应选D、【点评】此题考查了相似图形,依照对应点确定对应线段,因此确定出对应点是解题的关键、3、如图,直线a与直线c相交于点O,∠1的度数是〔D〕A、60°B、50°C、40°D、30°【考点】对顶角、邻补角、【分析】依照邻补角的和等于180°列式计算即可得解、【解答】解:∠1=180°-150°=30°、应选D、【点评】此题要紧考查了邻补角的和等于180°,是基础题,比较简单、4、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,假如△PQO≌△NMO,那么只需测出其长度的线段是〔B〕A、POB、PQC、MOD、MQ【考点】全等三角形的应用、【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此能够得到答案、【解答】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,应选B、【点评】此题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起、5、娜娜有一个问题请教你,以下图形中对称轴只有两条的是〔C〕A、圆B、等边三角形C、矩形D、等腰梯形【考点】轴对称图形、【分析】依照轴对称图形的概念,分别判断出四个图形的对称轴的条数即可、【解答】解:A、圆有许多条对称轴,故本选项错误;B、等边三角形有3条对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、等腰梯形有1条对称轴,故本选项错误、应选C、【点评】此题考查轴对称图形的概念,解题关键是能够依照轴对称图形的概念正确找出各个图形的对称轴的条数,属于基础题、6、如图,给出了正方形ABCD的面积的四个表达式,其中错误的选项是〔C〕A、〔x+a〕〔x+a〕B、x2+a2+2axC、〔x-a〕〔x-a〕D、〔x+a〕a+〔x+a〕x【考点】整式的混合运算、【分析】依照正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式、【解答】解:依照图可知,S正方形=〔x+a〕2=x2+2ax+a2,应选C、【点评】此题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握应用、7、定圆O的半径是4cm,动圆P的半径是2cm,动圆在直线l上移动,当两圆相切时,OP的值是〔A〕A、2cm或6cmB、2cmC、4cmD、6cm【考点】相切两圆的性质、【专题】计算题、【分析】定圆O与动圆P相切时,分两种情况考虑:内切与外切,当两圆内切时,圆心距OP=R-r;当两圆外切时,圆心距OP=R+r,求出即可、【解答】解:设定圆O的半径为R=4cm,动圆P的半径为r=2cm,分两种情况考虑:当两圆外切时,圆心距OP=R+r=4+2=6cm;当两圆内切时,圆心距OP=R-r=4-2=2cm,综上,OP的值为2cm或6cm、应选A【点评】此题考查了相切两圆的性质,两圆相切时有两种情况:内切与外切,当两圆内切时,圆心距等于两半径相减;当两圆外切时,圆心距等于两半径相加、8、你认为方程x 2+2x-3=0的解应该是〔D〕A 、1B 、-3C 、3D 、1或-3【考点】解一元二次方程-因式分解法、【分析】利用因式分解法,原方程可变为〔x+3〕〔x-1〕=0,即可得x+3=0或x-1=0,继而求得答案、【解答】解:∵x 2+2x-3=0,∴〔x+3〕〔x-1〕=0,即x+3=0或x-1=0,解得:x 1=-3,x2=1、应选D 、【点评】此题考查了因式分解法解一元二次方程的知识、此题比较简单,注意掌握十字相乘法分解因式的知识是解此题的关键、9、如图,P 1、P 2、P 3这三个点中,在第二象限内的有〔D〕A 、P 1、P 2、P 3B 、P 1、P 2C 、P 1、P 3D 、P 1【考点】点的坐标、【分析】依照点的坐标的定义,确定出这三个点的位置,即可选择答案、【解答】解:由图可知,P 1在第二象限,点P 2在y 轴的正半轴上,点P 3在x 轴的负半轴上,因此,在第二象限内的有P 1、应选D 、【点评】此题考查了点的坐标,要紧是对象限内的点与坐标轴上点的认识,是基础题、10、如图,小红做了一个实验,将正六边形ABCDEF 绕点F 顺时针旋转后到达A ′B ′C ′D ′E ′F ′的位置,所转过的度数是〔A〕A 、60°B 、72°C 、108°D 、120°【考点】旋转的性质;正多边形和圆、【分析】由六边形ABCDEF 是正六边形,即可求得∠AFE 的度数,又由邻补角的定义,求得∠E ′FE 的度数,由将正六边形ABCDEF 绕点F 顺时针旋转后到达A ′B ′C ′D ′E ′F ′的位置,可得∠EFE ′是旋转角,继而求得答案、【解答】解:∵六边形ABCDEF 是正六边形,∴∠AFE=180°×(6-2)16=120°, ∴∠EFE ′=180°-∠AFE=180°-120°=60°,∵将正六边形ABCDEF 绕点F 顺时针旋转后到达A ′B ′C ′D ′E ′F ′的位置,∴∠EFE ′是旋转角,∴所转过的度数是60°、应选A 、【点评】此题考查了正六边形的性质、旋转的性质以及旋转角的定义、此题难度不大,注意找到旋转角是解此题的关键、11、小芳给你一个如下图的量角器,假如你用它来度量角的度数,那么能精确地读出的最小度数是〔B〕A 、1°B 、5°C 、10°D 、180°【考点】近似数和有效数字、【分析】度量器角的最小的刻度确实是所求、【解答】解:度量器的最小的刻度是5°,因而能精确地读出的最小度数是5°、应选B 、【点评】此题考查了量角器的使用,正确理解:度量器角的最小的刻度确实是能精确地读出的最小度数是关键、12、小兰画了一个函数1a y x=-的图象如图,那么关于x 的分式方程12ax-=的解是〔A〕 A 、x=1B 、x=2C 、x=3D 、x=4【考点】反比例函数的图象、【分析】关于x 的分式方程ax-1=2的解确实是函数y=ax-1中,纵坐标y=2时的横坐标x 的值,据此即可求解、【解答】解:关于x 的分式方程12ax -=的解确实是函数1a y x=-中,纵坐标y=2时的横坐标x 的值、依照图象能够得到:当y=2时,x=1、应选A 、【点评】此题考查了函数的图象,正确理解:关于x 的分式方程12ax-=的解,确实是函数1a y x=-中,纵坐标y=2时的横坐标x 的值是关键、 【二】填空题〔本大题共6小题,每题3分,共18分,请将答案直截了当填写在答题卡中相应的横线上,在草稿纸、试卷上答题无效〕、13、如图,在△ABC 中,BD 是∠ABC 的角平分线,∠ABC=80°,那么∠DBC=40°、【考点】三角形的角平分线、中线和高、【分析】依照角平分线的性质得出∠ABD=∠DBC 进而得出∠DBC 的度数、【解答】解:∵BD 是∠ABC 的角平分线,∠ABC=80°,∴∠DBC=∠ABD=12∠ABC=12×80°=40°,故答案为:40、【点评】此题要紧考查了角平分线的性质,依照角平分线性质得出∠ABD=∠DBC是解题关键、14、如图,x和5分别是天平上两边的砝码,请你用大于号“>”或小于号“<”填空:x<5、【考点】不等式的性质、【分析】托盘天平是支点在中间的等臂杠杆,天平平衡时砝码的质量等于被测物体的质量,依照图示知被测物体x的质量小于砝码的质量、【解答】解:依照图示知被测物体x的质量小于砝码的质量,即x<5;故答案是:<、【点评】此题考查了不等式的相关知识,利用“天平”的不平衡来得出不等关系,表达了“数形结合”的数学思想、15、一元二次方程3x2+2x-5=0的一次项系数是2、【考点】一元二次方程的一般形式、【分析】一元二次方程的一般形式是:ax2+bx+c=0〔a,b,c是常数且a≠0〕,其中a,b,c分别叫二次项系数,一次项系数,常数项、依照定义即可求解、【解答】解:一元二次方程3x2+2x-5=0的一次项系数是:2、故答案是:2、【点评】一元二次方程的一般形式是:ax2+bx+c=0〔a,b,c是常数且a≠0〕特别要注意a ≠0的条件、这是在做题过程中容易忽视的知识点、在一般形式中ax2叫二次项,bx叫一次项,c是常数项、其中a,b,c分别叫二次项系数,一次项系数,常数项、16、一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如下图,那么漏斗的斜壁AB的长度为5cm、【考点】圆锥的计算、【分析】依照题意及图形知此题是圆锥的底面半径及圆锥的高求圆锥的母线长,利用勾股定理即可求得、【解答】解:依照题意知:圆锥的底面半径为3cm,高为4cm,故圆锥的母线长AB=32+42=5cm、故答案为5、【点评】此题考查了圆锥的计算,解题的关键是明白圆锥的底面半径、高及圆锥的母线构成直角三角形、17、某校篮球队在一次定点投篮训练中进球情况如图,那么那个对的队员平均进球个数是6、【考点】加权平均数、【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数、【解答】解:依照题意得:⨯+⨯+⨯+⨯=+++1445184761414,故答案是:6、【点评】此题考查的是加权平均数的求法、此题易出现的错误是求4,5,7,8这四个数的平均数,对平均数的理解不正确、18、:在△ABC 中,AC=a ,AB 与BC 所在直线成45°角,AC 与BC 所在直线形成的夹角的余,那么AC、【考点】解直角三角形、【分析】分两种情况:①△ABC 为锐角三角形;②△ABC 为钝角三角形、这两种情况,都能够首先作△ABC 的高AD ,解直角△ACD 与直角△ABD ,得到BC 的长,再利用余弦定理求解、【解答】解:分两种情况:①△ABC 为锐角三角形时,如图1、作△ABC 的高AD ,BE 为AC 边的中线、∵在直角△ACD 中,AC=a ,cosC=∴a ,AD=5A 、 ∵在直角△ABD 中,∠ABD=45°, ∴BD=AD=,∴A 、在△BCE 中,由余弦定理,得 BE 2=BC 2+EC 2-2BC •EC •cosC22291117254220a a a a =+-⨯= ∴a ;②△ABC 为钝角三角形时,如图2、作△ABC 的高AD ,BE 为AC 边的中线、∵在直角△ACD 中,AC=a ,cosC=∴a ,、∵在直角△ABD 中,∠ABD=45°,∴BD=AD=,∴A 、在△BCE 中,由余弦定理,得BE 2=BC 2+EC 2-2BC •EC •cosC222111125452520a a a a a =+-⨯⨯⨯= ∴a 、综上可知AC边上的中线长是10a或10a 、故答案为10a或10a 、【点评】此题考查了解直角三角形,勾股定理,余弦定理,有一定难度,进行分类讨论是解题的关键、【三】解答题〔本大题共8小题,共66分、解承诺写出文字说明、演算步骤或推理过程、请将解答写在答题卡中相应的区域内,画图或作辅助线时先使用铅笔画出,确定后必需使用黑色字迹的签字笔描黑、在草稿纸、试卷上答题无效〕【考点】二次根式的混合运算、【专题】计算题、【分析】先去括号得到原式=那么得到原式2=【解答】解:原式==2=、【点评】此题考查了二次根式的混合运算:先进行二次根式的乘除运算,再进行二次根式的加减运算;运用二次根式的性质和乘法法那么进行运算、20、列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件? 解:设张红购买甲礼物x 件,那么购买乙礼物x+1件,依题意,得、【考点】一元一次方程的应用、【分析】设张红购买甲种礼物x 件,那么购买乙礼物x+1件,依照“两种礼物共用8.8元”列出方程求解即可、【解答】解:设张红购买甲种礼物x 件,那么购买乙礼物x+1件,依照题意得:1.2x+0.8〔x+1〕=8.8,解得:x=4、答:甲种礼物4件,一种礼物5件、【点评】此题考查了一元一次方程的应用,找到题目中的相等关系是解决此题的关键、21、右表反映了x 与y 之间存在某种函数关系,现给出了几种可能的函数关系式: y=x+7,y=x-5,6y x =,113y x =- x … -6 -5 3 4 … y … 1 1.2 -2 -1.5 … 〔1〕从所给出的几个式子中选出一个你认为满足上表要求的函数表达式:y=-6x ; 〔2〕请说明你选择那个函数表达式的理由、【考点】反比例函数的性质;函数关系式;一次函数的性质、【专题】探究型、【分析】〔1〕依照表中列出的x 与y 的对应关系判断出各点所在的象限,再依照所给的几个函数关系式即可得出结论;〔2〕依照〔1〕中的判断写出理由即可、【解答】解:〔1〕∵由表中所给的x 、y 的对应值的符号均相反,∴所给出的几个式子中只有y=-6x 符合条件,故答案为:y=-6x ;〔2〕∵由表中所给的x 、y 的对应值的符号均相反,∴此函数图象在【二】四象限,∵xy=〔-6〕×1=〔-5〕×1.2=-6,∴所给出的几个式子中只有y=-6x 符合条件、【点评】此题考查的是反比例函数的性质及一次函数的性质,先依照表中xy 的对应值判断出函数图象所在的象限是解答此题的关键、22、在甲、乙两个袋子中分别装有如图点数的牌,假设随机从袋子中抽牌时,每张牌被抽到的机会是均等的、那么分别从两个袋子各抽取1张牌时,它们的点数之和大于10的概率是多少?【考点】列表法与树状图法、【分析】首先依照题意画出树状图,然后由树状图求得所有等可能的结果与它们的点数之和大于10的情况,再利用概率公式求解即可求得答案、【解答】解:画树状图得:∵共有24种等可能的结果,它们的点数之和大于10的有6种情况,∴它们的点数之和大于10的概率是:61244=、 【点评】此题考查的是用列表法或树状图法求概率、注意画树状图法与列表法能够不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比、23、如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形ABCD 是一个特别的四边形、〔1〕那个特别的四边形应该叫做菱形;〔2〕请证明你的结论、【考点】菱形的判定与性质、【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,那么重叠部分为菱形、【解答】解:〔1〕菱形;故答案是:菱形;〔2〕∵四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形, ∴AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形〔对边相互平行的四边形是平行四边形〕;过点D 分别作AB ,BC 边上的高为DE ,DF 、那么DE=DF 〔两纸条相同,纸条宽度相同〕;∵平行四边形的面积为AB ×DE=BC ×DF ,∴AB=BC 、∴平行四边形ABCD 为菱形〔邻边相等的平行四边形是菱形〕、【分析】此题考查了菱形的判定与性质、注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”、24、:抛物线23(1)34y x =--、 〔1〕写出抛物线的开口方向、对称轴;〔2〕函数y 有最大值依旧最小值?并求出那个最大〔小〕值;〔3〕设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数解析式、【考点】二次函数的性质;待定系数法求一次函数解析式;二次函数的最值;抛物线与x轴的交点、【分析】〔1〕依照二次函数的性质,写出开口方向与对称轴即可;〔2〕依照a 是正数确定有最小值,再依照函数解析式写出最小值;〔3〕分别求出点P 、Q 的坐标,再依照待定系数法求函数解析式解答、【解答】解:〔1〕抛物线23(1)34y x =--, ∵a=34=>0, ∴抛物线的开口向上,对称轴为x=1;〔2〕∵a=34=>0, ∴函数y 有最小值,最小值为-3; 〔3〕令x=0,那么239(01)344y =--=-, 因此,点P 的坐标为〔0,94-〕, 令y=0,那么23(1)304x --=, 解得x 1=-1,x 2=3,因此,点Q 的坐标为〔-1,0〕或〔3,0〕,当点P 〔0,94-〕,Q 〔-1,0〕时,设直线PQ 的解析式为y=kx+b , 那么940b k b ⎧=-⎪⎨⎪-+=⎩,解得k=94-,b=94-, 因此直线PQ 的解析式为9944y x =--, 当P 〔0,94-〕,Q 〔3,0〕时,设直线PQ 的解析式为y=mx+n , 那么9430n m n ⎧=-⎪⎨⎪+=⎩,解得m=34,n=-94-, 因此,直线PQ 的解析式为3944y x =-, 综上所述,直线PQ 的解析式为y=-94x-94或y=34x-94、【点评】此题要紧考查了二次函数的性质,二次函数的最值问题,待定系数法求函数解析式,以及抛物线与x轴的交点问题,是基础题,熟记二次函数的开口方向,对称轴解析式与二次函数的系数的关系是解题的关键、25、如图,AB是⊙O的直径,AC是弦、〔1〕请你按下面步骤画图〔画图或作辅助线时先使用铅笔画出,确定后必须使用黑色字迹的签字笔描黑〕;第一步,过点A作∠BAC的角平分线,交⊙O于点D;第二步,过点D作AC的垂线,交AC的延长线于点E、第三步,连接BD、〔2〕求证:AD2=AE•AB;〔3〕连接EO,交AD于点F,假设5AC=3AB,求EOFO的值、【考点】圆的综合题、【专题】综合题、【分析】〔1〕依照差不多作图作出∠BAC的角平分线AD交⊙O于点D;点D作AC的垂线,垂足为点E;〔2〕依照直径所对的圆周角为直角得到∠ADB=90°,DE⊥AC,那么∠AED=90°,又由AD平分∠CAB得到∠CAD=∠DAB,依照相似三角形的判定得到Rt△ADE∽Rt△ABD,依照相似的性质得到AD:AB=AE:AD,利用比例的性质即可得到AD2=AE•AB;〔3〕连OD、BC,它们交于点G,由5AC=3AB,那么不妨设AC=3x,AB=5x,依照直径所对的圆周角为直角得到∠ACB=90°,由∠CAD=∠DAB得到DC DB,依照垂径定理的推论得到OD垂直平分BC,那么有OD∥AE,OG=12AC=32x,同时得到四边形ECGD为矩形,那么CE=DG=OD-OG=52x-32x=x,可计算出AE=AC+CE=3x+x=4x,利用AE∥OD可得到△AEF∽△DOF,那么AE:OD=EF:OF,即EF:OF=4x:52x=8:5,然后依照比例的性质即可得到EOFO的值、【解答】〔1〕解:如图;〔2〕证明:∵AB是⊙O的直径,∴∠ADB=90°,而DE⊥AC,∴∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠DAB,∴Rt△ADE∽Rt△ABD,∴AD:AB=AE:AD,∴AD 2=AE •AB ;〔3〕解:连OD 、BC ,它们交于点G ,如图, ∵5AC=3AB ,即AC :AB=3:5, ∴不妨设AC=3x ,AB=5x , ∵AB 是⊙O 的直径,∴∠ACB=90°, 又∵∠CAD=∠DAB , ∴=DC DB ,∴OD 垂直平分BC ,∴OD ∥AE ,OG=12AC=32x , ∴四边形ECGD 为矩形, ∴CE=DG=OD-OG=52x-32x=x ,∴AE=AC+CE=3x+x=4x , ∵AE ∥OD ,∴△AEF ∽△DOF , ∴AE :OD=EF :OF , ∴EF :OF=4x :52x=8:5,∴851355+==OEOF 、 【点评】此题考查了圆的综合题:平分弦所对的弧的直径垂直平分弦;在同圆或等圆中,相等的圆周角所对的弧相等;直径所对的圆周角为直角;运用相似三角形的判定与性质证明等积式和几何计算;掌握差不多的几何作图、26、如图,在△ABC 中,AB=2,AC=BC=5、〔1〕以AB 所在的直线为x 轴,AB 的垂直平分线为y 轴,建立直角坐标系如图,请你分别写出A 、B 、C 三点的坐标;〔2〕求过A 、B 、C 三点且以C 为顶点的抛物线的解析式;〔3〕假设D 为抛物线上的一动点,当D 点坐标为何值时,S △ABD =12S △ABC ;〔4〕假如将〔2〕中的抛物线向右平移,且与x 轴交于点A ′B ′,与y 轴交于点C ′,当平移多少个单位时,点C ′同时在以A ′B ′为直径的圆上〔解答过程假如有需要时,请参看阅读材料〕、附:阅读材料一元二次方程常用的解法有配方法、公式法和因式分解法,关于一些特别方程能够通过换元法转化为一元二次方程求解、如解方程:y 4-4y 2+3=0、解:令y 2=x 〔x ≥0〕,那么原方程变为x 2-4x+3=0,解得x 1=1,x 2=3、 当x 1=1时,即y 2=1,∴y 1=1,y 2=-1、当x 2=3,即y 2=3,∴y 3=3,y 4=-3、因此,原方程的解是y 1=1,y 2=-1,y 3=3,y 4=-3、再如22x -=y =【考点】二次函数综合题、 【分析】〔1〕依照y 轴是AB 的垂直平分线,那么能够求得OA ,OB 的长度,在直角△OAC 中,利用勾股定理求得OC 的长度,那么A 、B 、C 的坐标即可求解; 〔2〕利用待定系数法即可求得二次函数的解析式;〔3〕首先求得△ABC 的面积,依照S △ABD =12S △ABC ,以及三角形的面积公式,即可求得D 的纵坐标,把D 的纵坐标代入二次函数的解析式,即可求得横坐标、 〔4〕设抛物线向右平移c 个单位长度,那么0<c ≤1,能够写出平移以后的函数解析式,当点C ′同时在以A ′B ′为直径的圆上时有:OC ′2=OA •OB ,据此即可得到一个关于c 的方程求得c 的值、【解答】解:〔1〕∵AB 的垂直平分线为y 轴,∴OA=OB=12AB=12×2=1,∴A 的坐标是〔-1,0〕,B 的坐标是〔1,0〕、 在直角△OAC中,==OC 2,那么C 的坐标是:〔0,2〕;〔2〕设抛物线的解析式是:y=ax 2+b , 依照题意得:02a b b +=⎧⎨=⎩,解得:22a b =-⎧⎨=⎩,那么抛物线的解析式是:222y x =-+;〔3〕∵S△ABC=12AB•OC=12×2×2=2,∴S△ABD=12S△ABC=1、设D的纵坐标是m,那么12AB•|m|=1,那么m=±1、当m=1时,-2x2+2=1,解得:x=±2,当m=-1时,,-2x2+2=-1,解得:x=±2那么D的坐标是:〔2,1〕或〔-2,1-1〕,或〔-1〕、〔4〕设抛物线向右平移c个单位长度,那么0<c≤1,OA′=1-c,OB′=1+C、平移以后的抛物线的解析式是:y=-2〔x-c〕2+B、令x=0,解得y=-2c2+2、即OC′=-2c2+2、当点C′同时在以A′B′为直径的圆上时有:OC′2=OA′•OB′,那么〔-2c2+2〕2=〔1-c〕〔1+c〕,即〔4c2-3〕〔c2-1〕=0,解得:c=2,2-〔舍去〕,1,1-〔舍去〕、故平移2或1个单位长度、【点评】此题考查了勾股定理,待定系数法求二次函数的解析式,以及图象的平移,正确理解:当点C′同时在以A′B′为直径的圆上时有:OC′2=OA•OB,是解题的关键、。

2019-2020学年广西柳州九年级上数学期末试题

2019-2020学年广西柳州九年级上数学期末试题

柳州市2019-2020年九年级数学上册期末试题答案及评分标准一、选择题:(每题3分,共30分)二、填空题:(每题3分,共18分)11.(2,-3) 12. 3,021==x x 13.7114.π15 15. 2≥h 16. 1-7三、解答题:(共52分)17.解:0)1)(3(=+-x x ......................................................................................................................... 4分1321-==x x , ........................................................................................................................... 6分18. (1)如图所示△111C B A 为所求。

..............................................3分(2)如图所示△222C B A 为所求。

............................................3分19. (1).∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴ ............. ................................................1分 小明小亮 ABCA (A ,A ) (A ,B ) (A ,C ) B (B ,A ) (B ,B ) (B ,C ) C(C ,A )(C ,B )(C ,C )由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种. .........................5分3296)(==小明小亮诵读不同材料P ............................................................................................................6分 20.(1)把点A (m ,3)代入直线解析式得:题号 1 2 3 4 5 6 7 8 9 10 答案BDCDADBDCD31)(=小明诵读论语的概率P...................................................................................................................................1分把A 点坐标代入,6,ky k x==得............................................................................................................2分 所以双曲线的解析式为6y x=..................................................................................................................3分(2)对于直线12,0,2y x y =+=令4,(4,0)x c =--得到即.................................................................................................................................4分设P(x,0),可得4PC x =+,........................................................................................................................5分∵△ACP 面积为3 ∴1433,422x x +⨯=+=即解得:x=-2或x=-6....................................................................................................................................7分则P 点坐标为(-2,0)或(-6,0)....................................................................................................................8分..21.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),由所给函数图象得,...........................................................................................................................................1分解得..................................................................................................................................................3分∴函数关系式为y =-x +180......................................................................................................................4分 (2)22(100)(100)(180)28018000(140)1600W x y x x x x W x =-=--+=-+-=--+.................................................................6分∵-1<0,∴当售价定为140元, W 最大=1600。

2019年广西柳州市中考数学试卷以及解析版

2019年广西柳州市中考数学试卷以及解析版

3.( 3 分) 【分析】 根据轴对称的性质可以判断答案; 【解答】 解: D 答案的图形是轴对称图形, 故选: D . 【点评】 本题考查轴对称的性质;熟练掌握轴对称的性质是解题的关键.
4.( 3 分) 【分析】 根据单项式乘以多项式的法则求解即可;
【解答】 解: x(x 2 1) x3 x ;
故选: A .
求证:四边形 ABCD 是平行四边形.
证明:
第 4 页(共 23 页)
23.( 8 分)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小 本作业本贵 0.3 元,已知用 8 元购买大本作业本的数量与用 5 元购买小本作业本的数量相同. (1)求大本作业本与小本作业本每本各多少元? (2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的
6.( 3 分) 【分析】 直接利用圆周角定理进行判断.
【解答】 解: A 与 D 都是 BC 所对的圆周角,
D A. 故选: D . 【点评】 本题考查了圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等, 这条弧所对的圆心角的一半.
都等于
7.( 3 分) 【分析】 平行四边形的性质是:对边相互平行且相等,对角线互相平分.这样不难得出:
根据上面的作法,完成以下问题:
(1)使用直尺和圆规,作出 AO B (请保留作图痕迹) .
(2)完成下面证明 AO B AOB 的过程(注 : 括号里填写推理的依据) .
证明:由作法可知 O C OC , O D OD , D C

△ C O D COD (
)
AO B AOB . (
)
21.( 8 分)据公开报道, 2017 年全国教育经费总投入为 42557 亿元,比上年增长 9.43% , 其中投入在各学段的经费占比(即所占比例)如图,根据图中提供的信息解答下列问题.

2019年广西柳州市中考数学试卷(含解析)完美打印版

2019年广西柳州市中考数学试卷(含解析)完美打印版

2019年广西柳州市中考数学试卷一、选择题(本大题共11小题,每小题3分,满分30分,在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得0分.)1.(3分)据CCTV新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为()A.0.1044×106辆B.1.044×106辆C.1.044×105辆D.10.44×104辆2.(3分)如图,这是一个机械零部件,该零部件的左视图是()A.B.C.D.3.(3分)下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A.当心吊物安全B.当心触电安全C.当心滑跌安全D.注意安全4.(3分)计算:x(x2﹣1)=()A.x3﹣1B.x3﹣x C.x3+x D.x2﹣x5.(3分)反比例函数y=的图象位于()A.第一、三象限B.第二、三象限C.第一、二象限D.第二、四象限6.(3分)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D7.(3分)如图,在▱ABCD中,全等三角形的对数共有()A.2对B.3对C.4对D.5对8.(3分)阅读【资料】,完成第8、9题.【资料】:如图,这是根据公开资料整理绘制而成的2004﹣2018年中美两国国内生产总值(GDP)的直方图及发展趋势线.(注:趋势线由Excel系统根据数据自动生成,趋势线中的y表示GDP,x表示年数)2004﹣2018年中美两国国内生产总值(GDP,单位:万亿美元)直方图及发展趋势线依据【资料】中所提供的信息,2016﹣2018年中国GDP的平均值大约是()A.12.30B.14.19C.19.57D.19.719.(3分)阅读【资料】,完成第8、9题.【资料】:如图,这是根据公开资料整理绘制而成的2004﹣2018年中美两国国内生产总值(GDP)的直方图及发展趋势线.(注:趋势线由Excel系统根据数据自动生成,趋势线中的y表示GDP,x表示年数)2004﹣2018年中美两国国内生产总值(GDP,单位:万亿美元)直方图及发展趋势线依据【资料】中所提供的信息,可以推算出中国的GDP要超过美国,至少要到()A.2052年B.2038年C.2037年D.2034年10.(3分)已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0)B.y=4x﹣3(x≥)C.y=3﹣4x(x≥0)D.y=3﹣4x(0≤x≤)11.(3分)小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为()A.B.C.D.12.(3分)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=﹣1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i﹣9=﹣8+6i,因此,(1+3i)2的实部是﹣8,虚部是6.已知复数(3﹣mi)2的虚部是12,则实部是()A.﹣6B.6C.5D.﹣5二、填空题(本大题共6小题,每小题3分,满分18分.请将答案直接填写在答题卡中相应的横线上,在草稿纸、试卷上答题无效.)13.(3分)计算:7x﹣4x=.14.(3分)如图,若AB∥CD,则在图中所标注的角中,一定相等的角是.15.(3分)柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:发芽频率依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是(结果精确到0.01).16.(3分)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.17.(3分)如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为.18.(3分)已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是.三、解答题(本大题共8小题,满分66分,解答时应写出必要的文字说明、演算步骤或推理过程请将解答写在答题卡中相应的区域内,画图或作辅助线时使用铅笔画出,确定后论须使用黑色字的签字笔描黑在草稿纸、试卷上答题无效.)19.(6分)计算:22+|﹣3|﹣+π0.20.(6分)已知:∠AOB.求作:∠A′O′B′,使得∠A′O′B′=∠AOB.作法:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;③以点C′为圆心,CD长为半径画弧,与第②步中所画的弧相交于点D′;④过点D′画射线O′B′,则∠A′O′B′=∠AOB.根据上面的作法,完成以下问题:(1)使用直尺和圆规,作出∠A′O′B′(请保留作图痕迹).(2)完成下面证明∠A′O′B′=∠AOB的过程(注:括号里填写推理的依据).证明:由作法可知O′C′=OC,O′D′=OD,D′C′=,∴△C′O′D′≌△COD()∴∠A′O′B′=∠AOB.()21.(8分)据公开报道,2017年全国教育经费总投入为42557亿元,比上年增长9.43%,其中投入在各学段的经费占比(即所占比例)如图,根据图中提供的信息解答下列问题.(1)在2017年全国教育经费总投入中,义务教育段的经费总投入应该是多少亿元?(2)2016年全国教育经费总投入约为多少亿元?(精确到0.1)22.(8分)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:23.(8分)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?24.(10分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A顺时针旋转90°得到线段AC,反比例函数y=(k≠0,x>0)的图象经过点C.(1)求直线AB和反比例函数y=(k≠0,x>0)的解析式;(2)已知点P是反比例函数y=(k≠0,x>0)图象上的一个动点,求点P到直线AB距离最短时的坐标.25.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且=,连接FB,FD,FD交AB于点N.(1)若AE=1,CD=6,求⊙O的半径;(2)求证:△BNF为等腰三角形;(3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ON•OP=OE•OM.26.(10分)如图,直线y=x﹣3交x轴于点A,交y轴于点C,点B的坐标为(1,0),抛物线y=ax2+bx+c (a≠0)经过A,B,C三点,抛物线的顶点为点D,对称轴与x轴的交点为点E,点E关于原点的对称点为F,连接CE,以点F为圆心,CE的长为半径作圆,点P为直线y=x﹣3上的一个动点.(1)求抛物线的解析式;(2)求△BDP周长的最小值;(3)若动点P与点C不重合,点Q为⊙F上的任意一点,当PQ的最大值等于CE时,过P,Q两点的直线与抛物线交于M,N两点(点M在点N的左侧),求四边形ABMN的面积.2019年广西柳州市中考数学试卷参考答案与试题解析一、选择题(本大题共11小题,每小题3分,满分30分,在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得0分.)1.(3分)据CCTV新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为()A.0.1044×106辆B.1.044×106辆C.1.044×105辆D.10.44×104辆【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:104400用科学记数法表示应为1.044×105,故选:C.2.(3分)如图,这是一个机械零部件,该零部件的左视图是()A.B.C.D.【分析】根据左视图是从几何体左面看得到的图形解答即可.【解答】解:题中的几何体从左面看,得到的图形是一个长方形及其内部一个圆,如图所示:故选:C.3.(3分)下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A.当心吊物安全B.当心触电安全C.当心滑跌安全D.注意安全【分析】根据轴对称的性质可以判断答案;【解答】解:D答案的图形是轴对称图形,故选:D.4.(3分)计算:x(x2﹣1)=()A.x3﹣1B.x3﹣x C.x3+x D.x2﹣x 【分析】根据单项式乘以多项式的法则求解即可;【解答】解:x(x2﹣1)=x3﹣x;故选:B.5.(3分)反比例函数y=的图象位于()A.第一、三象限B.第二、三象限C.第一、二象限D.第二、四象限【分析】由反比例函数k>0,函数经过一三象限即可求解;【解答】解:∵k=2>0,∴反比例函数经过第一、三象限;故选:A.6.(3分)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D 【分析】直接利用圆周角定理进行判断.【解答】解:∵∠A与∠D都是所对的圆周角,∴∠D=∠A.故选:D.7.(3分)如图,在▱ABCD中,全等三角形的对数共有()A.2对B.3对C.4对D.5对【分析】平行四边形的性质是:对边相互平行且相等,对角线互相平分.这样不难得出:AD=BC,AB =CD,AO=CO,DO=BO,再利用“对顶角相等”就很容易找到全等的三角形:△ACD≌△CAB(SSS),△ABD≌△CDB(SSS),△AOD≌△COB(SAS),△AOB≌△COD(SAS).【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);①同理可得出△AOB≌△COD(SAS);②∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);③同理可得:△ACD≌△CAB(SSS).④因此本题共有4对全等三角形.故选:C.8.(3分)阅读【资料】,完成第8、9题.【资料】:如图,这是根据公开资料整理绘制而成的2004﹣2018年中美两国国内生产总值(GDP)的直方图及发展趋势线.(注:趋势线由Excel系统根据数据自动生成,趋势线中的y表示GDP,x表示年数)2004﹣2018年中美两国国内生产总值(GDP,单位:万亿美元)直方图及发展趋势线依据【资料】中所提供的信息,2016﹣2018年中国GDP的平均值大约是()A.12.30B.14.19C.19.57D.19.71【分析】根据算术平均数的公式即可计算.【解答】解:由图象可知,2016年至2018年的GDP值分别为:11.19,12.24,13.46.则=≈12.30故选:A.9.(3分)阅读【资料】,完成第8、9题.【资料】:如图,这是根据公开资料整理绘制而成的2004﹣2018年中美两国国内生产总值(GDP)的直方图及发展趋势线.(注:趋势线由Excel系统根据数据自动生成,趋势线中的y表示GDP,x表示年数)2004﹣2018年中美两国国内生产总值(GDP,单位:万亿美元)直方图及发展趋势线依据【资料】中所提供的信息,可以推算出中国的GDP要超过美国,至少要到()A.2052年B.2038年C.2037年D.2034年【分析】联立两个一次函数解析式,求解即可【解答】解:由图表信息,联立中美GDP趋势线解析式得解得x=∴2018+(﹣15)=故选:B.10.(3分)已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0)B.y=4x﹣3(x≥)C.y=3﹣4x(x≥0)D.y=3﹣4x(0≤x≤)【分析】根据路程=速度×时间,容易知道y与x的函数关系式.【解答】解:根据题意得:全程需要的时间为:3÷4=(小时),∴y=3﹣4x(0≤x≤).故选:D.11.(3分)小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为()A.B.C.D.【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【解答】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选:A.12.(3分)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=﹣1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i﹣9=﹣8+6i,因此,(1+3i)2的实部是﹣8,虚部是6.已知复数(3﹣mi)2的虚部是12,则实部是()A.﹣6B.6C.5D.﹣5【分析】先利用完全平方公式得出(3﹣mi)2=9﹣6mi+m2i2,再根据新定义得出复数(3﹣mi)2的实部是9﹣m2,虚部是﹣6m,由(3﹣mi)2的虚部是12得出m=﹣2,代入9﹣m2计算即可.【解答】解:∵(3﹣mi)2=32﹣2×3×mi+(mi)2=9﹣6mi+m2i2=9+m2i2﹣6mi=9﹣m2﹣6mi,∴复数(3﹣mi)2的实部是9﹣m2,虚部是﹣6m,∴﹣6m=12,∴m=﹣2,∴9﹣m2=9﹣(﹣2)2=9﹣4=5.故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.请将答案直接填写在答题卡中相应的横线上,在草稿纸、试卷上答题无效.)13.(3分)计算:7x﹣4x=3x.【分析】根据合并同类项法则计算可得.【解答】解:7x﹣4x=(7﹣4)x=3x,故答案为:3x.14.(3分)如图,若AB∥CD,则在图中所标注的角中,一定相等的角是∠1=∠3.【分析】利用平行线的性质进行判断.【解答】解:∵AB∥CD,∴∠1=∠3.故答案为15.(3分)柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:发芽频率依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是0.95(结果精确到0.01).【分析】概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概.【解答】解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种种子在此条件下发芽的概率约为0.95.故答案为:0.9516.(3分)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为5.【分析】先根据题意画出图形,再连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,由垂径定理及正方形的性质得出OE=BE=,再由勾股定理即可求解.【解答】解:如图所示,连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,∵OE⊥BC,∴OE=BE=,即a=5.故答案为:5.17.(3分)如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为.【分析】过A作AD垂直于BC,在直角三角形ABD中,利用锐角三角函数定义求出AD的长,在直角三角形ACD中,利用锐角三角函数定义求出CD的长,再利用勾股定理求出AC的长即可.【解答】解:过A作AD⊥BC,在Rt△ABD中,sin B=,AB=3,∴AD=AB•sin B=1,在Rt△ACD中,tan C=,∴=,即CD=,根据勾股定理得:AC===,故答案为:18.(3分)已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是7.【分析】根据5个数的平均数是8,可知这5个数的和为40,根据5个数的中位数是8,得出中间的数是8,根据众数是8,得出至少有2个8,再根据5个数的和减去2个8和1个9得出前面2个数的和为15,再根据方差得出前面的2个数为7和8,即可得出结果.【解答】解:∵5个数的平均数是8,∴这5个数的和为40,∵5个数的中位数是8,∴中间的数是8,∵众数是8,∴至少有2个8,∵40﹣8﹣8﹣9=15,由方差是0.4得:前面的2个数的为7和8,∴最小的数是7;故答案为:7..三、解答题(本大题共8小题,满分66分,解答时应写出必要的文字说明、演算步骤或推理过程请将解答写在答题卡中相应的区域内,画图或作辅助线时使用铅笔画出,确定后论须使用黑色字的签字笔描黑在草稿纸、试卷上答题无效.)19.(6分)计算:22+|﹣3|﹣+π0.【分析】先计算乘方、绝对值、算术平方根和零指数幂,再计算加减可得.【解答】解:原式=4+3﹣2+1=6.20.(6分)已知:∠AOB.求作:∠A′O′B′,使得∠A′O′B′=∠AOB.作法:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;③以点C′为圆心,CD长为半径画弧,与第②步中所画的弧相交于点D′;④过点D′画射线O′B′,则∠A′O′B′=∠AOB.根据上面的作法,完成以下问题:(1)使用直尺和圆规,作出∠A′O′B′(请保留作图痕迹).(2)完成下面证明∠A′O′B′=∠AOB的过程(注:括号里填写推理的依据).证明:由作法可知O′C′=OC,O′D′=OD,D′C′=DC,∴△C′O′D′≌△COD(SSS)∴∠A′O′B′=∠AOB.(全等三角形的对应角相等)【分析】(1)根据题意作出图形即可;(2)根据全等三角形的判定和性质即可得到结论.【解答】解:(1)如图所示,∠A′O′B′即为所求;(2)证明:由作法可知O′C′=OC,O′D′=OD,D′C′=DC,∴△C′O′D′≌△COD(SSS)∴∠A′O′B′=∠AOB.(全等三角形的对应角相等)故答案为:DC,SSS,全等三角形的对应角相等.21.(8分)据公开报道,2017年全国教育经费总投入为42557亿元,比上年增长9.43%,其中投入在各学段的经费占比(即所占比例)如图,根据图中提供的信息解答下列问题.(1)在2017年全国教育经费总投入中,义务教育段的经费总投入应该是多少亿元?(2)2016年全国教育经费总投入约为多少亿元?(精确到0.1)【分析】(1)根据扇形统计图中义务教育段的经费所占的百分比乘以42557亿元即可得到结论;(2)根据题意列式计算即可得到结论.【解答】解:(1)42557×45%=19150.65亿元,答:义务教育段的经费总投入应该是19150.65亿元;(2)42557÷(1+9.43%)≈38889.7亿元,答:2016年全国教育经费总投入约为38889.7亿元.22.(8分)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:【分析】连接AC,由SSS证明△ABC≌△CDA得出∠BAC=∠DCA,∠ACB=∠CAD,证出AB∥CD,BC∥AD,即可得出结论.【解答】证明:连接AC,如图所示:在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形.23.(8分)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?【分析】(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,根据数量=总价÷单价结合用8元购买大本作业本的数量与用5元购买小本作业本的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设大本作业本购买m本,则小本作业本购买2m本,根据总价=单价×数量结合总费用不超过15元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:=,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.24.(10分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A顺时针旋转90°得到线段AC,反比例函数y=(k≠0,x>0)的图象经过点C.(1)求直线AB和反比例函数y=(k≠0,x>0)的解析式;(2)已知点P是反比例函数y=(k≠0,x>0)图象上的一个动点,求点P到直线AB距离最短时的坐标.【分析】(1)将点A(1,0),点B(0,2),代入y=mx+b,可求直线解析式;过点C作CD⊥x轴,根据三角形全等可求C(3,1),进而确定k;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=,当△=h2﹣24=0时,点P到直线AB距离最短;【解答】解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=AB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=,此时点P到直线AB距离最短;∴P(,);25.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且=,连接FB,FD,FD交AB于点N.(1)若AE=1,CD=6,求⊙O的半径;(2)求证:△BNF为等腰三角形;(3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ON•OP=OE•OM.【分析】(1)连接BC,AC,AD,通过证明△ACE∽△CEB,可得,可求BE的长,即可求⊙O 的半径;(2)通过证明△ADE≌△NDE,可得∠DAN=∠DNA,即可证BN=BF,可得△BNF为等腰三角形;(3)通过证明△ODE∽△ODM,可得DO2=OE•OM,通过证明△PCO∽△CEO,可得CO2=PO•ON,即可得结论.【解答】解:(1)如图1,连接BC,AC,AD,∵CD⊥AB,AB是直径∴,CE=DE=CD=3∴∠ACD=∠ABC,且∠AEC=∠CEB∴△ACE∽△CEB∴∴∴BE=9∴AB=AE+BE=10∴⊙O的半径为5(2)∵=∴∠ACD=∠ADC=∠CDF,且DE=DE,∠AED=∠NED=90°∴△ADE≌△NDE(ASA)∴∠DAN=∠DNA,AE=EN∵∠DAB=∠DFB,∠AND=∠FNB∴∠FNB=∠DFB∴BN=BF,∴△BNF是等腰三角形(3)如图2,连接AC,CE,CO,DO,∵MD是切线,∴MD⊥DO,∴∠MDO=∠DEO=90°,∠DOE=∠DOE∴△MDO∽△DEO∴∴OD2=OE•OM∵AE=EN,CD⊥AO∴∠ANC=∠CAN,∴∠CAP=∠CNO,∵∴∠AOC=∠ABF∵CO∥BF∴∠PCO=∠PFB∵四边形ACFB是圆内接四边形∴∠P AC=∠PFB∴∠P AC=∠PFB=∠PCO=∠CNO,且∠POC=∠COE∴△CNO∽△PCO∴∴CO2=PO•NO,∴ON•OP=OE•OM.26.(10分)如图,直线y=x﹣3交x轴于点A,交y轴于点C,点B的坐标为(1,0),抛物线y=ax2+bx+c (a≠0)经过A,B,C三点,抛物线的顶点为点D,对称轴与x轴的交点为点E,点E关于原点的对称点为F,连接CE,以点F为圆心,CE的长为半径作圆,点P为直线y=x﹣3上的一个动点.(1)求抛物线的解析式;(2)求△BDP周长的最小值;(3)若动点P与点C不重合,点Q为⊙F上的任意一点,当PQ的最大值等于CE时,过P,Q两点的直线与抛物线交于M,N两点(点M在点N的左侧),求四边形ABMN的面积.【分析】(1)直线y=x﹣3,令x=0,则y=﹣3,令y=0,则x=3,故点A、C的坐标为(3,0)、(0,﹣3),即可求解;(2)过点B作直线y=x﹣3的对称点B′,连接BD交直线y=x﹣3于点P,直线B′B交函数对称轴与点G,则此时△BDP周长=BD+PB+PD=BD+B′B为最小值,即可求解;(3)如图2所示,连接PF并延长交圆与点Q,此时PQ为最大值,即可求解.【解答】解:(1)直线y=x﹣3,令x=0,则y=﹣3,令y=0,则x=3,故点A、C的坐标为(3,0)、(0,﹣3),则抛物线的表达式为:y=a(x﹣3)(x﹣1)=a(x2﹣4x+3),则3a=﹣3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+4x﹣3…①;(2)过点B作直线y=x﹣3的对称点B′,连接BD交直线y=x﹣3于点P,直线B′B交函数对称轴与点G,连接AB′,则此时△BDP周长=BD+PB+PD=BD+B′B为最小值,D(2,1),则点G(2,﹣1),即:BG=EG,即点G是BB′的中点,过点B′(3,﹣2),△BDP周长最小值=BD+B′B=;(3)如图2所示,连接PF并延长交圆与点Q,此时PQ为最大值,点A、B、C、E、F的坐标为(3,0)、(1,0)、(0,﹣3)、(2,0)、(﹣2,0),则CE=,FQ=CE,则PF=CE﹣CE=,设点P(m,m﹣3),点F(﹣2,0),PF2=13=(m﹣2)2+(m﹣3)2,解得:m=1,故点P(1,﹣2),将点P、F坐标代入一次函数表达式并解得:直线PF的表达式为:y=﹣x﹣…②,联立①②并解得:x=,故点M、N的坐标分别为:(,)、(,),过点M、N分别作x轴的垂线交于点S、R,则S四边形ABMN=S梯形NRSM﹣S△ARN﹣S△SBM=.。

广西柳州市2019-2020学年中考数学试卷(含答案)

广西柳州市2019-2020学年中考数学试卷(含答案)

广西柳州市2019-2020学年中考数学试卷(含答案)一、单选题1.计算:()A. B. 2 C. 0 D.【答案】A【考点】有理数的加法2.下列图形中,是中心对称图形的是()A. B. C. D.【答案】B【考点】中心对称及中心对称图形3.现有四张扑克牌:红桃、黑桃、梅花和方块.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃的概率为()A. 1B.C.D.【答案】B【考点】简单事件概率的计算4.世界人口约7000000000人,用科学记数法可表示为()A.B.C.D.【答案】C【考点】科学记数法—表示绝对值较大的数5.如图,在中,,,,则()A. B. C. D.【答案】A【考点】勾股定理,锐角三角函数的定义6.如图,,,,是上的四个点,,,则的度数为()A.B.C.D.【答案】 D【考点】圆周角定理7.苹果原价是每斤元,现在按8折出售,假如现在要买一斤,那么需要付费()A. 元B. 元C. 元D. 元【答案】A【考点】列式表示数量关系8.如图是某年参加国际教育评估的15个国家学生的数学平均成绩的扇形统计图,由图可知,学生的数学平均成绩在之间的国家占()A. B. C. D.【答案】 D【考点】利用统计图表分析实际问题9.计算:()A. B. C. D.【答案】B【考点】单项式乘单项式10.已知反比例函数的解析式为,则的取值范围是()A. B. C. D.【答案】C【考点】反比例函数的定义二、填空题11.如图,,若,则________ .【答案】46【考点】平行线的性质12.如图,在平面直角坐标系中,点的坐标是________.【答案】(﹣2,3)【考点】点的坐标13.不等式的解集是________.【答案】x≥﹣1【考点】解一元一次不等式14.一元二次方程的解是________.【答案】x1=3,x2=﹣3【考点】直接开平方法解一元二次方程15.篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为________.【答案】【考点】二元一次方程组的实际应用-鸡兔同笼问题16.如图,在中,,,,,则的长为________.【答案】5【考点】含30度角的直角三角形,勾股定理,相似三角形的判定与性质三、解答题17.计算:2 +3.【答案】解:2 +3=4+3=7.【考点】实数的运算18.如图,和相交于点,,.求证:.【答案】解:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【考点】三角形全等的判定19.一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.【答案】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m【考点】平均数及其计算20.解方程:.【答案】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.【考点】解分式方程21.如图,四边形是菱形,对角线,相交于点,且.(1)求菱形的周长;(2)若,求的长.【答案】(1)解:∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8(2)解:∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO ,∴BD=2【考点】勾股定理,菱形的性质22.如图,一次函数的图象与反比例函数的图象交于,,两点.(1)求该反比例函数的解析式;(2)求的值及该一次函数的解析式.【答案】(1)解:∵反比例函数y 的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y ;(2)解:把B(,n)代入反比例函数解析式,可得n=3,解得n=﹣6,∴B(,﹣6),把A(3,1),B(,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5【考点】待定系数法求一次函数解析式,待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题23.如图,为的内接三角形,为的直径,过点作的切线交的延长线于点.(1)求证:;(2)过点作的切线交于点,求证:;(3)若点为直径下方半圆的中点,连接交于点,且,,求的长.【答案】(1)证明:∵AB是⊙O直径,∴∠ACD=∠ACB=90°.∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°.∵∠D=∠D,∴△DAC∽△DBA;(2)证明:∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA.∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE AD(3)解:如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD 2,过点G作GH⊥BD于H,∴tan∠ABD 2,∴GH=2BH.∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH.在Rt△ABC中,tan∠ABC 2,∴AC=2BC,根据勾股定理得:AC2+BC2=AB2,∴4BC2+BC2=9,∴BC ,∴3BH ,∴BH ,∴GH=2BH .在Rt△CHG中,∠BCF=45°,∴CG GH .【考点】圆周角定理,切线的性质,相似三角形的判定与性质,解直角三角形的应用,切线长定理24.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.【答案】(1)解:由题意A(,0),B(﹣3 ,0),C(0,﹣3),设抛物线的解析式为y=a (x+3 )(x ),把C(0,﹣3)代入得到a ,∴抛物线的解析式为y x2x﹣3 (2)解:在Rt△AOC中,tan∠OAC ,∴∠OAC=60°.∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y x﹣1,由题意P(m,m2m﹣3),H(m,m﹣1),F(m,0).∵FH=PH,∴1 m﹣1﹣(m2m﹣3)解得m 或(舍弃),∴当FH=HP时,m的值为(3)解:如图,∵PF是对称轴,∴F(,0),H(,﹣2).∵AH⊥AE,∴∠EAO=60°,∴EO OA=3,∴E(0,3).∵C(0,﹣3),∴HC 2,AH=2FH=4,∴QH CH=1,在HA上取一点K,使得HK ,此时K().∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴.∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQ AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,相似三角形的判定与性质,二次函数与一次函数的综合应用,二次函数的实际应用-动态几何问题。

柳州市2019-2020学年中考数学模拟试卷

柳州市2019-2020学年中考数学模拟试卷一、选择题1.如图,CE ,BF 分别是△ABC 的高线,连接EF ,EF=6,BC=10,D 、G 分别是EF 、BC 的中点,则DG 的长为 ( )A.6B.5C.4D.32.下列计算正确的是( ) A .224a a a += B .()2326a a =C .()23533a aa -=-gD .623422a a a ÷=3.在平面直角坐标系中,已知点()1,4A -,()2,1B ,直线AB 与x 轴和y 轴分别交于点M ,N ,若抛物线22y x bx =-+与直线AB 有两个不同的交点,其中一个交点在线段AN 上(包含A ,N 两个端点),另一个交点在线段BM 上(包含B ,M 两个端点),则b 的取值范围是A .512b ≤≤B .1b ≤或52b ≥C .51123b ≤≤ D .52b ≤或113b ≥ 4.将抛物线y =x 2﹣2x+3向上平移1个单位,平移后所得的抛物线的表达式为( ) A .y =x 2﹣2x+4 B .y =x 2﹣2x+2C .y =x 2﹣3x+3D .y =x 2﹣x+35.把一副三角板按如图所示摆放,使FD BC ∕∕,点E 恰好落在CB 的延长线上,则BDE ∠的大小为( )A .10︒B .15︒C .25︒D .30°6.一个不透明的布袋里装有1个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为( ) A .16B .15C .13D .127.如图,已知AB=A 1B ,A 1C=A 1A 2,A 2D=A 2A 3,A 3E=A 3A 4,若∠B=20°,则∠A=_____,4A ∠=______.( )A .80°,40°B .80°,30°C .80°,20°D .80°,10°8.如图,△ABC 中,下面说法正确的个数是( )个. ①若O 是△ABC 的外心,∠A =50°,则∠BOC =100°; ②若O 是△ABC 的内心,∠A =50°,则∠BOC =115°; ③若BC =6,AB+AC =10,则△ABC 的面积的最大值是12; ④△ABC 的面积是12,周长是16,则其内切圆的半径是1.A .1B .2C .3D .4 9.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为( ) A .44×106B .4.4×107C .4.4×108D .0.44×10810.下列运算正确的是( )A .2a 2b ﹣ba 2=a 2bB .a 6÷a 2=a 3C .(ab 2)3=a 2b 5D .(a+2)2=a 2+411.如果三角形的两边长分别为方程x 2﹣8x+15=0的两根,则该三角形周长L 的取值范围是( ) A .6<L <15B .6<L <16C .10<L <16D .11<L <1312.甲、乙、丙三个人玩一种游戏,每玩一局都会将三人随机分成两组.积分方法举例说明:第一局甲、乙胜出,分别获得3分,丙获得﹣6分;第二局甲胜出获得12分,乙、丙分别获得﹣6分,两局之后的积分是:甲15分,乙﹣3分,丙﹣12.如表是三人的逐局积分统计表,计分错误开始于( )二、填空题13.因式分解:3223x 6x y 3xy -+=______.14.如图,直线y 1=kx+b 与直线y 2=mx 交于点P (1,m ),则不等式mx >kx+b 的解集是 ______15.若关于x 的二次函数22(1)y ax a x a =+--的的图象与x 轴的一个交点的坐标为(m ,0),若1<m <3,则a 的取值范围为______ .16.在ABCD □中,BC 边上的高为4,5AB =,AC =ABCD □的周长等于______. 17.将32363x x x -+分解因式,其结果为_________. 18.分解因式:3x 2y ﹣12xy+12y =_____. 三、解答题19.已知:△ABC 的两边AB 、BC 的长是关于x 的一元二次方程x 2﹣(2k+2)x+k 2+2k =0的两个实数根,第三边长为10.问当k 为何值时,△ABC 是等腰三角形?20.如图,在平面直角坐标系xOy 中,直线l x ∥轴,且直线l 与抛物线24y x x =-+和y 轴分别交于点A ,B ,C ,点D 为抛物线的顶点.若点E 的坐标为()1,1,点A 的横坐标为1.(1)线段AB 的长度等于________;(2)点P 为线段AB 上方抛物线上的一点,过点P 作AB 的垂线交AB 于点H ,点F 为y 轴上一点,当PBE △的面积最大时,求2PH HF FO ++的最小值; (3)在(2)的条件下,删除抛物线24y x x =-+在直线PH 左侧部分图象并将右侧部分图象沿直线PH 翻折,与抛物线在直线PH 右侧部分图象组成新的函数M 的图象.现有平行于FH 的直线1:l y mx t =+,若直线1l 与函数M 的图象有且只有2个交点,求t 的取值范围(请直接写出t 的取值范围,无需解答过程). 21.(问题)用n 个2×1矩形,镶嵌一个2×n 矩形,有多少种不同的镶嵌方案?(2×n 矩形表示矩形的邻边是2和n )(探究)不妨假设有a n 种不同的镶嵌方案.为探究a n 的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.探究一:用1个2×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案? 如图(1),显然只有1种镶嵌方案.所以,a 1=1.探究二:用2个2×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?如图(2),显然只有2种镶嵌方案.所以,a2=2.探究三:用3个2×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?一类:在探究一每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有1种镶嵌方案;二类:在探究二每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有2种镶嵌方案;如图(3).所以,a3=1+2=3.探究四:用4个2×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案?一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有种镶嵌方案;二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有种镶嵌方案;所以,a4=.探究五:用5个2×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案?(仿照上述方法,写出探究过程,不用画图)……(结论)用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?(直接写出a n与a n﹣1,a n﹣2的关系式,不写解答过程).(应用)用10个2×1矩形,镶嵌一个2×10矩形,有种不同的镶嵌方案.22.在今年的中考志愿填报时,小明对我市某职业学校的三个专业都很感兴趣:A数控加工,B汽车检测,C动漫设计,但是志愿表中只能选填其中 2个专业,分别称作“专业一”和“专业二”.(1)小明专业一填报“C动漫设计”的概率是;(2)利用列表或树状图求小明恰好填报“A数控加工”和“C动漫设计”的概率.23.某中学为了丰富同学们的课外活动生活,开设了“第二课堂”.课堂设置了十几个动项目,根据(1)班学生报名参加的项目,绘制成如下的不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题(1)这个班学生人数有人;(2)补全条形统计图,在扇形统计图中其它项目所对的圆心角为;(3)喜欢羽毛球的有3名女同学,其余为男同学,现要从中随机抽取2名同学参加学校的羽毛球队,用列表或树状图求出所抽取的2名同学,恰好2人都是男同学的概率.24.如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ= ,求QD的长(结果保留 );(3)若△APO的外心在扇形COD的内部,求OC的取值范围.25.已知A,B,C 是半径为2的O 上的三个点,四边形OABC 是平行四边形,过点C 作O 的切线,交AB 的延长线于点D .(Ⅰ)如图1,求ADC ∠的大小;(Ⅱ)如图2,取AB 的中点F ,连接OF ,与AB 交于点E ,求四边形EOCD 的面积.【参考答案】*** 一、选择题13.23x(x y)- 14.x>1 15.113a <<或31a -<<- 16.12或20 17.23(1)x x - 18.3y (x ﹣2)2三、解答题 19.k =8或10 【解析】 【分析】因为方程有两个实根,所以△>0,从而用k 的式子表示方程的解,根据△ABC 是等腰三角形,分AB =AC ,BC =AC ,两种情况讨论,得出k 的值. 【详解】∵△=[﹣(2k+2)]2﹣4(k 2+2k)=4k 2+8k+4﹣4k 2﹣8k=4>0,∴x =()222k --+⎡⎤⎣⎦,∴x 1=k+2,x 2=k ,设AB =k+2,BC =k ,显然AB≠BC, 而△ABC 的第三边长AC 为10,(1)若AB =AC ,则k+2=10,得k =8,即k =8时,△ABC 为等腰三角形;(2)若BC =AC ,则k =10,即k =10时.△ABC 为等腰三角形. 【点睛】本题考查了一元二次方程的根,公式法,解本题要充分利用条件,选择适当的方法求解k 的值,从而证得△ABC 为等腰三角形.20.(1)2 (2) 34+ (3) t 的取值范围为:t <134.【解析】 【分析】(1)先求抛物线y=-x 2+4x 的对称轴,由于已知点A 的坐标,再利用对称性可求点B 坐标;从而得AB 的长度;(2)先根据B 和E 坐标得出BE 的解析式,然后设与其平行的直线为y=x+b ,过点H 作y=-x 的垂线,可求得HF 和FO ,从而得解;(3)可根据顶点位置的变动,得出抛物线y=-x 2+4x 右侧部分图象沿直线PH 翻折后抛物线的解析式;由(2)FH 直线解析式,平行于FH 的直线l 1:y=mx+t ,其m 值可求;令y=mx+t 与翻折后抛物线相切,可求得t 的临界值,结合图象可得最后答案. 【详解】解:(1)抛物线y =﹣x 2+4x 的对称轴为直线422(1)x ==⨯-.∵点A 的横坐标为1.代入y =﹣x 2+4x 得:y =3,∴A (1,3),由抛物线的对称性得:点B 的坐标为(3,3). ∴AB =2. 故答案为:2.(2)∵B (3,3),E (1,1),∴直线BE 解析式为y =x ,作l ∥BE ,且与抛物线相切,则可设l 的解析式为:y =x+b .根据该直线与抛物线相切,列一元二次方程,令其判别式为0,可求得b 的值,从而得点P 的坐标,进而得点H 坐标及PH 长,∴x+b =﹣x 2+4x ,即x 2﹣3x+b =0, ∴△=9﹣4b =0,b =94, ∴x 2﹣3x+94=0, ∴切点为:x =32,y =154,∴PH =154﹣3=34过点H 作y =﹣x 的垂线,交y =﹣x 于点G ,交y 轴于点F ,则GF =2FO ,∠FGO =∠OFG =∠CFH =∠CHF =45°,3,2CF CH HF ∴===3,224OF CO CF GF =-===332444PH HF FO +++=+=.∴PH+HF+2FO 的最小值为:34. (3)在(2)的条件下,平行于FH 的直线l 1:y =mx+t ,若直线l 1与函数M 的图象有且只有2个交点,∵∠CFH =45°,l 1∥FH , ∴m =1,y =x+t ,∵抛物线y =﹣x 2+4x 的顶点D 为(2,4),点H 为(32,3)点P 为(32,154),∴抛物线y =﹣x 2+4x 右侧部分图象沿直线PH 翻折后抛物线顶点为(1,4),其解析式为y =﹣x 2+2x+3.当直线y =x+t 与抛物线y =﹣x 2+2x+3相切时,x+t =﹣x 2+2x+3, ∴x 2﹣x+t ﹣3=0,△=1﹣4(t ﹣3)=13﹣4t =0 ∴t =134; ∴t <134时直线l 1与函数M 的图象有且只有2个交点. ∴t 的取值范围为:t <134. 【点睛】二次函数的综合题,考查了二次函数的对称性,函数的最值,以及一次函数与二次函数的图象交点个数问题,综合性比较强.21.(1)2,3,5;(2)a n =a n ﹣1+a n ﹣2;(3)89. 【解析】 【分析】探究四:画图进行说明:a 4=2+3=5;探究五:同理在探究三每个镶嵌图的右侧再横着镶嵌2个2×1矩形和探究四每个镶嵌图的右侧再竖着镶嵌个1个2×1矩形,相加可得结论; 结论:根据探究四和五可得规律:a n =a n-1+a n-2;应用:利用结论依次化简,将右下小标志变为5和4,并将探究四和五的值代入可得结论. 【详解】 解:探究四: 如图4所示:一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有2种镶嵌方案; 二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有3种镶嵌方案; 所以,a 4=2+3=5. 故答案为:2,3,5; 探究五:一类:在探究三每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有3种镶嵌方案; 二类:在探究四每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有5种镶嵌方案; 所以,a 5=3+5=8. ……结论:a n =a n ﹣1+a n ﹣2;应用:a 10=a 9+a 8=a 7+a 8+a 8=2a 8+a 7=2(a 7+a 6)+a 7=3a 7+2a 6=3(a 6+a 5)+2a 6=5a 6+3a 5=5(a 5+a 4)+3a 5=8a 5+5a 4=8×8+5×5=89. 故答案为:89. 【点睛】本题是规律型问题和方案作图题,主要考查了计数方法,培养学生根据已知问题和图形的关系,进行分析推断,得出规律的能力,并运用类比的方法解决问题. 22.(1)13(2)P=13【解析】 【分析】(1)根据概率公式可直接得出结果; (2)画出树状图,根据概率的求法求解即可. 【详解】解:(1)小明专业一填报“C 动漫设计”的概率是13; (2)画树状图如下:由树状图可知一共有6种情况,其中恰好填报“A 数控加工”和“C 动漫设计”占两种, ∴P=13. 【点睛】本题主要考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.23.(1)50;(2)答案见解析,108°;(3)1 10.【解析】【分析】(1)根据篮球的人数与占比即可求出这个班的人数;(2)求出羽毛球的人数及对应的圆心角即可;(3)根据题意画出树状图,即可用概率公式进行求解. 【详解】解:(1)这个班学生人数有2040%=50(人),故答案为:50;(2)羽毛球的人数有50﹣20﹣10﹣15=5人,补图如下:其它项目所对的圆心角为:360°×1550=108°;故答案为:108°;(3)根据题意画树状图如下:共有20种等情况数,恰好2人都是男同学的有2种,则恰好2人都是男同学的概率是220=110.【点睛】此题主要考查概率与统计,解题的关键是根据题意求出总人数,再根据题意画出树状图求概率.24.(1)详见解析;(2)143;(3)4<OC<8.【解析】【分析】(1)连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=QBOB,由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得OQ=4,结合题意可得∠QOD度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO的外心是OA的中点,结合题意可得OC取值范围. 【详解】(1)证明:连接OQ.∵AP 、BQ 是⊙O 的切线, ∴OP ⊥AP ,OQ ⊥BQ , ∴∠APO=∠BQO=90∘, 在Rt △APO 和Rt △BQO 中,OP OQOA OB =⎧⎨=⎩, ∴Rt △APO ≌Rt △BQO , ∴AP=BQ.(2)∵Rt △APO ≌Rt △BQO , ∴∠AOP=∠BOQ , ∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cosB=QB OB ==∴∠B=30∘,∠BOQ= 60° , ∴OQ=12OB=4, ∵∠COD=90°,∴∠QOD= 90°+ 60° = 150°, ∴优弧QD 的长=2104141803ππ⋅⋅=,(3)解:设点M 为Rt △APO 的外心,则M 为OA 的中点, ∵OA=8, ∴OM=4,∴当△APO 的外心在扇形COD 的内部时,OM <OC , ∴OC 的取值范围为4<OC <8. 【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL 证出Rt △APO ≌Rt △BQO ;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.25.(Ⅰ)∠ADC=90°;(Ⅱ)EOCD S =四边形【解析】 【分析】(Ⅰ)由切线的性质可得出∠OCD=90°,根据平行线的性质可得∠ADC=180°-∠OCD ,即可得出答案;(Ⅱ)连接OB ,由四边形OABC 是平行四边形可证明△AOB 是等边三角形,根据F 是AB 的中点可求出∠FOB=∠FOA=30°,进而可求出OE 的长,根据∠OCD=∠ADC=90°,可证明四边形EOCD 是矩形,根据矩形面积公式即可得答案. 【详解】(Ⅰ)∵CD 是O 的切线,C 为切点.∴OC CD ⊥,即90OCD ∠=︒.∵四边形OABC 是平行四边形,∴AB OC ,即AD OC .有180ADC OCD ∠+∠=︒.∴18090ADC OCD ∠=︒-∠=︒.(Ⅱ)如图,连接OB ,则OB OA OC ==.∵四边形OABC 是平行四边形,∴OC AB =.∴OA OB AB ==.即AOB ∆是等边三角形.∴60AOB ABO ∠=∠=︒,∵F 是AB 的中点,∴=AF BF , ∴1302FOB FOA AOB ∠=∠=∠=︒. ∴90BEO ∠=︒.在Rt BEO ∆中,30FOB ∠=︒,2OB =,∴30OE cos OB =︒=,可得OE =又由(Ⅰ):D 90OCD A C ∠∠==︒∴四边形EOCD 为矩形.∴EOCD S OE OC =⋅=四形边.【点睛】本题考查切线的性质、等边三角形的判定、矩形的判定及锐角的三角函数,证明△AOB 是等边三角形是解题关键.。

广西柳州市鱼峰区第八中学2019-2020学年中考数学模拟试卷

广西柳州市鱼峰区第八中学2019-2020学年中考数学模拟试卷一、选择题1.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸2.下列计算正确的是()3.如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A.52°B.64°C.48°D.42°4.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>12B.m>4C.m<4 D.12<m<45.一元二次方程(x﹣1)(x+5)=3x+2的根的情况是()A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.方程的根是1、﹣5和6.如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为()A. B. C.6 D.7.下列式子计算正确的是().A. B. C. D.8.如果2310a a++=,那么代数式229263a aa a⎛⎫++⋅⎪+⎝⎭的值为()A.1 B.1-C.2 D.2-9.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1,BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B②当x=1时,四边形ABC1D1是菱形③当x=2时,△BDD1为等边三角形④s(x﹣2)2(0<x<2),其中正确的有()A.1 个B.2 个C.3 个D.4 个10.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是( )A. B.C.D.11.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是()A. B. C. D.12.如图,点A在反比例函数y=8x(x>0)图象上,点B在y轴负半轴上,连结AB交x轴于点C,若△AOC的面积为1,则△BOC的面积为()A .14B .13C .12D .1二、填空题13.请你写出一个正方形具有而平行四边形不一定具有的特征:______ .1415.如图,AB 是⊙O 的直径,OB=3,BC 是⊙O 的弦,∠ABC 的平分线交⊙O 于点D ,连接OD ,若∠BAC=20°,则的长等于 .16.某时刻在南京中华门监测点监测到PM 2.5的含量为55微克/米3,即0.000055克/米3,将0.000055用科学记数法表示为_____.17.如图,函数k y x=在第一象限内的图像上的点 A 、B 、C 的横坐标别为 1、2、3,若 AB=3BC 则该k 的值为______.18.使式子11x-有意义的x 的取值范围是_____. 三、解答题19.如图,AB 是⊙O 的直径,AD 、BD 是半圆的弦,且∠PDA =∠PBD .(1)求证:PD 是⊙O 的切线;(2)如果tan BDE ∠=PD ,求PA 的长.20.如图1,在平面直角坐标系中,AB =OB =8,∠ABO =90°,∠yOC =45°,射线OC 以每秒2个单位长度的速度向右平行移动,当射线OC 经过点B 时停止运动,设平行移动x 秒后,射线OC 扫过Rt △ABO 的面积为y .(1)求y 与x 之间的函数关系式;(2)当x =3秒时,射线OC 平行移动到O′C′,与OA 相交于G ,如图2,求经过G ,O ,B 三点的抛物线的解析式;(3)现有一动点P 在(2)中的抛物线上,试问点P 在运动过程中,是否存在△POB 的面积S =8的情况?若存在,求出点P 的坐标,若不存在,请说明理由.21.如图,在平面直角坐标系中,直线y=34x+6与x 、y 轴分别交于点A,点B,双曲线的解析式为k y x=(1)求出线段AB 的长(2)在双曲线第四象限的分支上存在一点C,使得CB ⊥AB,且CB=AB,求k 的值;(3)在(1)(2)的条件下,连接AC,点D 为BC 的中点,过D 作AC 的垂线BF,交AC 于B,交直线AB 于F,连AD,若点P 为射线AD 上的一动点,连接PC 、PF,当点P 在射线AD 上运动时,PF 2-PC 2的值是否发生改变?若改变,请求出其范围;若不变,请证明并求出定值。

广西柳州市第十五中学2019-2020学年度九年级段考试题(pdf版,无答案)


度.
18.如图,抛物线 y=ax2+bx+c 过点(﹣1,0),且对称轴为直线 x=1,有下列结论:
①abc>0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则 y1>y2;④无论 a,b,c 取何值,抛
物线都经过同一个点(﹣ ,0);⑤am2+bm+a 0,其中所有正确的结论是
D.△ABC 与△DEF 关于点 B 中心对称
20. 用公式法解一元二次方程:5x2﹣3x=x+1.
12.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A 点在(5,1),若再摆放一枚黑棋子, 21.已知:一个二次函数的图象经过(﹣1,10),(1,4),(2,7)三点,求出这个二次函数解析式.
第 3页(共 3页)
第 2页(共 3页)
24.新欣商场经营某种新型电子产品,购进时的价格为 20 元/件.根据市场预测,在一段时间内,销售价格为 40 元/件时,销售量为 200 件,销售单价每降低 1 元,就可多售出 20 件. (1)写出销售量 y(件)与销售单价 x(元)之间的函数关系式; (2)写出销售该产品所获利润 W(元)与销售单价 x(元)之间的函数关系式,并求出商场获得的最大利润; (3)若商场想获得不低于 4000 元的利润,同时要完成不少于 320 件的该产品销售任务,该商场应该如何确 定销售价格.
A.2(1+x)2=2.88
B.2x2=2.88
C.2(1+x%)2=2.88
D.2(1+x)+2(1+x)2=2.88
11.如图,△ABC 绕点 O 旋转 180°得到△DEF,下列说法错误的是( )

(3份试卷汇总)2019-2020学年广西省柳州市中考数学质量跟踪监视试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A.4 B.﹣4 C.2 D.±22.对于反比例函数2yx=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小3.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A.90°B.30°C.45°D.60°4.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()DC=3OG;(2)OG= 12BC;(3)△OGE是等边三角形;(4)16AOE ABCD S S∆=矩形.A.1 B.2 C.3 D.45.下列各曲线中表示y是x的函数的是()A.B.C.D.6.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A .10,15B .13,15C .13,20D .15,158.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( )A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<<9.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( )A .480480420x x-=- B .480480204x x -=+ C .480480420x x -=+ D .480480204x x -=- 10.下列各式:①33+3=63;②177=1;③2+6=8=22;④243=22;其中错误的有( ).A .3个B .2个C .1个D .0个二、填空题(本题包括8个小题)11.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x 的取值范围是_____.12.分解因式:32a 4ab -= .13.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C 处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°,已知楼房高AB 约是45 m ,根据以上观测数据可求观光塔的高CD 是______m.14.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点A′,B ,则的值为_________.15.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 _______mm .16.如图,等腰△ABC 的周长为21,底边BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为____.17.如图,一束光线从点A(3,3)出发,经过y 轴上点C 反射后经过点B(1,0),则光线从点A 到点B 经过的路径长为_____.18.如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是 ▲ .三、解答题(本题包括8个小题)19.(6分)如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =10t ﹣5t 1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t 在什么范围时,飞行高度不低于15m ?20.(6分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D 表示).21.(6分)已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.22.(8分)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F .求证:OE =OF .23.(8分)如图,AB 是⊙O 的直径,C 是弧AB 的中点,弦CD 与AB 相交于E .若∠AOD =45°,求证:CE 2ED ;(2)若AE =EO ,求tan ∠AOD 的值.24.(10分)先化简,再求值:222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,其中x 的值从不等式组1214x x -⎧⎨-<⎩的整数解中选取.25.(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x (元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?26.(12分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.求证:△ADF∽△ACG;若12ADAC=,求AFFG的值.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】根据点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,24a=,解得:2a=±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 2.C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化3.C【解析】【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边 为等腰直角三角形.相等,故CEF4.C【解析】∵EF⊥AC,点G是AE中点,∴OG=AG=GE=1AE,2∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,, ∵O 为AC 中点, ∴,∴BC=12,在Rt △ABC 中,由勾股定理得,, ∵四边形ABCD 是矩形,∴CD=AB=3a ,∴DC=3OG ,故(1)正确;∵OG=a ,12, ∴OG≠12BC ,故(2)错误;∵S△AOE =12,S ABCD 2,∴S △AOE =16S ABCD ,故(4)正确; 综上所述,结论正确是(1)(3)(4)共3个,故选C .【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.5.D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确.故选D .6.C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.41.9,③段上.故选C考点:实数与数轴的关系7.D【解析】【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D. 【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.8.D【解析】【分析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M的坐标是(4,3),∴点M到x轴的距离是3,到y轴的距离是4,∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,∴r的取值范围是3<r<4,故选:D.【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.9.C【解析】【分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.10.A【解析】②17 ,错误;不能计算;,正确. 故选A.二、填空题(本题包括8个小题)11.12x ≤ 【解析】【分析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x , x=12,此时无输出值 当x >12时,数值越来越大,会有输出值; 当x <12时,数值越来越小,不可能大于10,永远不会有输出值 故x≤12, 故答案为x≤12. 【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.12.()()a a 2b a 2b +-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4ba a 2b a 2b -=-=+-. 13.135【解析】试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt △ABD 中,因为AB=45m ,所以AD=m ,所以在Rt △ACD 中,AD=.考点:解直角三角形的应用.14【解析】【详解】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=32m,∴A′(12m,3m),∵反比例函数y=kx(k≠0)的图象恰好经过点A′,B,∴12m•3m=m,∴m=43,∴k=43.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.15.7×10-1.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0007=7×10-1.故答案为:7×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.3【解析】试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.17.2【解析】【分析】延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.【详解】解:如图所示,延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB = AC+CB′= AB′=2.即光线从点A到点B经过的路径长为2.考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键18.-2<x<-1或x>1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k 1x <2k x +b 的解集即k 1x -b <2kx的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y =k 1x -b 在双曲线2k y=x下方的自变量x 的取值范围即可.而直线y =k 1x -b 的图象可以由y =k 1x +b 向下平移2b 个单位得到,如图所示.根据函数2k y=x图象的对称性可得:直线y =k 1x -b 和y =k 1x +b 与双曲线2k y=x的交点坐标关于原点对称. 由关于原点对称的坐标点性质,直线y =k 1x -b 图象与双曲线2ky=x图象交点A′、B′的横坐标为A 、B 两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x <-1或x >1时,直线y =k 1x -b 图象在双曲线2k y=x图象下方. ∴不等式k 1x <2k x+b 的解集是-2<x <-1或x >1. 三、解答题(本题包括8个小题)19.(1)小球飞行时间是1s 时,小球最高为10m ;(1) 1≤t≤3. 【解析】 【分析】(1)将函数解析式配方成顶点式可得最值; (1)画图象可得t 的取值. 【详解】(1)∵h =﹣5t 1+10t =﹣5(t ﹣1)1+10, ∴当t =1时,h 取得最大值10米;答:小球飞行时间是1s 时,小球最高为10m ; (1)如图,由题意得:15=10t﹣5t1,解得:t1=1,t1=3,由图象得:当1≤t≤3时,h≥15,则小球飞行时间1≤t≤3时,飞行高度不低于15m.【点睛】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.20.(1)34.(2)公平.【解析】【详解】试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:A B C DA (A,B)(A,C)(A,D)共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种, ∴P (两张都是轴对称图形)=12,因此这个游戏公平. 考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法. 21.(1)详见解析;(2)EF =【解析】 【分析】(1)根据题意AB 平分BAD ∠可得90AGF AGD ∠=∠=︒,从而证明()FAG DAG ASA ∆≅∆即可解答 (2)由(1)可知6AF AD ==,再根据四边形ABCD 是平行四边形可得642BF AF AB =-=-=,过点F 作FH EB ⊥延长线于点H ,再根据勾股定理即可解答 【详解】 (1)证明:AB 平分BAD ∠FAG DAG ∴∠=∠ DG AE ⊥90AGF AGD ∴∠=∠=︒又AG AG =()FAG DAG ASA ∴∆≅∆ GF GD ∴=又DF AE ⊥EF ED ∴=(2)FAG DAG ∆≅∆6AF AD ∴==四边形ABCD 是平行四边形//AD BC ∴,6BC AD ==180********BAD ABC ∴∠=︒-∠=︒-︒=︒1602FAE BAD∴∠=∠=︒60FAE B∴∠=∠=︒ABE∴∆为等边三角形624AB AE BE BC CE∴===-=-=642BF AF AB=-=-=过点F作FH EB⊥延长线于点H.在Rt BFH∆中,60HBF ABC∠=∠=︒30HFB∴∠=︒112BH BF∴==2222213HF BF BH=--=415EH BE BH=+=+=()22223527EF FH EH=+=+=【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线22.见解析【解析】【分析】由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,EAO FCOOA OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEO≌△CFO(ASA),∴OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.23.(1)见解析;(2)tan ∠AOD =34. 【解析】 【分析】(1)作DF ⊥AB 于F ,连接OC ,则△ODF 是等腰直角三角形,得出OC=OD=2DF ,由垂径定理得出∠COE=90°,证明△DEF ∽△CEO 得出22ED OC DFCE DF ===,即可得出结论; (2)由题意得OE=12OA=12OC ,同(1)得△DEF ∽△CEO ,得出12EF EO DF OC ==,设⊙O 的半径为2a (a >0),则OD=2a ,EO=a ,设EF=x ,则DF=2x ,在Rt △ODF 中,由勾股定理求出x=35a ,得出DF=65a ,OF=EF+EO=85a ,由三角函数定义即可得出结果.【详解】(1)证明:作DF ⊥AB 于F ,连接OC ,如图所示:则∠DFE =90°, ∵∠AOD =45°,∴△ODF 是等腰直角三角形, ∴OC =OD 2DF , ∵C 是弧AB 的中点, ∴OC ⊥AB , ∴∠COE =90°, ∵∠DEF =∠CEO , ∴△DEF ∽△CEO , ∴22ED OC DFCE DF DF=== ∴CE 2; (2)如图所示:∴OE=12OA=12OC , 同(1)得:,△DEF ∽△CEO , ∴12EF EO DF OC ==, 设⊙O 的半径为2a (a >0),则OD =2a ,EO =a , 设EF =x ,则DF =2x ,在Rt △ODF 中,由勾股定理得:(2x )2+(x+a )2=(2a )2,解得:x =35a ,或x =﹣a (舍去), ∴DF =65a ,OF =EF+EO =85a ,∴DF 3tan AOD OF 4∠==. 【点睛】本题考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、垂径定理、三角函数等知识,熟练掌握相似三角形的判定与性质、勾股定理是关键. 24.-2. 【解析】试题分析:先算括号里面的,再算除法,解不等式组,求出x 的取值范围,选出合适的x 的值代入求值即可.试题解析:原式=()()()()22x+1x-1x x x+1x+1-÷ =x x+1x+1x-1-⨯=xx-1- 解1{214x x -≤-<得-1≤x<52, ∴不等式组的整数解为-1,0,1,2 若分式有意义,只能取x=2, ∴原式=-221-=-2 【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.25.(1)y=-2x+200(30≤x≤60)(2)w=-2(x -65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元 【解析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b,根据题意得806010050k bk b=+⎧⎨=+⎩解得:k2b200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.26.(1)证明见解析;(2)1.【解析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.在函数y =1xx -中,自变量x 的取值范围是( ) A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠12.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差3.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )A .πB .32π C .2π D .3π4.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=25°,则∠2的度数是( )A .25°B .30°C .35°D .55°5.如图,四边形ABCD 是正方形,点P ,Q 分别在边AB ,BC 的延长线上且BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②△OAE ∽△OPA ;③当正方形的边长为3,BP =1时,cos ∠DFO=35,其中正确结论的个数是( )A.0 B.1 C.2 D.36.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC7.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°8.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E9.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为210.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.6058二、填空题(本题包括8个小题)11.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.12.边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_________.13.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.14.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.15.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.∠的大小为______.16.将一副三角板如图放置,若20∠=,则BOCAOD17.可燃冰是一种新型能源,它的密度很小,31cm可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是__________.18.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.三、解答题(本题包括8个小题) 19.(6分)先化简,再求值:2221()4244a aa a a a -÷--++,其中a 是方程a 2+a ﹣6=0的解. 20.(6分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.21.(6分)如图,一次函数y 1=kx +b(k≠0)和反比例函数y 2=mx(m≠0)的图象交于点A(-1,6),B(a ,-2).求一次函数与反比例函数的解析式;根据图象直接写出y 1>y 2 时,x 的取值范围.22.(8分)雾霾天气严重影响市民的生活质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西柳州市2019—2020学年度上学期八中九年级段考数学试卷
一.选择题(共12小题)1.2018的相反数是()A 、2018
B 、−2018
b
C 、
2018
1
D 、2018
1-
2.下列图形中,既是轴对称图形又是中心对称图形的是(

3.下列运算正确的是()A 、4
22
a
a a
=+B 、3
3
a
a a =÷C 、5
32
a
a a
=⋅D 、()
6
4
2a a =4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A 、1.46×5
10
B 、0.146×6
10
C 、1.46×6
10
D 、146×3
10
5.一组数据2,4,6,4,8的中位数为(A 、2B 、4C 、6D 、8
6.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为()
A 、35°
B 、45°
C 、55°
D 、65°
7.把不等式组⎩⎨
⎧≤->+0
10
1x x 的解集表示在数轴上,正确的是(

8.在平面直角坐标系中,点M (−1,3)关于x 轴对称的点在()A 、第一象限B 、第二象限C 、第三象限D 、第四象限9.若关于x 的一元二次方程mx 2−2x +1=0有实数根,则m 的取值范围是()
A 、m <1
B 、m <1且m ≠0
C 、m ≤1
D 、m ≤1且m ≠010.在反比例函数y =x k (k <0)的图象上有两点,(−1,y 1),(4
1
-,y 2),则y 1−y 2的值是()
A 、正数
B 、非正数
C 、负数
D 、不能确定
11.在△ABC 中,已知∠C =90°,BC =3,AC =4,则它的内切圆半径是()
A 、
B 、
C 、2
D 、
1
12.已知二次函数y =a x 2+b x +c (a ≠0)的图象如图,在下列代数式中
(1)a +b +c >0;(2)−4a <b <−2a (3)abc >0;(4)5a −b +2c <0;其中正确的个数为()A 、1个B 、2个
C 、3个
D 、4

二.填空题(共6小题)
13.若代数式有意义,则x 的取值范围是.
14.分解因式:m 3−4m =

15.抛物线y =x 2−6x +4的顶点坐标为

16.一个圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积为cm 2.
17.关于x 的函数为y =kx 2−4x−5与x 轴只有一个交点,则k=
.
18.如图,在⊙O 中,直径AB 垂直弦CD 于E ,过点A 作∠DAF =∠DAB ,过点D 作AF 的垂线,垂足为F ,交AB 的延长线于点P ,连接CO 并延长交⊙O 于点G ,连接EG ,已知DE =4,AE =8.求线段EG 的长为

三.解答题(共8小题)
19.计算(6分)()()2
921531
---⎪⎭

⎝⎛+----20.解方程(6分)
21
213=+++x x
x
21.初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘(每个转盘分别被四等分和三等分),由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.
小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)
22.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AF =CE .(1)求证:△BAE ≌△DCF ;
(2)若BD ⊥EF ,连接DE 、BF ,判断四边形EBFD
的形状,并说明理由.
21.如图,已知反比例函数y =
x
k
的图象与正比例函数y =kx 的图象交于点A (m ,−2).(1)求正比例函数的解析式及两函数图象另一个交点B 的坐标;(2)试根据图象写出不等式
x
k
≥kx 的解集;(3)在反比例函数图象上是否存在点C ,使△OAC 为等边三角形?若存在,求出点C
的坐标;若不存在,请说明理由.
22.某工厂计划生产A 、B 两种产品共60件,需购买甲、乙两种材料,生产一件A 产品需甲种材料4千克,乙种材料1
千克;生产一件B 产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B 产品不少于38件,问符合生产条件的生产方案有哪几种?
23.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OB ,垂足为M ,DE =4,连接AD ,过E 作AD 平行线交AB 延长线于点C .
(1)求⊙O 的半径;
(2)求证:CE 是⊙O 的切线;
(3)若弦DF 与直径AB 交于点N ,当∠DNB =30
°时,求图中阴影部分的面积.
24.如图,抛物线y =x2+bx +c 与x 轴交于点A 和B (3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式;
(2)若点M 是抛物线上在x 轴下方的动点,过M 作MN ∥y 轴交直线BC 于点N ,求ΔCBM 面积的最大值;
(3)E 是抛物线对称轴上一点,F 是抛物线上一点,是否存在以C ,B ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点F
的坐标;若不存在,请说明理由.。

相关文档
最新文档