七年级下册数学 第1课时 正比例函数的图象和性质试卷.doc

合集下载

19.2 正比例函数(原卷版)

19.2 正比例函数(原卷版)
【变式5-2】(2022秋•任城区校级期末)在正比例函数y=(m+1)x|m|﹣1中,若y随x的增大而减小,则m=.
【变式5-3】(2022秋•句容市期末)在正比例函数y=(m﹣2)x中,y的值随着x值的增大而减小,则m的取值范围是.
【变式5-4】(2022春•曲阜市期末)已知正比例函数y=(3m﹣1)x|m|(m为常数),若y随x的增大而减小,则m=.
【变式2-7】已知正比例函数y x,下列结论:①y随x的增大而增大;②y随x的减小而减小;③当x>0时,y>0;④当x>1时,y>1.其中,正确的有( )
A.1个B.2个C.3个D.4个
【变式2-8】(2022秋•渠县校级期中)三个正比例函数的表达式分别为①y=ax;②y=bx;③y=cx,其在平面直角坐标系中的图象如图所示,则a,b,c的大小关系为( )
C.y随x的增大而减小
D.它的图象经过第二、四象限
【变式2-2】(2022秋•太原期中)下列正比例函数中,y随x的增大而增大的是( )
A.y=2xB.y=﹣2xC.y xD.y=﹣8x
【变式2-3】(2021•湘西州模拟)下列图象中,表示正比例函数图象的是( )
A. B.
C. D.
【变式2-4】在下列各图象中,表示函数y=﹣kx(k<0)的图象的是( )
A.第一、二象限B.第一、三象限
C.第一、四象限D.第二、四象限
解题技巧提炼
本题考查的是正比例函数的图象与系数的关系,根据正比例函数的性质判断k的范围是解题的关键.
【变式2-1】(2022春•古冶区期末)下列关于正比例函数y=3x的说法中,正确的是( )
A.当x=3时,y=1
B.它的图象是一条过原点的直线
是( )

完整版)正比例函数和一次函数基础练习题

完整版)正比例函数和一次函数基础练习题

完整版)正比例函数和一次函数基础练习题1.下列关系中成正比例的是()A.从甲地到乙地,所用的时间和速度;B.正方形的面积与边长;C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高。

2.下列函数中,y是x的正比例函数的是()B.y=2x。

3.下列说法中不成立的是()A.在y=3x-1中y+1与x成正比例;B.在y=-x^2中y与x成正比例;C.在y=2(x+1)中y与x+1成正比例;D.在y=x+3中y与x成正比例。

4.若函数y=(2m+6)x^2+(1-m)x是正比例函数,则m 的值是()D.m>-3.5.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2的大小关系是()B.y1<y2.6.形如y=kx(k为常数)的函数是正比例函数。

7.若x、y是变量,且函数y=(k+1)xk^2是正比例函数,则k=0.8.正比例函数y=kx(k为常数,k<0)的图象依次经过第二象限,函数值随自变量的增大而减小。

9.已知y与x成正比例,且x=2时y=-6,则y=9时x=3.10.1)电报费y(元)=0.1x(个),y是x的正比例函数。

2)气温下降5℃对应高度上升1km,可得y=28-5x,y不是x的正比例函数。

3)圆面积y(cm^2)=πx^2,y是x的正比例函数。

11.题目中的函数为y=-3x,P点的坐标为(-√2.3√2),PA的长度为3√2,故△POA的面积为3.一、选择题1、下列函数中,y是x的一次函数的是()①y=x-6;②y= -3x–1;③y=-0.6x;④y=7-xB、①③④2、一次函数y= -3x+2的图象经过第三象限。

C、一、三、四。

3、如果一次函数y=kx+b的图象经过点(-2,-1)和点(1,2),那么它的图象不会经过第三象限。

4、正确的说法是:C、正比例函数不是一次函数。

5、当ab>0,ac<0时,直线ax+by+c=0不通过第三象限。

4.正比例函数的图象和性质-北师大版八年级数学上册课件

4.正比例函数的图象和性质-北师大版八年级数学上册课件
解析:因为函数图象经过第一、三象限,所以k+1>0, 解得k>-1. (2)若函数图象经过点(2,4),则k_=_1___.
解析:将坐标(2,4)带入函数表达式中,得4=(k+1)·2, 解得k=1.
练一练
1.已知正比例函数y=kx (k>0)的图象上有两点(x1,y1),(x2,y2), 若x1<x2,则y1 < y2.
4.已知正比例函数y=(2m+4)x. (1)当m >-2 ,函数图象经过第一、三象限; (2)当m <-2 ,y 随x 的增大而减小; (3)当m =0.5 ,函数图象经过点(2,10).
5. 如图分别是函数y=k1 x,y=k2 x,y=k3 x,y=k4 x的图象.
(1)k1 < k2,k3 < k4(填“>”或“<”或“=”);
3.什么是函数值?函数的图像?
一 正比例函数的图象的画法 例1:画出下面正比例函数y=2x的图象. 画函数图象的一般步骤: 解: ①列表
②描点 ③连线
以表中各组对应值作为点的坐标,在 直角坐标系内描出相应的点
练一练
1.请你画出y=-3x 的图像,并思考以下几个问题. (1)请你列出几个满足y=-3x 的x,y所对应的点(x,y),并 在图像上描出来,视察它们都在y=-3x 的图像上吗?
7. 已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油 为5元/ L . (1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间 的函数关系式. (2)在平面直角坐标系内描出大致的函数图象. (3)计算该汽车行驶220 km所需油费是多少.
解:(1)y=5×15x/100,

(2)用不等号将k1, k2, k3, k4及0依次连接起来.

中考数学《正比例函数图像和性质》专项练习题及答案

中考数学《正比例函数图像和性质》专项练习题及答案

中考数学《正比例函数图像和性质》专项练习题及答案一、单选题1.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点( )A .(1,2)B .(﹣1,﹣2)C .(2,﹣1)D .(1,﹣2)2.若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m的取值范围是( ) A .m >0B .m <0C .m <12D .m >123.已知正比例函数 y =mx(m <0) 图象上有两点 P(x 1,y 1) , Q(x 2,y 2) 且 x 1<x 2 ,则 y 1与 y 2 的大小关系是( ) A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定4.正比例函数y =3x 的图象必经过点( )A .(﹣1,﹣3)B .(﹣1,3)C .(1,﹣3)D .(3,1)5.已知正比例函数y=(m-1)x ,若y 随x 增大而增大,则点(m ,1-m )所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6.正比例函数y=kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y=x+k 的图象大致是( )A .B .C .D .7.若函数y=kx 的图象经过点(1,-2),那么该图象一定经过点( )A .(2,-1)B .( −12,1)C .(-2,1)D .(1, 12)8.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0B .m <0C .m >2D .m <29.正比例函数y=2x与反比例函数y=2x的图象或性质的共有特征之一是()A.函数值y随x的增大而增大B.图象在第一、三象限都有分布C.图象与坐标轴有交点D.图象经过点(2,1)10.若一个正比例函数y=mx的图像经过P(4,-8),Q(m,n)两点,则n的值为()A.1B.8C.-2D.411.对于正比例函数y=kx,当自变量x的值增加3时,对应的函数值y减少6,则k的值为()A.2B.﹣2C.﹣3D.﹣0.512.如图,在平面直角坐标系中,点A的坐标为(0,6),沿x轴向右平移后得到A',A点的对应点A'在直线y=35x上,则点B与其对应点B'之间的距离为()A.4B.6C.8D.10二、填空题13.函数y= 1m−2 x中,如果y随x的增大而减小,那么m的取值范围是.(1)线段B1B2的长度为;(2)点A2022的坐标为;(3)线段B2021B2022的长度为.15.写出一个实数k的值,使得正比例函数y=kx的图象在二、四象限.16.正比例函数y=(m﹣2)x m的图象的经过第象限,y随着x的增大而.17.若正比例函数y=(m﹣2)x的图象经过一、三象限,则m的取值范围是.18.函数y=kx与y=6−x的图像如图所示,则k=.三、综合题19.已知正比例函数y=kx.(1)若函数图象经过第二、四象限,则k的范围是什么?(2)点(1,﹣2)在它的图象上,求它的表达式.20.已知正比例函数y=kx经过点A(−1,4) .(1)求正比例函数的表达式;(2)将(1)中正比例函数向下平移5个单位长度后得到的函数表达式是.21.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)求这个函数解析式.(2)画出这个函数图象.(3)判断点A(4,﹣2)、点B(﹣1.5,3)是否在这个函数图象上(4)图象上的两点C(x1,y1)、D(x2,y2),如果x1>x2,比较y1、y2的大小.22.如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米? (3)到十点为止,哪个人的速度快? (4)两人最终在几点钟相遇?23.已知函数y=(m+3)x m2+2m−2.(1)当m 为何值时,它是正比例函数? (2)当m 为何值时,它是反比例函数? (3)当m 为何值时,它是二次函数?24.一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A 种水果/箱B 种水果/箱甲店11元 17元 乙店9元13元5箱,B 种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】A5.【答案】D6.【答案】A7.【答案】B8.【答案】D9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】m<214.【答案】(1)√3(2)A2021A2022=22020 (3)22020√315.【答案】-216.【答案】二、四;减小17.【答案】m>218.【答案】219.【答案】(1)解:∵函数图象经过第二、四象限∴k<0.(2)解:当x=1,y=﹣2时,则k=﹣2 即:y=﹣2x.20.【答案】(1)解:将点A(−1,4)代入y=kx,得4=−k,即k=−4.故函数解析式为:y=−4x(2)y=−4x−521.【答案】(1)解:将点(3,﹣6)代入y=kx得,﹣6=3k解得,k=﹣2函数解析式为y=﹣2x;(2)解:如图:函数过(0,0),(1,﹣2).(3)解:将点A(4,﹣2)、点B(﹣1.5,3)分别代入解析式得,﹣2≠﹣2×4;3=﹣2×(﹣1.5);故点A不在函数图象上,点B在函数图象上.(4)解:由于k=﹣2<0,故y随x的增大而减小,可得y1<y2.22.【答案】(1)解:甲8点出发(2)解:乙9点出发;到10时他大约走了13千米(3)解:到10时为止,乙的速度快(4)解:两人最终在12时相遇23.【答案】(1)解:当函数y=(m+3)x m2+2m−2是正比例函数∴m2+2m﹣2=1且m+3≠0解得:m1=﹣3(舍去),m2=1则m=1时,它是正比例函数;(2)解:当函数y=(m+3)x m2+2m−2是反比例函数∴m2+2m﹣2=﹣1且m+3≠0解得:m1=﹣1+√2,m2=﹣1﹣√2则m=﹣1±√2时,它是反比例函数;(3)解:当函数y=(m+3)x m 2+2m−2是二次函数 ∴m 2+2m ﹣2=2 且m+3≠0解得:m 1=﹣1+√5,m 2=﹣1﹣√5 则m=﹣1±√5时,它是二次函数.24.【答案】(1)解:经销商能盈利=5×11+5×17+5×9+5×13=5×50=250(2)解:设甲店配A 种水果x 箱,则甲店配B 种水果(10﹣x )箱 乙店配A 种水果(10﹣x )箱,乙店配B 种水果10﹣(10﹣x )=x 箱. ∵9×(10﹣x )+13x ≥100∴x ≥2 12经销商盈利为w=11x+17•(10﹣x )+9•(10﹣x )+13x=﹣2x+260. ∵﹣2<0∴w 随x 增大而减小 ∴当x=3时,w 值最大.甲店配A 种水果3箱,B 种水果7箱.乙店配A 种水果7箱,B 种水果3箱.最大盈利:﹣2×3+260=254(元).。

(完整版)第1课时正比例函数的图象和性质练习题(含答案)

(完整版)第1课时正比例函数的图象和性质练习题(含答案)

第1课时正比例函数的图象和性质一.选择题(共10小题)1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣22.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2 C.2D.﹣0.53.若函数是关于x的正比例函数,则常数m的值等于()A.±2B.﹣2 C.D.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C.y=中,y与x成反比例关系D.y=中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3 C.±3D.不能确定7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2 B.k≠2C.k=﹣2 D.k≠﹣28.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D.48题图 9题图9.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k410.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.二.填空题(共9小题)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ .12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= _________ .14.请写出直线y=6x 上的一个点的坐标: _________ . 15.已知正比例函数y=kx (k≠0),且y 随x 的增大而增大,请写出符合上述条件的k 的一个值: _________ .16.已知正比例函数y=(m ﹣1)的图象在第二、第四象限,则m 的值为 _________ .17.若p 1(x 1,y 1) p 2(x 2,y 2)是正比例函数y=﹣6x 的图象上的两点,且x 1<x 2,则y 1,y 2的大小关系是:y 1 _________ y 2.点A (-5,y 1)和点B (-6,y 2)都在直线y= -9x 的图像上则y 1__________ y 218.正比例函数y=(m ﹣2)x m 的图象的经过第 _________ 象限,y 随着x 的增大而 _________ .19.函数y=﹣7x 的图象在第 _________ 象限内,经过点(1, _________ ),y 随x 的增大而 _________ .三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P 和点Q (﹣m ,m+3),求m 的值.21.已知y+2与x ﹣1成正比例,且x=3时y=4.(1)求y 与x 之间的函数关系式;(2)当y=1时,求x 的值.22.已知y=y 1+y 2,y 1与x 2成正比例,y 2与x ﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y 与x 之间的函数表达式,并求当x=2时y 的值.23. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()x kW h 与应付饱费y (元)的关系如图所示。

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()A.y=x﹣3. B.y=2x+3. C.y=﹣x+3. D.y=2x﹣3.【答案】C【解析】【分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=−x+3,故选:C.【点睛】本题主要考查一次函数的解析式和一次函数的图象与性质,熟悉掌握是关键.2.下列式子中,表示y是x的正比例函数的是()A.y=. B.y=x+2. C.y=x2. D.y=2x.根据正比例函数的定义条件:k为常数且,自变量次数为1,判断各选项,即可得出答案.【详解】A、,自变量次数不为1,故本选项错误;B、. y=x+2,是和的形式,故本选项错误;C、y=x2,自变量次数不为1,故本选项错误;D、y=2x ,符合正比例函数的含义,故本选项正确;所以D选项是正确的.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数的定义条件是:k为常数且,自变量次数为1.3.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是()A.0 B.-2 C.2 D.任何数【答案】C【解析】【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【详解】解:根据题意,特征数是(2,k-2)的一次函数表达式为:y=2x+(k-2).因为此一次函数为正比例函数,所以k-2=0,解得:k=2.故选C.【点睛】本题主要考查一次函数、正比例函数的定义,有新意,但难度不大.4.一个正比例函数的图象经过(2,-1),则它的表达式为A.y=-2x B.y=2x C.D.设该正比例函数的解析式为,再把点代入求出的值即可.【详解】设该正比例函数的解析式为,正比例函数的图象经过点,,解得,这个正比例函数的表达式是.故选:.【点睛】考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.在平面直角坐标系中,记直线与两坐标围成的面积为,则最接近( )A.B.C.D.【答案】C【解析】令x=0,y=,令y=0,x=,则直线(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,),∴直线与两坐标轴所围成的图形的面积为S k=,当k为正整数时,S k=当k=1,S1=;当k=2,S2=,,=,=,=,故选C.6.已知等腰三角形周长为,则底边长关于腰长的函数图象是( )A.B.C.D.【答案】D【解析】根据题意得y+2x=20,y=-2x+20,∵y>0且2x>y,∴-2x+20>0且2x>-2x+20,∴5<x<10,∴底边长y关于腰长x的函数关系为y=-2x+20(5<x<10),∵k=-2<0,∴y随x的增大而减小,故选D.7.如果是的正比例函数,是的一次函数,那么是的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系【答案】B【解析】由题意得:y=kx,x=k1z+b,则y=kk1z+kb,当b≠0时,y是z的一次函数,②当b=0时,y是z的正比例函数,综上所述,y是z的一次函数,故选B.A.B.C.D.【答案】A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.9.若点在函数的图象上,则下列各点在此函数图象上的是( )A.B.C.D.【答案】A【解析】∵点A(2,4)在函数y=kx的图象上,∴4=2k,解得k=2,∴一次函数的解析式为y=2x,A选项,∵当x=1时,y=2,∴此点在函数图象上,故A选项正确,B选项,∵当x=-2时,y=-4≠-1,∴此点不在函数图象上,故B选项错误,C选项,∵当x=-1时,y=-2≠2,∴此点不在函数图象上,故C选项错误,D选项,∵当x=2时,y=4≠-4,∴此点不在函数图象上,故D选项错误,故选A.10.一辆汽车以平均速度千米/时的速度在公路上行驶,则它所走的路程(千米)与所用的时间(时)的关系表达式为( )A.B.C.D.【答案】D【解析】根据路程=速度×时间得:汽车所走的路程s(千米)与所用的时间t(时)的关系表达式为:s=60t,故选D.11.正比例函数y=3x的大致图像是( )A.B.C.D.【答案】B【解析】∵3>0,∴图像经过一、三象限.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.12.已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)()A.B.C.D.【答案】C【解析】首先由已知条件常数k1,k2异号,且k1>k2,得出k1,k2与0的关系,然后根据正比例函数及反比例函数的图象性质作答.解:因为k1,k2异号,且k1>0,k2<0,所以函数y=k1x的图象经过第一、三象限,函数的图象在第二、四象限,故选C.13.如图,在平面直角坐标系中,将△OAB沿直线y=-x平移后,点O′的纵坐标为6,则点B平移的距离为()A.4.5 B.6 C.8 D.10【答案】D【解析】根据题意得出O′点的纵坐标进而得出其横坐标,再得出O点到O′的距离,最后得出点B与其对应点B′之间的距离.解:∵点O的坐标为(0,0),△OAB沿x轴向右平移后得到△O′A′B′,点O的对应点O′在直线y=-x上,且O′点纵坐标为:6,故6=-x,解得:x=−8,即O到O′的距离为10,则点B与其对应点B′之间的距离为10.故选:D点睛:本题考查了函数图象上的点及平移的性质.根据函数解析式求出点的坐标是解题的关键.14.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1) B.(0,0)和(1,2)C.(1,2)和(2,1) D.(-1,2)和(1,2)【答案】B【解析】分别把各点坐标代入函数y=2x进行检验即可.解答:A. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;B. ∵当x=1时,y=2;当x=0时,y=0,∴两组数据均符合,故本选项正确;C. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D. ∵当x=−1时,y=−2≠2;∴点(-1,2)不符合,故本选项错误.故选B.15.某正比例函数的图象如图所示,则此正比例函数的表达式为()A.y=x B.y=x C.y=-2x D.y=2x【答案】A【解析】【分析】本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.【详解】正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k,∴k=﹣,∴y=﹣x,故选:A.【点睛】本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.16.已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1 B.a>1 C.a≥1 D.a≤1【答案】A【解析】∵y随x的增大而减小,∴a-1<0,∴a<1.故选A.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.17.正比例函数y=x的大致图像是()A.A B.B C.C D.D【答案】C【解析】∵1>0,∴正比例函数y=x的大致图像经过一、三象限.故选C.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.18.已知函数y=(k-1)为正比例函数,则()A.k≠±1 B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1.故选C.19.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200 B.9000,10000 C.10000,13200 D.13200,15400【答案】C【解析】由题意可知A、B、C三市派往D市的运输车的辆数分别是x、x、(18-2x)辆,派往E市的运输车的辆数为10-x,10-x,2x-10,则总运费W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.依题意有0≤x≤10,0≤18-2x≤8,解得:5≤x≤9,当x=9时,W 最小 =10000元.故选C.点睛:选择方案问题的方法(1)从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.(2)在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.20.若m<-1,有下列函数:①(x>0);②y=-mx+1;③y=mx;④y=(m+1)x.其中y随x的增大而增大的是( )A.①②B.②③C.①③D.③④【答案】A【解析】对于反比例函数,当k<0,在每个象限内,y随x的增大而增大,故①正确;根据一次函数的性质,y随x的增大而增大,得出k>0,故④正确.故选A.21.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是()A.A B.B C.C D.D【答案】D【解析】y=kx-k=k(x-1),恒过(1,0);根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则k<0,易得D.故选D.22.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位B.向下平移5个单位C.向上平移个单位D.向下平移个单位【解析】根据“上加下减常数项”,=+.看做由直线向上平移个单位得到.故选C.23.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.7【答案】C【解析】根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为故选C.24.在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数【答案】A【解析】设原来溶液中有糖ag,水bg,则=,即y=x,为正比例函数.故选A.点睛:本题关键根据甜度不变列比例式求解.25.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【答案】D【解析】y=-x的图像平分第二、四象限.故选D.点睛:y=x的图像平分第一、三象限.26.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y= kx(k≠0)中得,k=2>0,∴函数图像经过原点,且经过第一、三象限.故选C.27.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1 B.m>-1 C.m≥-1 D.m≤-1【答案】A【解析】∵y随着x的增大而减小,∴m+1<0,即m<-1.故选A.28.已知正比例函数y=kx(k≠0),点(2,–3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定【答案】B【解析】将(2,-3)代入函数解析式得:2k=-3,解得k=-<0,∴y随着x的增大而减小.故选B.29.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随着x的增大而增大,∴-3m>0,解得m<0.∴P(m,5)在第二象限.故选B.点睛:正比例函数y=kx(k≠0),若y随着x的增大而增大,那么k>0;若y随着x的增大而减小,那么k<0.30.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1 B.0或1C.±1 D.–1【答案】A【解析】∵函数图像经过一、三象限,∴k>0.故选A.31.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图像不经过(2,1),故错误;B:k=2>0,∴函数图像经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误.故选C.点睛:掌握正比例函数图像的性质.32.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点()A.(-3,2)B.(,-1)C.(,-1)D.(-,1)【答案】C【解析】∵正比例函数y=kx经过点(2,−3),∴−3=2k,解得k=−;∴正比例函数的解析式是y=−x;A. ∵当x=−3时,y≠2,∴点(−3,2)不在该函数图象上;故本选项错误;B. ∵当x=时,y≠−1,∴点(,−1)不在该函数图象上;故本选项错误;C. ∵当x=时,y=−1,∴点(,−1)在该函数图象上;故本选项正确;D. ∵当x=时,y≠1,∴点(1,−2)不在该函数图象上;故本选项错误。

19.2 正比例函数(原卷版)

A. B.
C. D.
【变式2-5】在直角坐标系中,y随x的增大而减小的正比例函数y=kx的图象是( )
A. B.
C. D.
【变式2-6】(2022秋•丰顺县校级期末)在y=k1x中,y随x的增大而减小,k1k2<0,则在同一平面直角坐标系中,y=k1x和y=k2x的图象大致为( )
A. B.
C. D.
八年级下册数学《第十九章一次函数》
19.2正比例函数
◆正比例函数的概念:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
◆正比例函数反应的是两个变量之间的关系,是正比例关系.
【注意】判断一个函数是正比例函数:(1)所给等式是形如y=kx的等式,自变量的指数只能是1.
A.a>b>cB.c>b>aC.b>a>cD.b>c>a
【变式2-9】已知正比例函数y=(m﹣1) 的图象在第二、四象限,求m的值.
【例题3】画出正比例函数y=2x的图象.
解题技巧提炼
正比例函数的图象是一条经过原点的直线,因此可以用“两点法”画正比例函数的图象,所以经过原点与点(1,k)的直线是y=kx(k是常数,k≠0)的图象.
A.y=xB.y=x+1C.y=x2D.y
【变式1-2】(2022春•长安区校级期中)已知函数:①y=2x﹣1;②y ;③y ;④y=2x2,其中属于正比例函数的有( )
A.1个B.2个C.3个D.4个
【变式1-3】(2022秋•无为市月考)若y关于x的函数y=(a﹣4)x+b是正比例函数,则a,b应满足的条件是( )
A.第一、二象限B.第一、三象限
C.第一、四象限D.第二、四象限
解题技巧提炼
本题考查的是正比例函数的图象与系数的关系,根据正比例函数的性质判断k的范围是解题的关键.

函数探究题型-含答案

函数探究题型一、知识梳理1、求函数解析式正比例与反比例自变量取值范围(1)分母(2)偶次根式被开方数(3)题目特殊要求2、画函数图像列表、描点、连线注:过整数点、渐进线3、函数的性质2.1对称性2.2增减性2.3极大值、极小值4、函数与方程的解交点个数与方程解的个数5、函数与不等式的解6、常考函数(1)函数的平移左加右减、上加下减(2)反比例函数变形(3)对勾函数(4)绝对值函数(5)幂函数及变形强化练习1.参照学习函数的过程与方法,探究函数y =的图象与性质.因为y =,即y =﹣+1,所以我们对比函数y =﹣来探究.列表:﹣描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.2.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥,且当x=1或x=4时,y的值均为.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象(3)结合画出的函数图象,解决问题:①当x=,,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.(4)写出函数的两条性质①②3.已知y=y1﹣y2,其中y1与x﹣1成反比例,y2=x+b,下表给出了自变量x与函数y 的一些对应值.(1)求函数y与x的函数关系式,并写出自变量x的取值范围;(2)补全表格m=,n=;(3)在如图所示的平面直角坐标系中,根据表中数据描出相应的点,画出函数图象;(4)根据图象直接写出y1≥y2时,自变量x的取值范围.﹣﹣(5)写出函数的两条性质①②4.已知函数,探究函数图象和性质过程如下:(1)下表是y与x的几组值,则解析式中的m=,表格中的n=(2)在平面直角坐标系中描出表格中各点,并画出函数图象:(3)若A(x1,y1)、B(x2,y2)、C(x3,y3)为函数图象上的三个点,其中x2+x3>4且﹣1<x1<0<x2<2<x3<4,则y1、y2、y3之间的大小关系是;(4)若直线y=k+1与该函数图象有且仅有一个交点,则k的取值范围为.(5)写出函数的两条性质①②5.吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整(1)该函数的自变量x的取值范围是.(2)列表:表中m=,n=.(3)描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:(4)观察所画出的函数图象,写出该函数的两条性质:①;②.y=2x-36. 在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧<-≥=)0a (a )0a (a a .结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx-3|+b 中,当x=2时,y= -4当x=0时,y= -1. (1)求这个函数的表达式; (2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质; (3)已知函3x 21y -=的图象如图 所示,结合你所画的函数图象,直 接写出不等式3x 21b 3kx -≤+-的 解集.7.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=﹣2|x|+2和y=﹣2|x+2|的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴.(2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.8.已知函数2x b2ax y 1+-+=,其自变量的取值范围是x>-2,当x=2时,y 1=-2;当x=6时,y 1=-5.(1)根据给定的条件,求出a 、b 的值和y 1的函数解析式;(2)根据你所求的函数解析式,选取适当的自变量x 完成下表,并在下面的平面直角坐标系中描点并画出函数的大致图象.(3)请画出y 2=x-4的图象,并结合图象直接写出:当y 1>y 2时,x 的取值范围是 .9.某班“数学兴趣小组”对函数的函数图象与性质进行了探究,探究过程如下,请补充完整.(1)函数的自变量x的取值范围是;下表是y与x的几组对应值.﹣则表格中的m=;(2)如图,在平面直角坐标系中,画出该函数的图象;(3)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数图象,写出一条该函数的其它性质;(4)该函数的图象关于点(,)成中心对称,若直线y=m与该函数的图象无交点,请求出m的取值范围.10.参考答案1.参照学习函数的过程与方法,探究函数y =的图象与性质.因为y =,即y =﹣+1,所以我们对比函数y =﹣来探究.列表:﹣描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而增大;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【解答】解:(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=的图象是由y=﹣的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标)故答案为增大,上,1,(0,1)(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.2.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥,且当x=1或x=4时,y的值均为.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象(3)结合画出的函数图象,解决问题:①当x=,,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:y2<y1<y3;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是1<k≤,此时,x的取值范围是≤x≤8.【解答】解:(1)设,y2=k2(x﹣2),则,由题意得:,解得:,∴该函数解析式为,故答案为:,(2)①根据解析式,补全下表:②根据上表在平面直角坐标系中描点,画出图象.(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x增大而增大,∴y2<y1<y3,故答案为:y2<y1<y3,②观察图象得:x≥,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤,此时x的范围是:≤x≤8.故答案为:1<k≤,≤x≤8.3.已知y=y1﹣y2,其中y1与x﹣1成反比例,y2=x+b,下表给出了自变量x与函数y的一些对应值.(1)求函数y与x的函数关系式,并写出自变量x的取值范围;(2)补全表格m=,n=;(3)在如图所示的平面直角坐标系中,根据表中数据描出相应的点,画出函数图象;(4)根据图象直接写出y1≥y2时,自变量x的取值范围.﹣﹣【解答】解:(1)y1与x﹣1成反比例,设y1=,∴y=y1﹣y2=﹣x+b,令x=0,则﹣k+b=﹣1,令x=﹣1,则﹣++b=,∴k=2,b=1,∴y=﹣x+1,(x≠1);(2)当x=﹣2时,m=,当x=3时,n=,故答案为,;(3)如图:(4)当y1≥y2,∴y≥0,当y=0时,x=或x=,结合函数图象可知x≤或1<x≤;4.已知函数,探究函数图象和性质过程如下:(1)下表是y与x的几组值,则解析式中的m=﹣3,表格中的n=(2)在平面直角坐标系中描出表格中各点,并画出函数图象:(3)若A(x1,y1)、B(x2,y2)、C(x3,y3)为函数图象上的三个点,其中x2+x3>4且﹣1<x1<0<x2<2<x3<4,则y1、y2、y3之间的大小关系是y1<y3<y2;(4)若直线y=k+1与该函数图象有且仅有一个交点,则k的取值范围为k<﹣1或k =3.【解答】解:(1)将表格中(﹣5,)代入函数y=中,得m=﹣3将x=5代入函数y=﹣(x﹣2)2+4中,得y=,即n=故答案为:﹣3,;(2)如图所示,(3)∵﹣1<x1<0,即﹣2<x1﹣1<﹣1,﹣1<<﹣,<<3,∴<y1<3∵0<x2<2,∴﹣2<x2﹣2<0,<4,即﹣>﹣1∴﹣+4>3 即y2>3>y1∵2<x3<4,在对称轴右侧,∴y随着x的增加而减小,∴3<y3<4,∴y3>y1又∵x2+x3>4且x2<2<x3且对称轴为x=2,∴(2﹣x2)﹣(x3﹣2)=4﹣(x2+x3)<0∴2﹣x2<x3﹣2即x3距离对称轴更远,∴y3<y2综上所述,y1<y3<y2故答案为y1<y3<y2(4)直线y=k+1为平行于x轴的直线,观察图象可知,k+1<0或k+1=4时,与该函数图象有且仅有一个交点,∴k<﹣1或k=3故答案为k<﹣1或k=35.吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整(1)该函数的自变量x的取值范围是一切实数.(2)列表:表中m=,n=.(3)描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:(4)观察所画出的函数图象,写出该函数的两条性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.【解答】解:(1)由y=知,x2﹣4x+5≠0,所以变量x的取值范围是一切实数.故答案为:一切实数;(2)m=,n=,y=x-3故答案为:;;(3)建立适当的直角坐标系,描点画出图形,如下图所示:(4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x =2对称.故答案为:该函数有最小值没有最大值;该函数图象关于直线x =2对称6. 解:(1)将x=2时,y= -4和分别代入y=|kx-3|+b 中,得⎪⎩⎪⎨⎧-=+--=+-1b 34b 3k 2解得:⎪⎩⎪⎨⎧-==4b 23k ∴这个函数的表达式是 43x 23y --=……(3分) (2)函数图象如答图……(5①当x<2时,y 随x当x>2时,y随x的增大而增大.②当x=2时,函数有最小值,最小值是-4. ……(7分)(3)不等式的解集是1≤x≤4……(10分)7.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=﹣2|x|+2和y=﹣2|x+2|的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴.(2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.【解答】解:(1)A(0,2),B(﹣2,0),函数y=﹣2|x+2|的对称轴为x=﹣2;(2)将函数y=﹣2|x|的图象向上平移2个单位得到函数y=﹣2|x|+2的图象;将函数y=﹣2|x|的图象向左平移2个单位得到函数y=﹣2|x+2|的图象;(3)将函数y=﹣2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=﹣2|x ﹣3|+1的图象.所画图象如图所示,当x2>x1>3时,y1>y2.8.已知函数2x b2ax y 1+-+=,其自变量的取值范围是x>-2,当x=2时,y 1=-2;当x=6时,y 1=-5.(1)根据给定的条件,求出a 、b 的值和y 1的函数解析式;(2)根据你所求的函数解析式,选取适当的自变量x 完成下表,并在下面的平面直角坐标(3)请画出y 2=x-4的图象,并结合图象直接写出:当y 1>y 2时,x 的取值范围是 . 解:(1)∵当x=2时,y 1=-2;当x=6时,y 1=-5. ∴⎪⎩⎪⎨⎧+-+=-+-+=-26b 2a 6522b 2a 22,解得⎩⎨⎧=-=8b 1a ∴a 的值为-1,b 的值为8, y 1的函数解析式为2x 82x y 1+-+-=.……3分. (2)列表:……5分描点,连线,画出图象如图所示. ……8分(3)画出y 2=x-4的图象,如图所示.当y 1>y 2时,x 的取值范围是-1<x<2. ……10分9.某班“数学兴趣小组”对函数的函数图象与性质进行了探究,探究过程如下,请补充完整.(1)函数的自变量x的取值范围是;下表是y与x的几组对应值.﹣则表格中的m=;(2)如图,在平面直角坐标系中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数图象,写出一条该函数的其它性质;(4)该函数的图象关于点(1,1)成中心对称,若直线y=m与该函数的图象无交点,请求出m的取值范围.【解答】解:(1)函数的自变量x的取值范围是x≠1;x=4时,y=+4=,∴m=.故答案为.(2)函数图象如图所示:(3)x>2时y随x的增大而增大.(答案不唯一)(4)①该函数的图象关于点(1,1)成中心对称;直线y=m与该函数的图象无交点,则m的取值范围为﹣1<m<3;故答案为1,1.10.(1)。

4.3 一次函数的图象(第1课时)正比例函数的图象和性质课件(31张PPT) 北师大版八年级数学上册

列表、描点、连线。
y = -3x
y
4
3
2
1
-5 -4 -3 -2 -1 O
-1
-2
-3
-4
y = 2x
这两个函数图
象有什么共同
特征?
1 2 3 4 5 x
归纳总结
y = kx (k 是常数,k≠0)的图象是一条经过原点的直线
y = kx (k≠0)
经过的象限
k>0
第一、三象限
k<0
两点
作图法
第二、四象限
15 x
,即
解:
(1) y 5
100
(2)列表 x
0
y
0
描点
连线
(3)当 x = 220 时,
.
4
3
y/元
6
5
4
3
2
1
(元). O
1 2 34 56 7
答:该汽车行驶 220 km 所需油费是 165 元.
x/km
画正比例函数图象的一般
步骤:列表、描点、连线
正比例函
数的图象
和性质
图象:经过原点的直线.
(x2,y2),若 x1<x2 ,则 y1 > y2.
2. 正比例函数 y = k1x 和 y = k2x 的图象如图,则 k1 和 k2
y y = k1x
的大小关系是( A )
y = k2x
A. k1>k2
B. k1 = k2
o
x
C. k1<k2
D. 不能确定
例3 已知正比例函数 y = mx 的图象经过点 (m,4),且
y 的值随着 x 值的增大而减小,求 m 的值.
解:∵正比例函数 y = mx 的图象经过点(m,4),

19.2.1 《正比例函数》测试题练习题常考题试卷及答案

19.2.1 正比例函数一、单选题(共20题;共40分)1.已知正比例函数y=kx(k≠0)的图象经过点(2,−3),则k的值为()A. 32B. −23C. −32D. 232.若y与x成正比,y与z的倒数成反比,则z是x的()A. 正比例函数B. 反比例函数C. 二次函数D. z随x增大而增大3.下列各关系中,符合正比例关系的是()A. 正方形的周长P和它的一边长aB. 距离s一定时,速度v和时间tC. 圆的面积S和圆的半径rD. 正方体的体积V和棱长a4.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A. a>b>cB. c>b>aC. b>a>cD. b>c>a5.下列函数中,表示y是x的正比例函数的是()A. y=2x2B. y=2x C. y=2(x-3) D. y=12x6.正比例函数 y=(k-2)x 中,y 随 x 的增大而减小,则 k 的取值范围是( )A. k≥2B. k≤2C. k>2D. k<27.已知正比例函数y=(k+4)x,且y随x的增大而减小,则k的取值范围()A. k>4B. k<4C. k>−4D. k<−48.一个正比例函数的图象经过点(−2,4),它的表达式为()A. y=−2xB. y=2xC. y=−12x D. y=12x9.在下列四组点中,可以在同一个正比例函数图象上的一组点是( )A. (2,5),(−4,10)B. (−2,5),(4,10)C. (−2,−5),(4,−10)D. (2,5),(−4,−10)10.下列函数中是正比例函数的是()A. y=8x B. y=82 C. y=2(x﹣1) D. y=−(√2+1)x311.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A. y=2xB. y=﹣2xC. y=12x D. y=−12x12.下列正比例函数中,y随x的值增大而增大的是()A. y=﹣2014xB. y=(√3﹣1)xC. y=(﹣π﹣3)xD. y=(1﹣π2)x13.已知函数y=(m+1)x m2−3是正比例函数,且图像在第二、四象限内,则m的值是()A. 2B. -2C. ±2D. −1214.关于函数y=2x ,下列结论中正确的是()A. 函数图象都经过点(2,1)B. 函数图象都经过第二、四象限C. y随x的增大而增大D. 不论x取何值,总有y>015.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A. B. C. D.16.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx-k 的图象大致是().A. B. C. D.17.若点A(x1, y1)和点B(x2, y2)在正比例函数y=-3x的图象上,当x 1<x2时,y1与y2的大小关系为()A. y1>y2B. y1<y2C. y1=y2D. y1与y2的大小不一定18.若正比例函数的图像经过点(-1,2),则这个图像必经过点()A. (1,2)B. (-1,-2)C. (2,-1)D. (1,-2)19.如图,某正比例函数的图象过点M(﹣2,1),则此正比例函数表达式为()A. y=﹣xB. y= xC. y=﹣2xD. y=2x20.下列说法中不成立的是()A. 在y=3x﹣1中y+1与x成正比例B. 在y=﹣x2中y与x成正比例C. 在y=2(x+1)中y与x+1成正比例D. 在y=x+3中y与x成正比例二、填空题(共18题;共18分)21.已知正比例函数y=(k+1)x,且y值随x值增大而增大,则k的取值范围是________.22.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=________.23.已知a是整数,一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为质数,则这个质数等于________.24.已知正比例函数图象经过点(1,3),则该函数的解析式是________.25.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.26.已知正比例函数y=(4m+6)x,当m________ 时,函数图象经过第二、四象限.27.若正比例函数y=kx的图象经过点(2,4),则该函数的解析式是________.28.若直线y=kx(k≠0)经过点(-2,6),则y随x的增大而 ________29.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是________.30.正比例函数y=﹣5x中,y随着x的增大而________.31.关于x的正比例函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是________.32.已知函数y=(k+1)x|k|﹣3是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为________ .33.在平面直角坐标系xOy中,直线y=x与双曲线y=m交于A,B两点.若x点A,B的纵坐标分别为y1,y2,则y1+y2的值为________.34.在正比例函数y=(m-8)x中,如果y的值随自变量x的增大而减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档