24.1.2 垂直于弦的直径(第3课时)

合集下载

《24.1.2-垂直于弦的直径》教学设计

《24.1.2-垂直于弦的直径》教学设计

24.1.2 垂直于弦的直径教学设计教学过程设计:一、创设问题情境,激发学生兴趣,引出本节内容活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴。

教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性。

二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神 活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O ,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD ; 第三步,在⊙O 上任取一点A ,过点A 作CD 折痕的垂线,得到新的折痕,其中点M 是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B ,如图1。

在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么? (课件:探究垂径定理)学生活动设计:如图2所示,连接OA 、OB ,得到等腰△OAB ,即OA =OB 。

因CD ⊥AB ,故△OA M 与△OB M 都是直角三角形,又O M 为公共边,所以两个直角三角形全等,则A M =B M 。

又⊙O 关于直径CD 对称,所以A 点和B 点关于CD 对称,当圆沿着直径CD 对折时,点A 与点B 重合,弧AC 与弧BC 重合。

因此AM =B M ,弧AC =弧BC ,同理得到弧AD=弧BD 。

教师活动设计:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质: (1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

活动3:如图3,弧AB 所在圆的圆心是点O ,过O 作OC ⊥AB 于点D ,若CD =4m ,弦AB =16m ,求此圆的半径。

人教版数学九年级上册24.1.2 垂直于弦的直径 教案

人教版数学九年级上册24.1.2 垂直于弦的直径  教案

24.1.2垂直于弦的直径●情景导入课件出示关于赵州桥的引例引例:你知道赵州桥吗?它是我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,现在有个人想要知道它主桥拱的半径是多少.同学们,你们能帮他求出来吗?学完了本节课的内容,我们一起来解决这个问题.【教学与建议】教学:通过赵州桥引例,导入圆的轴对称性及垂径定理.建议:学生提前收集有关圆的对称图形.●归纳导入(1)操作1:拿出准备的圆,沿着圆的直径折叠圆,你有什么发现?【归纳】圆是__轴对称__图形,__任何一条直径所在直线__都是圆的对称轴.(2)操作2:将这个圆二等分、四等分、八等分.(3)操作3:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两部分重合;第二步,展开,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,沿垂线将纸片折叠;第四步,将纸打开,得到新的折痕,其中点M是两条折痕的交点,即垂足,新的折痕与圆交于另一点B,如图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?【归纳】垂直于弦的直径平分弦,并且平分弦所对的两条弧.【教学与建议】教学:通过对剪圆和折叠圆的操作,活跃课堂气氛.建议:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质.命题角度1垂径定理及推论的辨析根据圆的轴对称性得到垂直于弦的直径所具有的性质.【例1】(1)如图,⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是(C)A.∠AOD=∠BOD B.AD=BDC.OD=DC D.AC=BC(2)下列命题中错误的命题有__②③④__.(填序号)①弦的垂直平分线经过圆心;②平分弦的直径垂直于弦;③梯形的对角线互相平分;④圆的对称轴是直径.命题角度2直接利用垂径定理进行计算构造以半径、弦长的一半、弦心距为三边长的直角三角形,利用勾股定理求解.【例2】(1)如图,⊙O的半径OA=4,以点A为圆心,OA为半径的弧交⊙O于点B,C,则BC的长为(A) A.43B.52C.23D.32[第(1)题图][第(2)题图](2)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,则AC的长是__8-27__.命题角度3垂径定理的实际应用圆弧形拱桥等问题,常通过作辅助线,使之符合垂径定理的直角三角形,运用勾股定理求解.【例3】好山好水好绍兴,石拱桥在绍兴处处可见,小明要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB 宽度16 m 时,拱顶高出水平面4 m ,货船宽12 m ,船舱顶部为矩形并高出水面3 m.(1)请你帮助小明求此圆弧形拱桥的半径;(2)小明在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.解:(1)连接OB .∵OC ⊥AB ,∴D 为AB 中点.∵AB =16 m ,∴BD =12AB =8 m .又∵CD =4 m ,设OB =OC =r ,则OD =(r -4)m.在Rt △BOD 中,根据勾股定理,得r 2=(r -4)2+82,解得r =10.答:此圆弧形拱桥的半径为10 m ;(2)连接ON .∵CD =4 m ,船舱顶部为矩形并高出水面3 m ,∴CE =4-3=1(m),∴OE =r -CE =10-1=9(m).在Rt △OEN 中,EN 2=ON 2-OE 2=102-92=19,∴EN =19 (m),∴MN =2EN =219 m <12 m ,∴此货船B 不能顺利通过这座拱桥.魔术蛋魔术蛋是九块板,这九块板合起来是一个椭圆,形如鸟蛋,用它可以拼出各种鸟形,因而又名“百鸟拼板”.要制作一个魔术蛋,先绘制一个椭圆形鸟蛋:上部为半圆,下部为椭圆.(1)作一个圆,圆心为O ,并通过圆心,作直径AB 的垂线MN ;(2)连接AN .并适当延长,再以A 为圆心,AB 的长为半径作圆弧交AN 的延长线于点C ;(3)连接BN .并适当延长,再以B 为圆心,BA 的长为半径作圆弧交BN 的延长线于点D ;(4)以N 为圆心,NC 为半径,作圆弧CD ,于是下部成为椭圆;(5)在OM 上作线段MF 等于NC ,以F 为圆心,MF 为半径作圆弧,交AB 于点G ,H ,连接FG ,FH ,这样魔术蛋便制好了.高效课堂 教学设计1.探索并了解圆的对称性和垂径定理.2.能运用垂径定理解决几何证明、计算问题,并会解决一些实际问题. ▲重点垂径定理、推论及其应用. ▲难点发现并证明垂径定理.◆活动1 新课导入1.请同学们把手中的圆对折,你会发现圆是一个什么样的图形? 答:圆是轴对称图形,每一条直径所在的直线都是圆的对称轴.2.请同学们再把手中的圆沿直径向上折,折痕是圆的一条什么呢?通过观察,你能发现直径与这条折痕的关系吗?答:折痕是圆的一条弦,直径平分这条弦,并且平分弦所对的两条弧. ◆活动2 探究新知 1.教材P 81 探究. 提出问题:(1)通过上面的折纸,圆是轴对称图形吗?有几条对称轴?(2)“圆的任意一条直径都是它的对称轴”这种说法对吗?若不对,应该怎样说? 学生完成并交流展示.2.教材P 82 例2以上内容. 提出问题:(1)证明了圆是轴对称图形后,观察图24.1-6,对应线段、对应弧之间有什么关系?由此可得到什么结论?(2)若把P 81的条件“直径CD ⊥AA ′于点M ”改为“直径CD 平分弦AA ′(不是直径)于点M ”,还能证明出图形是轴对称图形吗?此时对应线段、对应弧之间有什么关系?(3)当第(2)问中的弦AA ′为直径时,相关结论还成立吗?为什么? 学生完成并交流展示. ◆活动3 知识归纳1.圆是__轴__对称图形,任何一条__直径所在的直线__都是它的对称轴,它也是中心对称图形,对称中心为__圆心__.2.垂直于弦的直径__平分__弦,并且__平分__弦所对的两条弧,即一条直线如果满足:①__AB 经过圆心O 且与圆交于A ,B 两点__;②__AB ⊥CD 交CD 于点E __;那么可以推出:③__CE =DE __;④CB =DB ;⑤CA =DA .3.__平分弦(不是直径)__ 的直径垂直于弦,并且__平分__弦所对的两条弧.提出问题:“推论”里的被平分的弦为什么不能是直径? 学生完成并交流展示. ◆活动4 例题与练习 例1 教材P 82 例2.例2 如图,D ,E 分别为AB ,AC 的中点,DE 交AB ,AC 于点M ,N .求证:AM =AN .证明:连接OD ,OE 分别交AB ,AC 于点F ,G .∵D ,E 分别为AB ,AC 的中点,∴∠DFM =∠EGN =90°.∵OD =OE ,∴∠D =∠E ,∴∠DMB =∠ENC .∵∠DMB =∠AMN ,∠ENC =∠ANM ,∴∠AMN =∠ANM ,∴AM =AN .练习1.教材P 83 练习第1,2题.2.已知弓形的弦长为6 cm ,弓形的高为2 cm ,则这个弓形所在的圆的半径为__134__cm__.3.如图,AB 为⊙O 的直径,E 是BC 的中点,OE 交BC 于点D ,BD =3,AB =10,则AC =__8__. 4.如图,⊙O 中弦CD 交半径OE 于点A ,交半径OF 于点B ,若OA =OB ,求证:AC =BD .证明:过点O 作OG ⊥CD 于点G . ∵OG 过圆心,∴CG =DG . ∵OA =OB .∴AG =BG ,∴CG -AG =DG -BG ,∴AC =BD . ◆活动5 课堂小结 垂径定理及其推论,以及常用的辅助线(作垂径)和解题思路(构造由半径、半弦、弦心距组成的直角三角形).1.作业布置(1)教材P 90 习题24.1第8,11题; (2)对应课时练习. 2.教学反思。

24.垂直于弦的直径PPT课件(人教版)

24.垂直于弦的直径PPT课件(人教版)

(√ ) (√ ) (×)

经过圆心
中心
圆心
垂直于弦的 直径平分弦,并且平分弦所对的两条弧
垂直
弦所对的两条弧
问题:你知道赵州桥吗?它是1300多年前我国隋代建 造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主 桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主 桥拱的半径吗?
∵AB∥CD,∴ON⊥CD于N
在RtAOM中,AM 5cm,OM OA2 AM2 12cm. 在RtOCN中,CN 12cm,ON OC2 CN 2 5cm.
∵MN=OM-ON,∴MN=7cm. (2)当AB、CD在O点异侧时,如图②所示,
由(1)可知OM=12cm,ON=5cm,MN=OM+ON,
(并2且)平A分M=A(BBM及,AA(DCB=.BC,AD=BD,即直径CD平分弦AB,
这样,我们就得到下面的定理:垂直于弦的直径平分弦, 并且平分弦所对的两条弧。进一步,我们还可以得到结论:平 分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 。
知识点一 垂径定理及其推论
C
知识点一 垂径定理及其推论
通过本节课的学习,我们就会很容易解决这一问题.
探究:1.圆是轴对称图形吗?如果是,它的对称轴是什 么?你能找到多少条对称轴?
分析讨论:圆是轴对称图形,它的对称轴是直径,我能找到 无数多条直径.
探究: 2.你是用什么方法解决上述问题的?与同伴进行 交流.
分析讨论我:是利用沿着圆的任意一条直径折叠的方法解决 圆的对称轴问题的.
.2垂直于弦的直径
判断:
(1)直径是弦.( √ )
(2)弦是直径. ( × )

垂径定理(练习)03

垂径定理(练习)03

24.1.2 垂直于弦的直径一.选择题1.下列语句中不正确的有()①长度相等的弧是等弧;②垂直于弦的直径平分弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④平分弦的直径也必平分弦所对的两条弧;⑤弦所对的两条弧的中点连线垂直平分弦且过圆心.A.1个B.2个C.3个D.4个2.如图,在⊙O中,半径r=10,弦AB=16,P是弦AB上的动点,则线段OP长的最小值是()A.10 B.16 C.6 D.83.如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O.如果半径为4,那么⊙O的弦AB长度为()A.2 B.4 C.2D.44.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm5.如图,△ABC中,AB=5,AC=4,BC=2,以A为圆心AB为半径作圆A,延长BC交圆A于点D,则CD长为()A.5 B.4 C.D.26.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC 的长是()A.B.3C.3D.47.如图,AB是⊙O的直径,弦CD⊥AB,DE∥CB.若AB=10,CD=6,则DE的长为()A.B.C.6 D.8.如图,在⊙O中,弦AB=8,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值是()A.2 B.4 C.6 D.89.如图所示,在⊙O中,AB为弦,OC⊥AB交AB于点D.且OD=DC.P为⊙O上任意一点,连接PA,PB,若⊙O的半径为1,则S△PAB的最大值为()A.1 B.C.D.二.填空题10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=12cm,则球的半径为cm.11.如图,射线PB,PD分别交圆O于点A,B和点C,D,且AB=CD=8.已知圆O半径等于5,OA∥PC,则OP的长度为.12.如图,⊙O与矩形ABCD的边AB、CD分别相交于点E、F、G、H,若AE+CH=6,则BG+DF为.三.解答题13.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.14.如图,⊙O的直径AB和弦CD相交于点E,AE=1cm,⊙O的半径为3cm,∠DEB=60°,求CD的长.15.已知:如图,AB为⊙O的直径,OD∥AC.求证:点D平分.16.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=6,求CD的长.24.1.2 垂直于弦的直径参考答案一.选择题1.解:①∵能够完全重合的弧是等弧,∴①不正确;②∵垂直于弦的直径平分弦,∴②正确;③∵圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,∴③不正确;④∵平分弦(不是直径)的直径也必平分弦所对的两条弧,∴④不正确⑤∵弦所对的两条弧的中点连线垂直平分弦且过圆心,∴⑤正确;不正确的个数有3个,故选:C.2.解:过点O作OC⊥AB于C,连接OA,∴AC=AB=×16=8,∵⊙O的半径r=10,∴OA=10,在Rt△OAC中,由勾股定理得:OC===6,由垂线段最短得:当P与C重合时,OP最短=OC=6,故选:C.3.解:如图;过O作OC⊥AB于D,交⊙O于C,连接OA;则AD=BD,由折叠的性质得:OD=CD,在Rt△OAD中,OD=CD=OC=2,OA=4;根据勾股定理得:AD===2,∴AB=2AD=4;故选:D.4.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.5.解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=5,根据垂径定理,得DE=BE,∴CE=BE﹣BC=DE﹣2,根据勾股定理,得AD2﹣DE2=AC2﹣CE2,∴52﹣DE2=42﹣(DE﹣2)2,解得DE=,∴CD=DE+CE=2DE﹣2=.故选:C.6.解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.7.解:设AB与CD交于H,连接OD,作OM⊥DE,交BC于N,作DG⊥BC,∵DE∥BC,∴MN⊥BC,DG⊥DE,∴DG=MN,∵OM⊥DE,ON⊥BC,∴DM=EM=DE,BN=CN,∵AB是⊙O的直径,弦CD⊥AB,弦DE∥CB.∴CH=DH=CD=3,∴OH===4,∴BH=9,∴BC==3,∴BN=BC=,∴ON==,∵sin∠BCH==,即=,∴DG=,∴MN=DG=,∴OM=MN﹣ON=,∴DM==,∴DE=2DM=.故选:A.8.解:作OH⊥AB于H,连接OA、OD,如图,∴AH=BH=AB=×8=4,∵CD⊥OC,∴CD=,而OD为定值,OC最小时,CD最大,∴当OC=OH时,CD的值最大,∴CD的最大值为4.故选:B.9.解:连接OA,如图,∵OC⊥AB,∴AD=BD,∵OD=DC,∴OD=OA=,∴AD==,AB=2AD=.当点P为AB所对的优弧的中点时,△APB的面积最大,此时PD=PO+OD=1+=.∴△APB的面积的最大值为===.故选:C.二.填空题10.解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=12,设OF=xcm,则ON=OF,∴OM=MN﹣ON=12﹣x,MF=6,在直角三角形OMF中,OM2+MF2=OF2即:(12﹣x)2+62=x2解得:x=7.5,故答案为:7.5.11.解:作OE⊥AB于E,OF⊥CD于F,连接OP,如图,∵AB=CD,∴OE=OF,而OE⊥AB,OF⊥CD,∴PO平分∠BPD,∴∠APO=∠OPC,∵OA∥PC,∴∠AOP=∠OPC,∴∠APO=∠AOP,∴PA=AO=5,∵OE⊥AB,∴AE=BE=AB=4,在Rt△AOE中,OE==3,在Rt△POE中,PO==3.故答案为3.12.解:作OM⊥GH于M,OM交EF于N,如图,∵EF∥GH,∴OM⊥EF,∴EN=FN,GM=HM,易得四边形ABMN和四边形MNDC为矩形,∴AN=BM,DN=CM,∴BG+DF=BM﹣GM+DN﹣NF=AN﹣HM+CM﹣EN=AN﹣EN+CM﹣HM=AE+CH=6.故答案为6.三.解答题13.解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.14.解:作OP⊥CD于P,连接OD,如图所示:则CP=PD=CD,∵AE=1cm,⊙O的半径为3cm,∴OE=OA﹣AE=2cm,在Rt△OPE中,∠DEB=60°,∴∠POE=30°,∴PE=OE=1cm,OP=PE=cm,∴PD===(cm),∴CD=2PD=2cm.15.证明:连接CB,∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥AC,∴∠OEB=∠ACB=90°,即OD⊥BC,∵OD过O,∴点D平分.16.(1)证明:连接AC,如图所示:∵直径AB垂直于弦CD于点E,∴,∴AC=AD,∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即△ACD是等边三角形,∴∠FCD=30°,在Rt△COE中,OE=OC,∴OE=OB,∴点E为OB的中点;(2)解:在Rt△OCE中,AB=6,∴OC=AB=3,又∵BE=OE,∴OE=,∴CE===,∴CD=2CE=3.。

垂径定理1-3课时

垂径定理1-3课时

BB24.1.2 垂直于弦的直径——垂径定理(第一课时)一、知识探究1、圆既是 图形,又是 图形。

对称轴是 ,对称中心是 。

2、按要求作图(1)作⊙O 的任意一条弦AB ;(2)过圆心O ,作垂直于弦AB 的直径CD ,交AB 于点E 。

观察并回答:问题1:通过观察,在该图中有没有相等的线段:问题2:通过观察,在该图中有没有相等的弧: 证明过程:已知:CD 是⊙O 的直径,且CD ⊥AB 。

求证:AE=BE结论:垂径定理: 的直径 ,并且 。

几何语言的写法:∵ ∴强调:(1) ;(2) ;(3) (4) ;(5) 二、例题解析例1:在⊙O 中,弦AB 长8cm ,圆心O 到AB 的距离为3cm ,则⊙O 半径为例2:⊙O 的半径为5,M 是⊙O 内一点,OM=3,则过M 点的最短弦的长为例3:如图:已知线段AB 交⊙O 于C 、D 两点,若AC=BD ,求证:OA=OB 。

三、课堂练习:1、在⊙O 中,弦AB 长8cm ,⊙O 半径为5cm ,圆心O 到AB 的距离为2、在⊙O 中,⊙O 半径为5cm ,圆心O 到弦AB 的距离3cm ,则弦AB 的长为3、在半径为R 的⊙O 中,有长为R 的弦AB ,那么O 到AB 的距离为4、如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆与C 、D 两点。

求证:AC=BD 。

5、如图,AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD=10cm ,AP ∶PB=1∶5 ,求的⊙O 半径。

24.1.2 垂直于弦的直径——垂径定理的推论(第二课时)一、知识回顾垂径定理: 的直径 ,并且 。

按要求作图(1)在⊙O (2)作弦(3)连接问题1:⊙O 的直径CD 与弦AB 有怎样的位置关系: 问题2:该图中有没有相等的弧 证明过程:已知:CD 是⊙O 的直径,并且平分弦AB ,求证:CD ⊥AB 。

结论:垂径定理的推论: 的直径 ,并且 三、例题解析例1:已知⊙O 的半径OA=10㎝,弦AB=16㎝,P 为弦AB 上的一个动点,则OP 的最短距离为典型练习:1、下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2、下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧3、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( ) (A )5OM 3≤≤ (B )5OM 4≤≤ (C )5OM 3<< (D )5OM 4<<4、如图所示,若⊙O 的半径为13cm ,点P 是弦AB 上一动点,且到圆心的最短距离5cm ,则弦AB 的长为______________ . 四、课堂练习1、已知:如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8m ,OC=5m ,则DC 的长为(1) (2) (3)2、如图,在⊙O 中,直径AB 丄弦CD 于点M ,AM=18,BM=8,则CD 的长为__________ . 3、如图,∠PAC=30°,在射线AC 上顺次截取AD=3cm ,DB=10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两点,则线段EF 的长是_________ cm .4、已知圆的半径为5cm ,一弦长为8cm ,则弦的中点到弦所对弧的中点的距离为__ _____。

人教版初中数学九年级上册 24.1.2垂直于弦的直径 教学课件PPT

人教版初中数学九年级上册 24.1.2垂直于弦的直径 教学课件PPT

谈谈本节课的收获
作业
1、必做题:
习题24.1 第10、 11、12题
2、思考题:
已知:在半径为5cm的圆O 中,两条平行弦AB,CD分别 长8cm,6cm.求两条平行弦间
的距离。
谢谢
想一想
AB是⊙O的一条弦,且AM=BM. 过点M作直径CD. 左图是轴对称图形吗?如果是,其对称轴是什么?
C
你能发现图中有哪些等量关系?与同伴说说你的
A
┗●
B
想法和理由.
M
●O
由 ① CD是直径 可推得
②CD⊥AB, ⌒⌒
④AC=BC,
③ AM=BM
⌒⌒ ⑤AD=BD.
D
C
推论:平分弦(不是直径)的直径垂 直于弦,并且平分弦所对的两条弧.
A
·O
M B
D
由①CD是直径 ③AM = BM
可推得
②CD⊥AB
⌒⌒ ④AC = BC
⌒⌒ ⑤AD = BD
辨一辨
下列哪些图形能直接满足垂径定理的题设条件?
O
O
O
(1)
(2)
(3)
O
O
(4)
(5)
(6)
垂径定理的应用 解决求赵州桥拱半径的问题
问题 :你知道赵州桥吗?它是1400多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆 弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.23m,你能求出赵洲桥主桥拱的半径吗?
4
1
8
.7
A
R
D
B
OD = OC-CD = R理,得
OA2 = AD2 +

数学人教版九年级上册24.1.2《垂直于弦的直径》教案

三、教学难点与重点
1.教学重点
-理解垂直于弦的直径的定义:通过直观演示和实际操作,让学生明确什么样的直径是垂直于弦的,并能够准确地描述这一概念。
-掌握垂直于弦的直径的性质:分析并理解垂直于弦的直径所具有的性质,如平分弦、垂直平分弦等,并能够运用这些性质解决具体问题。
-应用垂直于弦的直径解决实际问题:培养学生将理论知识应用于解决实际问题的能力,如通过垂直于弦的直径的性质来求解圆的相关问题。
-与其他圆的性质的综合应用:在综合问题中,学生需要将垂直于弦的直径的性质与其他圆的性质结合起来,这对于学生来说是一个挑战。
举例:在讲解垂直于弦的直径的证明过程时,教师可以使用直观的动画或模型,逐步引导学生通过观察和思考,理解证明过程中的每一步。对于难点内容,如灵活运用性质,教师可以通过以下方法帮助学生突破:
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的空间观念和几何直观:通过观察、操作、推理等过程,使学生理解并掌握圆的基本性质,提高对圆的认识,发展空间想象力。
2.提升学生的逻辑推理能力:在学习垂直于弦的直径定义和性质的过程中,引导学生运用逻辑思维进行推理和证明,增强分析解决问题的能力。
举例:讲解垂直于弦的直径定义时,教师可以借助图形,如一个圆和一条弦,通过动画或实物演示,让学生观察并总结出垂直于弦的直径的特点。
2.教学难点
-理解垂直于弦的直径的证明过程:学生往往难以理解为什么垂直于弦的直径会具有平分弦的性质,以及如何通过几何证明来证实这一点。
-灵活运用垂直于弦的直径的性质:在解决具体问题时,学生可能难以迅速找到垂直于弦的直径,并有效地利用其性质来简化问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂直于弦的直径的基本概念。垂直于弦的直径是经过圆中心并且垂直于弦的线段。它在圆的性质中占有重要地位,因为它可以平分弦,并在几何图形中起到关键作用。

人教版九年级数学上册24.1.2《垂直于弦的直径》说课稿

人教版九年级数学上册24.1.2《垂直于弦的直径》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的1.2节《垂直于弦的直径》是本章的重要内容。

这部分主要介绍了垂径定理及其推论,为后续学习圆的性质和圆的方程打下基础。

本节内容通过探究垂直于弦的直径的性质,引导学生利用几何推理证明结论,培养学生的逻辑思维能力。

二. 学情分析九年级的学生已经掌握了初中阶段的基本几何知识,对圆的基本概念和性质有所了解。

但学生在解决几何问题时,往往缺乏推理证明的能力。

因此,在教学过程中,教师需要关注学生的思维过程,引导学生掌握几何推理的方法。

三. 说教学目标1.知识与技能:掌握垂径定理及其推论,能运用垂径定理解决简单几何问题。

2.过程与方法:通过观察、探究、推理,培养学生的逻辑思维能力和几何直观能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养合作探究的精神。

四. 说教学重难点1.教学重点:垂径定理及其推论的证明和应用。

2.教学难点:垂径定理的证明,以及如何引导学生运用几何推理方法。

五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生主动参与课堂讨论。

2.教学手段:利用多媒体课件辅助教学,直观展示几何图形的性质和推理过程。

六. 说教学过程1.导入新课:通过回顾圆的基本性质,引出垂直于弦的直径的性质。

2.探究垂直于弦的直径的性质:让学生分组讨论,观察几何图形,引导学生发现垂直于弦的直径的性质。

3.推理证明:引导学生运用几何推理方法,证明垂径定理及其推论。

4.应用拓展:举例说明垂径定理在解决实际问题中的应用。

5.总结归纳:对本节课的主要内容进行总结,强调垂径定理及其推论的重要性。

七. 说板书设计板书设计如下:垂直于弦的直径性质:垂直于弦的直径平分弦,且平分弦所对的弧。

八. 说教学评价本节课通过课堂提问、学生作业、小组讨论等方式进行教学评价。

主要评价学生在掌握垂径定理、运用几何推理方法以及解决实际问题方面的表现。

24.1.2垂直于弦的直径教案

24.1.2垂直于弦的直径教案--文档内容仅供参考教学方案:垂直于弦的直径教学目标:通过本教案,学员将会深入理解什么是垂直于弦的直径,掌握在何种情况下会涉及到这一概念,并能够有效地运用相关知识解决问题。

本教案将通过图示和实际例子帮助学员更清晰地理解和应用这一概念。

教学内容:1. 垂直于弦的直径概念解释:在圆上,垂直于弦的直径是通过圆心且与弦垂直的线段,其两端分别位于弦上。

简单来说,垂直于弦的直径可以看作是将弦分成两个相等部分的线段,并且该线段的中点恰好是圆的圆心。

2. 涉及到垂直于弦的直径的情况:垂直于弦的直径在几何学和数学中有许多应用。

以下是一些常见情况:a. 弦长和弦中点:当需要计算弦的长度或者弦的中点时,可以利用垂直于弦的直径来解决问题。

因为垂直于弦的直径恰好将弦分成两个相等的部分,所以可以轻松地计算弦的长度或其中点。

b. 弦和圆心角的关系:在圆的周围,弦与圆心角之间存在特殊的关系。

特别是,当一个弦是垂直于另一个弦的直径时,这两个弦之间的圆心角是90度。

这个关系在解决角度相关问题时非常有用。

c. 圆的切线:通过圆的直径,我们可以轻松地构造圆的切线。

如果我们从圆的一个端点开始,沿着直径方向作直线,那么这条直线将会是一个切线。

教学步骤:引入概念(5分钟):使用图示展示圆和垂直于弦的直径的概念。

解释垂直于弦的直径是如何与弦和圆心相互关联的。

实际例子(10分钟):提供一个实际问题,要求学员计算一个弦的长度,或者一个弦的中点。

引导学员利用垂直于弦的直径的概念来解决问题。

角度关系(10分钟):介绍弦和圆心角的关系,特别是涉及到垂直于弦的直径时的情况。

提供一个问题,要求学员根据角度信息推导出特定的弦是垂直于直径的。

切线构造(10分钟):展示如何利用圆的直径来构造切线。

提供一个练习,要求学员通过选择合适的直径来确定切线的位置。

综合练习(15分钟):提供一个综合性问题,要求学员结合之前学到的知识来解决复杂的几何问题,涉及到弦、垂直于弦的直径以及角度关系。

24.1.2++垂直于弦的直径+课件+2023-2024学年人教版数学九年级上册


12.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 E,如果 CD=20,BE=4,
求⊙O 的半径. 解:连接 OC,∵CD⊥AB,
∴CE=12 CD=10. 设⊙O 的半径为 r,则 OE=r-4, 在 Rt△OEC 中,
由勾股定理,得 OE2+CE2=OC2,
∴(r-4)2+102=r2,
10.如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题: “今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径 几何”,用几何语言可表述为:CD 为⊙O 的直径,弦 AB 垂直 CD 于点 E, CE=1 寸,AB=10 寸,则直径 CD 的长为__2_6_寸.
11.⊙O 的直径 CD=10,弦 AB⊥CD,且 AB=8, 则弦 AC 的长为 2 5 或 4 5 .
∴Rt△AON≌Rt△DOM,
∴OM=ON, 又∠ONE=∠OME=∠MEN=90°,
∴四边形 OMEN 是正方形;
(2)若 CE=1,DE=3,求⊙O 的半径.
(2)∵CE=1,DE=3, ∴CD=4, ∴DM=2, ∴EM=OM=1, ∴OD= OM2+DM2 = 5 , 即⊙O 的半径为 5 .
5.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 E,连接 OD,若 AB=6,BE =1,则弦 CD 的长是_2__5_.
6.如图,⊙O 的直径 AB 垂直于弦 CD,垂足为 E,∠A=15°,半径为 2, 则弦 CD 的长为_2___.
7.(教材第 90 页第 9 题改)如图,两个圆都以 O 为圆心.
解得 r=229 ,∴⊙O 的半径是229 .
13.(教材第 83 页第 2 题改)如图,⊙O 的两条弦 AB,CD 互相垂直于点 E, AB=CD,过点 O 作 OM⊥CD 于点 M,ON⊥AB 于点 N. (1)求证:四边形 OMEN 是正方形;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1.2 垂直于弦的直径
第三课时
1.以O为圆心的两个同心圆中,大圆的直径 AB交小圆C,D两点,问:AC与BD相等吗?
A
C
O
D
B
O
A
第1题图
C E D 第2题图
B
2.如图,若将直径向下移动,变为非直径的弦 AB,交小圆于C,D两点,是否仍有AC=BD呢?
3.如图, 将大圆去掉, 已知: OA=OB
O
A C
E
求证: AC=BD
D
B
4.如图, 将小圆去掉,
已知:AC=BD
求证:△OCD是等腰三角形 A C
O
E
D B
垂径定理及推ቤተ መጻሕፍቲ ባይዱ ① CD过圆心 ② CD⊥AB
③AE=BE
⌒ ⌒ ④AC=BC
⌒ ⌒ ⑤AD=BD
垂径定理的推论 弦的垂直平分线经过圆心,
并且平分弦所对的两条弧.
题设
结论 ③AE=BE
① CD过圆心 ② CD⊥AB
⌒ ⌒ ④AC=BC
⌒ ⌒ ⑤AD=BD
已知一段圆弧,求作其圆心.
一条排水管的截面如图,已知排水 管的半径 OB=10dm,水面宽AB=16dm.
求水深.
一条排水管的截面如图,已知排水 管的半径 OB=10dm,水面宽AB=16dm.
求水深.
一条排水管的截面如图,已知排水 管的半径 OB=10dm,水面宽AB=16dm.
求水深.
一条排水管的截面如图,已知排水 管的半径 OB=10dm,水面宽AB=16dm.
求水深.
一条排水管的截面如图,已知排水 管的半径 OB=10dm,水面宽AB=16dm.
求水深.
一条排水管的截面如图,已知排水 管的半径 OB=10dm,水面宽AB=16dm.
求水深.
一条排水管的截面如图,已知排水 管的半径 OB=10dm,水面宽AB=16dm.
已知:AB是⊙O直径,CD
是弦,AE⊥CD,BF⊥CD
求证:EC=DF
B O
.
H
A
E
C
D
F
求水深.
一条排水管的截面如图,已知排水 管的半径 OB=10dm,水面宽AB=16dm.
求水深.
半径、弦长、弓形的高、弦心距
知二求二
已知⊙O 的弦AB=6㎝,直径CD=10 ㎝,且AB⊥CD,则C到AB的距离等 于 1㎝或9㎝ .
已知⊙O 半径为5cm,弦AB=6㎝, 弦CD=8cm, 且AB∥CD,则弦AB与CD 的距离等于 .
已知⊙O 半径为5cm,弦AB=6㎝, 弦CD=8cm, 且AB∥CD,则弦AB与CD 的距离等于 .
已知⊙O 半径为5cm,弦AB=6㎝, 弦CD=8cm, 且AB∥CD,则弦AB与CD 的距离等于 1㎝或7㎝ .
已知:⊙O中弦AB∥CD. 求证:AC=BD.


结论:圆的两条平行弦所夹的弧相等
相关文档
最新文档