垂径定理 优质课

合集下载

01977_《垂径定理》公开课一等奖课件

01977_《垂径定理》公开课一等奖课件

教师点评与总结
在学生的分享和交流过程中,教师进 行适时的点评和总结,强调垂径定理 的重要性和应用价值,并引导学生对 探究过程进行反思和总结。
2024/1/28
18
05
课堂互动环节展示
Chapter
2024/1/28
19
提问环节
提出问题
什么是垂径定理?它的定义和性 质是什么?
2024/1/28
引导思考
Chapter
2024/1/28
23
重点内容回顾总结
2024/1/28
垂径定理的定义和性质
垂径定理指出,对于任意圆和经过圆心的直径,若该直径垂直于 某条弦,则该直径平分该弦,并且平分该弦所对的两条弧。
垂径定理的证明方法
通过构造直角三角形和运用勾股定理等方法,可以证明垂径定理的 正确性。
垂径定理的应用场景
02
推论1
平分弦(不是直径) 的直径垂直于弦,并 且平分弦所对的两条 弧。
03
推论2
弦的垂直平分线经过 圆心,并且平分弦所 对的两条弧。
04
推论3
平分弦所对的一条弧 的直径,垂直平分弦 ,并且平分弦所对的 另一条弧。
2024/1/28
8
垂径定理证明过程
要点一
已知
在⊙O中,DC为直径,AB是弦, AB⊥DC于点E,AB被DC平分于点E 。
值。
2024/1/28
21
练习环节
2024/1/28
基础练习
01
提供一些基础题目,让学生运用垂径定理进行求解,巩固所学
知识。
拓展练习
02
设计一些难度较大的题目,引导学生进一步探索垂径定理的应
用和拓展。
互动答疑

垂径定理优秀课件

垂径定理优秀课件
思考:当非直径的弦AB与直径CD有什么位置关系 时,弦AB有可能被直径CD平分?
((对C如D2称1⊥))图轴A你这,B垂 平是,能个A什B垂分径发图是么足弦定现形⊙?为所图是O理的E对中轴:一.有对的条垂哪称两弦直些图条,于相形弧作等吗弦直.的?的径线如直C段果D径,和是使平,分它弦的,并
弧?为什么?
A.1个 B.2个
C.3个
D.4个
双基训练
4. 如图,将半径为2cm的圆形纸片折叠后,圆弧 恰好经过圆心,则折痕AB的长为( C )
A.2cm B. 3cm C. 2 3cm D. 2 5cm
5.已知点P是半径为5的⊙O内
O
的一定点,且OP=4,则过P
点的所有弦中,弦长可能取 A
B
的整数值为( C )
(4)平分弦所对的优弧
D
(5)平分弦所对的劣弧
注意:当具备了(2)(3)时,应对另一
条弦增加”不是直径”的限制.
垂径定理的几个基本图形:
C
O
A
A
E
B
D
A
O
D
B
C
D
B
O
A
C
O
C
B
判断下列图形,能否使用垂径定理?
C
A
O E
B
D C
A
O E
B
( )(1)垂直于弦的直线平分这条弦, 并且平分
弦所对的两条弧.
∴四边形ADOE为矩形,
AE
1 2
AC,AD
1 2
AB
又 ∵AC=AB
C
∴ AE=AD
E
·O
∴ 四边形ADOE为正方形.
A
D
B
在直径是20cm的⊙O中,A⌒B的度数是60˙,

2024年度数学公开课优质课件精选《垂径定理》

2024年度数学公开课优质课件精选《垂径定理》
解决与垂直相关的几何问题
利用垂径定理可以解决与垂直相关的各种问题,如求点到直线的距 离、证明三角形的直角等。
14
04 垂径定理在代数问题中应用
2024/3/24
15
解决方程根的问题
利用垂径定理求方程的根
通过构造合适的函数,将方程的求解问题转化为求函数与x轴交点的横坐标, 进而利用垂径定理求解。
判断方程根的存在性及根的个数
和可信度。
10
03 垂径定理在几何问题中应用
2024/3/24
11
解决线段中点问题
2024/3/24
利用垂径定理求线段中点
01
通过构造以线段为直径的圆,利用垂径定理可求得线段的中点

判定线段中点的性质
02
根据垂径定理,若一条线段是某圆的直径,则该线段的中点是
圆心,从而可判定线段中点的性质。
解决与线段中点相关的几何问题
根据垂径定理,CD平分AB,所以AD = a 。在直角三角形AOD中,利用勾股定理可 得OD的长度,进而求得CD的长度。
B
C
例题2
已知圆O的半径为5cm,弦AB的长度为 8cm,求AB的垂径CD的长度。
解析
同样应用垂径定理和勾股定理,先求出AD 的长度为4cm,然后在直角三角形AOD中 求出OD的长度为3cm,最后求得CD的长度
利用垂径定理研究函数的极值和最值
通过分析函数的一阶导数或二阶导数的零点及符号变化,结合垂径定理可以求出函数的极 值和最值及其对应的自变量取值范围。
利用垂径定理研究函数的图像特征
通过分析函数的单调性、极值、最值等性质,结合垂径定理可以描绘出函数的大致图像, 进一步了解函数的性质。
18
05 垂径定理拓展与延伸

垂径定理优秀教案

垂径定理优秀教案

垂径定理优秀教案一、创意教学目标1. 知识与技能目标-学生能够准确说出垂径定理的内容,并能用数学语言进行表述。

“同学们,咱得知道啥是垂径定理哈。

就是垂直于弦的直径平分弦,并且平分弦所对的两条弧。

这可重要啦,得牢牢记住!”-学会运用垂径定理进行简单的几何计算和证明。

“咱学这个定理可不是光嘴上说说,得会用它做题。

比如说,给你一条弦和一个圆的直径,让你求弦长啥的,咱得会算。

”-能够通过观察、分析图形,发现并运用垂径定理解决实际问题。

“生活中也有很多跟垂径定理有关的事儿呢,咱得有双善于发现的眼睛,用这个定理去解决实际问题。

”2. 过程与方法目标-经历垂径定理的探究过程,培养学生的观察、分析、归纳能力。

“咱一起好好观察这些图形,看看能发现啥规律。

然后分析分析,最后归纳出垂径定理。

这个过程很重要,能让咱的脑袋瓜越来越灵。

”-通过小组讨论、合作学习,提高学生的交流与合作能力。

“同学们分组讨论讨论,说说自己对垂径定理的理解。

大家一起商量商量怎么用这个定理做题,互相学习,共同进步。

”-运用数学实验法,让学生亲身体验垂径定理的应用,培养学生的实践操作能力和创新思维。

“咱来做个小实验,用圆规和直尺画个圆,再画一条弦,然后用直径去垂直这条弦,看看有啥发现。

这样能让咱更好地理解这个定理。

”3. 情感态度与价值观目标-激发学生对数学的兴趣和好奇心,培养学生勇于探索的精神。

“这个垂径定理可有意思啦!大家好好探索探索,说不定能发现一些新的东西呢。

要有勇于探索的精神,别怕犯错。

”-让学生体会数学的美和实用性,增强学生学习数学的信心。

“看看这些图形,多漂亮啊!而且这个定理在生活中也很有用呢。

学好了数学,咱以后干啥都有底气。

”-培养学生的团队合作意识和竞争意识,提高学生的综合素质。

“小组之间可以比一比,看哪个组对垂径定理理解得更透彻,做题做得又快又好。

这样能让大家更有动力,也能培养咱的团队合作意识和竞争意识。

”二、独特教学重点与难点1. 教学重点-垂径定理的内容及应用。

北师大版九年级数学下册第三章《垂径定理》优质课课件

北师大版九年级数学下册第三章《垂径定理》优质课课件

D B
.O
已知:⊙O中弦 AB∥CD。
求证:A⌒C=B⌒D
N
证∴明MN:⊥作C直D径。M则NA⊥MA⌒=BB。M∵⌒,ACBM∥=C⌒DDM,(⌒垂 直平分弦的直径平分弦所对的弦)
AM⌒ -CM⌒


BM
-D⌒M
∴A⌒C=BD⌒ 圆的两条平行弦所夹的弧相等
注意
根据垂径定理与推论可知对于一个 圆和一条直线来说。如果具备
(1)过圆心 (2)垂直于弦 (3)平分弦(4) 平分弦所对的优弧 (5)平分弦所对的劣弧
上述五个条件中的任何两个条件都 可以推出其他三个结论
垂径定理的逆定理
如图,在下列五个条件中:
① CD是直径, ② CD⊥AB, ③ AM=BM,
④A⌒C = B⌒C,


AD
=

BD.
C
只要具备其中两个条件,
④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
1、如图4,在⊙O中,AB为⊙O的弦,C、D是 直线AB上两点,且AC=BD求证:△OCD为等 腰三角形。
O
E
CA
BD
2、如图,两个圆都以点O为圆心,小圆的弦CD 与大圆的弦AB在同一条直线上。你认为AC与BD 的大小有什么关系?为什么?
垂径定理
定理: 垂直于弦的直径平分弦, 并且平分弦所对的两条弧.
如图∵ CD是直径,
CLeabharlann CD⊥AB,A M└
B
●O
∴AM=BM,
A⌒C =B⌒C,
A⌒D=B⌒D.
D
垂径定理的逆定理
AB是⊙O的一条弦,且AM=BM.
n 过点M作直径CD.

垂径定理公开课教案

垂径定理公开课教案

垂径定理公开课优秀教案第一章:导入教学目标:1. 引导学生回顾圆的相关知识,为新课的学习做好铺垫。

2. 激发学生对垂径定理的好奇心,提高学习兴趣。

教学内容:1. 回顾圆的定义、性质及圆的基本运算。

2. 提问:你们知道什么是垂径定理吗?它有什么作用?教学方法:1. 采用提问、讨论的方式,引导学生回顾圆的知识。

2. 利用多媒体展示圆的图片,引导学生观察和思考。

教学步骤:1. 复习圆的定义、性质及基本运算。

2. 提问:什么是垂径定理?它有什么作用?3. 引导学生讨论,总结垂径定理的含义。

4. 利用多媒体展示圆的图片,引导学生观察和思考。

教学评价:1. 检查学生对圆的知识的掌握情况。

2. 观察学生在讨论中的表现,了解他们对垂径定理的理解程度。

第二章:探究垂径定理教学目标:1. 让学生通过实验、观察和推理,探究并证明垂径定理。

2. 培养学生的观察能力、动手能力和逻辑思维能力。

教学内容:1. 实验:用圆规、直尺和铅笔在圆上作垂线。

2. 观察:观察垂线与圆的关系。

3. 推理:引导学生总结垂径定理的证明过程。

教学方法:1. 实验法:让学生亲自动手作垂线,观察垂线与圆的关系。

2. 引导法:引导学生通过观察、思考,总结垂径定理的证明过程。

教学步骤:1. 让学生用圆规、直尺和铅笔在圆上作垂线。

2. 观察垂线与圆的关系,引导学生发现垂径定理的规律。

3. 引导学生总结垂径定理的证明过程。

教学评价:1. 检查学生对垂径定理的理解程度。

2. 观察学生在实验和推理过程中的表现,了解他们的动手能力和逻辑思维能力。

第三章:应用垂径定理教学目标:1. 让学生学会运用垂径定理解决实际问题。

2. 培养学生运用数学知识解决实际问题的能力。

教学内容:1. 运用垂径定理解决实际问题。

2. 练习题:巩固垂径定理的应用。

1. 引导法:引导学生运用垂径定理解决实际问题。

2. 练习法:让学生通过练习题,巩固垂径定理的应用。

教学步骤:1. 引导学生运用垂径定理解决实际问题。

《垂径定理》优秀ppt课件2024新版

《垂径定理》优秀ppt课件2024新版

判断四边形形状问题
判断平行四边形
利用垂径定理证明四边形两组对 边分别平行,从而判断四边形为
平行四边形。
判断矩形和正方形
在平行四边形基础上,利用垂径定 理证明两组对角相等或邻边相等, 进而判断四边形为矩形或正方形。
判断梯形
通过垂径定理证明四边形一组对边 平行且另一组对边不平行,从而判 断四边形为梯形。
利用垂径定理将方程转化为标准形式 判别式判断根的情况
求解根的具体数值
判断二次函数图像与x轴交点问题
利用垂径定理判断交点个数 确定交点的横坐标
结合图像分析交点性质
解决不等式组解集问题
利用垂径定理确定不 等式组的解集范围
结合图像直观展示解 集
分析解集的端点情况
05
垂径定理拓展与延伸
推广到三维空间中直线与平面关系
《垂径定理》优 秀ppt课件
目录
• 垂径定理基本概念与性质 • 垂径定理证明方法 • 垂径定理在几何问题中应用 • 垂径定理在代数问题中应用 • 垂径定理拓展与延伸 • 总结回顾与课堂互动环节
01
垂径定理基本概念与性质
垂径定义及性质
垂径定义
从圆上一点向直径作垂线,垂足 将直径分成的两条线段相等,且 垂线段等于半径与直径之差的平 方根。
在直角三角形中,利用勾 股定理和已知条件进行推 导和证明。
解析法证明
建立坐标系
以圆心为原点建立平面直角坐标系, 将圆的方程表示为$x^2+y^2=r^2$ 。
求解交点
联立垂径方程和圆的方程,求解交点 坐标,进而证明垂径定理。
垂径表示
设垂径的两个端点分别为$(x_1, y_1)$ 和$(x_2, y_2)$,则垂径的方程可表示 为$y-y_1=frac{y_2-y_1}{x_2-x_1}(xx_1)$。

初中数学冀教版九年级上册28.4垂径定理公开课优质课课件.ppt

初中数学冀教版九年级上册28.4垂径定理公开课优质课课件.ppt

求证:CD⊥AB,且⌒AD=B⌒D,
A⌒C
⌒ =BC
C
证明:连接OA,OB,则OA=OB
∵ AE=BE ∴ CD⊥AB,∠AOD=∠BOD.
∴ A⌒D=B⌒D, A⌒C =B⌒C
·O
AE
B
D
平分弦(不是直径)的直径垂直于弦,并且平分弦所对 的两条弧.
(2)“不是直径”这个条件能去掉吗?如果不能,请举 出反例.
2.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦, OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.
证明:OE AC OD AB AB AC
OEA 90 EAD 90 ODA 90
∴四边形ADOE为矩形,AE

1 2
AC,AD

1 2
AB
又 ∵AC=AB,
初中
数学优秀课件
二 垂径定理的推论
问题 命题:“平分弦(不是直径)的直径垂直于弦,并且
平分弦所对的两条弧。”是真命题吗?若是,请证明;若
不是请举出反例. C
∵ CD是直径, AE=BE
·O
∴ CD⊥AB,
⌒⌒
AC =BC,
⌒⌒
AD =BD.
AE
B
Байду номын сангаас
D
(1)如何证明?
已知:如图,CD是⊙O的直径,AB为弦,且AE=BE.
AB
C
在图中 AB=37.4 m,CD=7.2 m,
A
D
B
AD 1 AB 1 37.4 18.7
2
2
(m), R O
OD=OC-CD=R-7.2
在Rt△OAD中,由勾股定理,得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
E A D B
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
O
E A D B
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
AB
D
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
O
E A D B (A)
C O E A D C
O
O B A C B A
O
B A D
C
D
B
请结合图形说出符合垂径定理的条件和结论。
探究:
如图,若直径CD平分弦AB交AB于E时, 你认为都有哪些结论成立? C O E C C
E O
A B B A
E O
B
A
D
D
D
AB是弦,但不能是直径时,才有垂直AB,平分AB所 对的两条弧。
24.1.2
O
E
A D
B
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
E
A B
D
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
O
E
AB
D
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
O
E
O
观察现象:
O
观察现象:
O
观察现象:
O
观察现象:
O
观察现象: 你能得到什么结 论?
O
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
O
E A D B
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 2.垂径定理: 垂直于弦的直径平分弦,并且平分弦所 对的两条弧。 3.垂径定理的推论: 平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧。 4.垂径定理应用举例: A D C
O
E B (A)
例1.如图所示,已知AB是⊙O的弦,OC⊥AB于C,且 AB=8,OC=3,求⊙O的半径。
O
E A D B
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
1 解:∵OC⊥AB于C ∴AC=BC= AB=4 2
连接OA,在Rt△ACO中
O A
OA= AC2 + OC2 = 42 + 32 =5 所以⊙O的半径为5.
C
B
练习:1.如图⊙O的半径为8,OC ⊥弦AB于C,且OC=6, 求弦长AB。 2.如图⊙O的半径为6,弦AB=8,求圆心O到AB的距离。
E
A B
D
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
O
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧 所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m, 你能求出赵洲桥主桥拱的半径吗?
观察现象:
O
观察现象:
O
观察现象:
O
观察现象:
O
观察现象:
O
观察现象:
O
观察现象:
O
观察现象:
O
观察现象:
O
E A D B
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
O
E
A
D
B
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
O
O
E A D B
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 思考: 如图,AB是⊙O的一条弦,作直径CD, 使CD⊥AB,垂足为E。 (1)此图是轴对称图形吗?如果是, 它的对称轴是什么? (2)你能发现图中有哪些相等的线 段和弧?为什么? C
课堂小结
1.圆的轴对称性: C
2.垂径定理:
3.垂径定理的推论: 4.垂径定理应用举例: 在弦长,半径,圆心到弦的距离, 拱高四个量中,知俩求俩。 作业布置:导航相应练习 O
E
A
B (A)
D
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗? 它的主桥 是圆弧形,它的跨度(弧所对的弦的长) 为37.4m, 拱高(弧的中点到弦的距离) 为7.2m,你能求出赵洲桥主桥拱的半 径吗? C 解:用AB表示主拱桥,设AB所在圆的 A 圆心为O,过点O作AB的垂线交AB于C。 由垂径定理可知,D是AB的中点,C是AB 的中点,CD就是拱高。 AB=37.4,CD=7.2 ,∴AD=18.7,设OA=OC=R OD=OC-CD=R-7.2. 在Rt△AOD中,OA2 = AD2 + OD2 即 R2 = 18.72 + (R-7.2)2 解得 R≈27.9 因此,赵州桥的主桥拱的半径约为27.9米。 O D B
24.1.2
垂直于弦的直径
1.圆的轴对称性: 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。 2.垂径定理: 垂直于弦的直径平分弦,并且平分弦所 对的两条弧。 符号语言: ∵ CD经过圆心O ,CD⊥AB于E, E A D C
O
B (A)
∴AE=BE,AD=BD,AC=BC
应用垂径定理的几个基本图
相关文档
最新文档