全国优质课——基本不等式教学设计

合集下载

高丽-基本不等式【2018年第9届全国高中数学优质课比赛教学设计、课件】

高丽-基本不等式【2018年第9届全国高中数学优质课比赛教学设计、课件】

《基本不等式》教学设计青海省西宁市第五中学高丽一.教学内容解析基本不等式是选自人教A版数学必修5第三章第4节第1课时,是在学习了“不等关系与不等式”,“一元二次不等式及其解法”和“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究,是不等式的延续与拓展,为后面选修中不等式的学习打下了坚实的基础,在不等式的证明和求最值过程中有着广泛的应用。

本节课内容属于概念性知识,课程标准对它的要求是:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题。

因此,根据以上课标和学生实际我确定本节课的教学重点是:探索基本不等式的形成与正明,会利用基本不等式求解简单的最值问题。

在本节课中,学生通过观察,试验等方法抽象概括,归纳出基本不等式,其中渗透了数形结合的思想。

二.教学目标设置本章的课程目标是:不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容,也是数学本质的体现。

根据本节课内容特点和以上分析,我确定了以下教学目标:知识与技能目标:了解基本不等式的几何背景和证明方法,理解基本不等式的几何意义,会利用基本不等式求解简单的最大(小)值问题;过程与方法目标:了解基本不等式的形成与证明过程,初步认识分析法证明问题的思路,体会利用基本不等式求解最值的方法;情感态度与价值观目标:通过实际背景抽象推导出基本不等式,又利用它解决实际生活中的问题,体现了数学来源于生活,又应用于生活;同时培养学生分析问题,解决问题的能力,充分激发学生学习数学的兴趣和勇于探索的精神。

基本不等式可以与函数,三角函数,数列等知识相结合,在求解取值范围和最值等问题时有着广泛的应用,时培养学生思维品质的重要途径。

三.学生学情分析在此之前,学生已经学习了完全平方差公式,圆,三角形以及比较法证明不等式等相关知识,具备了初步的观察能力,分析能力;但由于数学基础相对比较薄弱,还缺乏一定的探究归纳能力以及分析问题和解决问题的能力。

高中数学优质课说课基本不等式设计

高中数学优质课说课基本不等式设计

2.2基本不等式(第1课时)教学设计一、教学内容解析1.内容“基本不等式”是人教版普通高中教科书数学必修1第二章第二节内容,分为两个课时,第1课时内容为基本不等式的定义、证明方法、几何解释及应用。

核心知识是基本不等式的定义;第二节课时内容为基本不等式的实际应用。

2.内容解析:相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础。

基本不等式是一种重要且基本的不等式类型,在中学数学知识体系中是一个非常重要的、基础的内容。

基本不等式与很多重要的数学概念和性质相关。

从数与运算的角度,a+b 2是两个正数,a b 的“算术平均数”, √ab 是两个正数,a b 的“几何平均数”。

因此,不等式中涉及的是代数中的“基本量”和最基本的运算。

从几何图形的角度,“周长相等的矩形中,正方形的面积最大”“等圆中,半径不小于半弦”等,都是基本不等式的直观理解。

基本不等式的证明或推导方法很多,“分析法”的证明过程是“执果索因”,从数量关系的角度,利用不等式的性质来推导基本不等式,体现了代数证明的典型方法,是不等式性质应用的一个典型范例,“作差法”依据的是实数大小比较的基本事实,是最基本,最重要的不等式证明方法,学生在今后的学习中难免遇到代数证明的问题,而他们在初中又缺少代数证明的经验,有必要借助基本不等式的证明为学生打下这方面的基础。

从几何图形的角度,借助几何真观,通过数形结合来探究不等式的几何解释,加深对基本不等式的理解;在理解和应用基本不等式的过程中涉及变与不变、变量与常量,以及数形结合、数学模型等思想方法。

因此,基本不等式内容是培养学生逻辑推理、数学运算、直观想象和数学建模素养的重要载体。

基于以上分析,确定本节课的教学重点:基本不等式的定义、证明方法、几何解释及简单应用。

二、教学目标设置1.课程目标 掌握基本不等式)(0,02>>≥+b a ab b a 。

结合具体实例,能用基本不等式解决简单的最大值或最小值问题(这节内容课程目标与单元目标相同)。

基本不等式教案范文

基本不等式教案范文

基本不等式教案范文一、教学目标1.知识与技能目标a.掌握基本不等式的定义和基本性质;b.掌握不等式的加减乘除性质;c.能够解决基本不等式的证明和计算问题。

2.过程与方法目标a.通过例题引导学生发现不等式的性质;b.引导学生进行探究性学习,提高独立解决问题的能力;c.培养学生的逻辑思维和推理能力。

3.情感态度目标a.培养学生的数学思维和抽象思维能力;b.培养学生的合作意识和团队精神;c.培养学生的实际问题解决能力。

二、教学重点1.不等式的加减和乘除性质;2.不等式的证明和计算方法。

三、教学难点1.不等式的证明方法;2.复杂不等式的解决方法。

四、教学方法1.探究教学法:通过解决例题引导学生发现不等式的性质;2.讲授教学法:通过讲解和示范的方式,介绍不等式的性质和解决方法;3.案例分析法:通过分析实际问题的案例,引导学生解决不等式问题。

五、教学过程1.引入a.导入问题:小明计划购买一款手机,他想知道自己有多少钱可以花在手机上。

请问该怎样计算?b.引导学生讨论,并给予提示,引出不等式的概念。

2.探究不等式的性质a.通过解决一些简单的例题,让学生发现不等式的性质。

b.给出以下几个例题:(1)若a>b,b>0,则a+b>b;(2)若a > b,b > 0,则ab > b;(3)若a>b,b>0,则a/b>1c.让学生在小组内讨论,并找出规律。

d.分组展示结果,学生进行交流与讨论。

e.教师总结不等式的加减和乘除性质。

3.不等式证明a.讲解不等式证明的一般方法,包括逆否命题法、反证法等。

b.通过案例讲解不等式证明的具体步骤和技巧。

c.给出以下例题:(1)证明:若a>b,b>0,则a+b>0。

(2)证明:对于任意实数x,都有x>-1c.引导学生运用之前学到的证明方法进行解答,然后进行讨论。

4.解决不等式问题a.讲解不等式的解决方法,包括绝对值法、区间法等。

基本不等式教学设计(多篇)

基本不等式教学设计(多篇)

基本不等式教学设计(多篇)第1篇:基本不等式教学设计基本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;③引导学生从不同角度去证明基本不等式;④用基本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用基本不等式解决生活中的应用问题2.进一步掌握用基本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是基本不等式应用举例的延伸。

基本不等式教学设计(通用8篇)

基本不等式教学设计(通用8篇)

基本不等式教学设计(通用8篇)基本不等式教学设计1教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。

要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。

基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

通过本节学习体会数学来源于生活,提高学习数学的乐趣。

课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。

启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重、难点分析重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。

难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。

基本不等式的教学设计一等奖

基本不等式的教学设计一等奖

基本不等式的教学设计一等奖一等奖教学设计:基本不等式引言:基本不等式是数学中的重要概念,对于学生的数学思维能力和解决实际问题的能力有着重要的影响。

本教学设计旨在通过生动的教学方法和实际问题的引入,帮助学生理解和掌握基本不等式的概念和运用。

一、教学目标:1. 理解基本不等式的概念和性质;2. 掌握基本不等式的常见求解方法;3. 运用基本不等式解决实际问题。

二、教学内容:1. 基本不等式的定义和性质;2. 基本不等式的求解方法;3. 基本不等式在实际问题中的应用。

三、教学过程:1. 导入(5分钟)通过引入一个实际问题,如“小明要购买一款手机,他的预算为1000元,他希望买到性价比最高的手机。

请问他能够购买的手机价格范围是多少?”来引起学生的兴趣,并激发他们思考。

2. 概念讲解(10分钟)介绍基本不等式的概念和性质,如“对于任意实数a和b,如果a 大于b,那么a加上一个正数c后的结果仍大于b加上c,即a+c>b+c。

”通过具体的例子和图示,帮助学生理解不等式的含义和运算规则。

3. 求解方法演示(15分钟)讲解常见的基本不等式求解方法,如“对于不等式ax+b>c,可以先将b移到不等号的另一边再进行运算,得到ax>c-b,然后再将不等式两边除以a,即得到x>(c-b)/a。

”通过多个例子的演示,让学生掌握不等式的求解步骤和思路。

4. 练习与巩固(20分钟)给学生一些简单的练习题,要求他们运用所学的基本不等式求解方法解答。

引导学生分析和讨论解题方法,并及时给予指导和反馈。

同时,提供一些较难的综合性应用题,让学生将基本不等式运用到实际问题中,并培养他们解决实际问题的能力。

5. 拓展与应用(10分钟)引导学生思考基本不等式在实际生活中的应用,如“通过基本不等式,我们可以优化购物策略、解决经济问题等。

”鼓励学生积极思考并分享自己的观点和实际经验。

6. 总结与反思(5分钟)对本节课的内容进行总结,强调基本不等式的重要性和应用价值。

基本不等式课程设计

基本不等式课程设计

基本不等式课程设计一、教学目标本节课的教学目标是让学生掌握基本不等式的概念、性质和应用,能够运用基本不等式解决一些简单的问题。

具体目标如下:1.了解基本不等式的定义和性质。

2.掌握基本不等式的证明方法。

3.理解基本不等式在实际问题中的应用。

4.能够运用基本不等式解决一些简单的问题。

5.能够运用基本不等式进行不等式的证明。

情感态度价值观目标:1.培养学生的逻辑思维能力。

2.培养学生的数学美感。

二、教学内容本节课的教学内容主要包括基本不等式的定义、性质和应用。

具体内容如下:1.基本不等式的定义:介绍基本不等式的定义,解释其含义和作用。

2.基本不等式的性质:讲解基本不等式的性质,包括对称性、单调性等。

3.基本不等式的应用:介绍基本不等式在实际问题中的应用,如求最值、证明不等式等。

三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法:1.讲授法:教师通过讲解基本不等式的定义、性质和应用,引导学生理解并掌握知识。

2.讨论法:教师学生进行小组讨论,让学生通过互动交流,加深对基本不等式的理解。

3.案例分析法:教师通过举例子,让学生运用基本不等式解决实际问题,巩固知识。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:为学生提供《数学课本》等相关教材,作为学习的基本依据。

2.参考书:提供一些数学参考书,供学生课后拓展学习。

3.多媒体资料:制作课件、视频等多媒体资料,帮助学生直观理解基本不等式的性质和应用。

4.实验设备:准备一些实验设备,如白板、黑板等,方便教师进行演示和讲解。

五、教学评估为了全面、客观、公正地评估学生的学习成果,本节课的评估方式包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。

2.作业:布置与本节课内容相关的作业,评估学生对基本不等式的掌握情况和应用能力。

3.考试:安排一次考试,测试学生对基本不等式的概念、性质和应用的掌握程度。

【公开课教案】《基本不等式》教案

【公开课教案】《基本不等式》教案

基本不等式教案一、教学目标:1、知识与技能:①了解基本不等式的推导过程,理解几何意义,并掌握基本不等式取得等号的条件;②能够初步运用基本不等式以及等号取得的条件,求出一些简单函数的最值(最大最小值),并能解决一些较为简单的实际问题。

2、过程与方法:本节内容是学生对不等式认识上的一次提升。

要引导学生从数、形两方面探究基本不等式的证明,从而进一步突破难点。

定理的证明要严密,要帮助学生分析每一步的理论依据,培养学生观察、试验、归纳、判断、猜想等严密严谨的思维能力。

3、情感与价值:培养学生举一反三的逻辑推理能力、严谨求实的科学态度,领略数学的应用价值,激发学生的学习兴趣。

同时通过基本不等式的几何解释,提高学生数形结合的能力。

二、教学重点和难点:重点:用数形结合思想理解不等式,并从不同角度探索不等式2a b +≤的多种解释; 难点:理解“当且仅当a b =时取等号”的数学内涵,并会应用基本不等式求解函数的最大最小值问题,以及解决一些简单的实际问题.。

三、学法与教学用具:先让学生观察常见的图形,通过图形的直观比较抽象出基本不等式。

从生活中实际问题突出数学本质,可调动学生的学习兴趣。

定理的证明要留一部分给学生,让他们自主探究。

教学用具:直角板、圆规、投影仪,如有条件可以使用多媒体(几何画板)进行教学。

四、教学设想:1、几何操作,引入问题:给出如右的所示的几何图形,AB 是O 的直径,点C 是AB 上任意一点,过点C 作垂直于AB 的弦交O 于DD ',连结AD 、BD ,同学们,能通过这个圆以及简单的三角形得到一些相等和不等的关系吗?提问一:现在我们不妨假设2AC a =,2BC b =,那么CD 的长度是多少?、由AB 为直径可知ABD ∆是直角三角形,再根据DC AB ⊥,容易证得ACD ∆∽DCB ∆,即得CD ab =;提问二:根据初中学习的知识,在一个圆中,任意一条弦长与这个圆的直径有什么关系?任意一条弦长不大于直径的长度,而且当且仅当弦为直径时,长度相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《3.4基本不等式》教学设计
1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点;
2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材;
3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处;
4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点.
二、学情分析:
1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助;
2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少;
3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。

三、教学目标:
1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题;
2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养;
3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过程中,体会数学的严谨性,发现数学的实用性.
四、教学重点与难点:
1、教学重点:基本不等式的推导及其简单应用
2、教学难点:分析法证明基本不等式思路的获得和应用基本不等式求最值.
五、教学策略分析:
1、由情景1和情景2引入课题,可明确本堂的主要内容,使学生学习目标明确,进而激发学生的学习兴趣;
2、精心设置“问题串”,由简到难,由感性到理性,一步步引导学生自主探究,小组讨论推导基本不等式,让学生感受知识发生发展深化的过程,也体现学生为主体,老师为主导的教学理念;
3、为突破分析法证明基本不等式思路的获得这一教学难点,采用先学生小组讨论,再师生共同完成的策略;
4、为突破应用基本不等式求最值这一难点,先由例题归纳应用基本不等式求最值的要点,然后趁热打铁设置两个练习,由简到难,由浅入深,采用学生板演,抢答和小组讨论等方式,及时发现问题,及时纠错,让“一正二定三相等”深入人心;
5、对于转化为函数进而用函数的图像和性质求最值的问题,教师只作适当提示,不作为重点;
6、课堂小结重视知识间的联系和研究问题的方法,并强调了数学思想方法和数学核心素养在数学学习中的作用。

教学
环节
教学内容师生活动设计意图
一、情境创设导入课题情境1:在农村,为防止家畜家禽对菜地的破
坏,常用篱笆围成一个菜园.
1.如果菜园的面积一定,为节省材料,就
应该考虑所用篱笆最短的问题;最短是?
m;
2.如果所用篱笆的长度一定,为了充分利
用材料,就要考虑所围菜园面积最大的问
题.最大是?m2;
师:引导学生思考
生:思考回答
师:学习了本堂课
的内容就很容易
解决这两个最值
问题
情境1提出的
实际问题新颖
有趣,简单易
懂,贴近生活,
激发学生的学
习兴趣,也为第
三环节实际应
用埋下伏笔.
情境2:观看第24届国际数学家大会视频,注
意观察这个图形在视频中出现了多少次?
问题:你能在这个图形中找出一些相等关系或
不等关系吗?
师:播放视频
生:观看视频后回

师:强调会标上的
图形的重要性及
其对数学学习的
意义
情境2通过会
标导入新课,贴
近现实,可激发
学生的探究欲
望,也让学生感
受到数学文化
的同时,激起学
生的爱国情怀.
二、自主探究推导公式问题 1:对于“情景导学”中的图形,把“风
车”抽象成平面图形.在正方形ABCD中有4
个全等的直角三角形.设直角三角形的两条直
角边长为,a b,正方形ABCD的面积为S,4
个直角三角形的面积和为
1
S,则:
(1)正方形ABCD的边长为
(2)S=
(3)
1
S=
(4)由图可知,S1S,

生:思考后回答
师:借助几何画板
动态演示面积变
化过程,尤其注意
归纳取等号的条

问题1将问题
细化,以填空形
式呈现问题,并
利用图形的面
积大小关系,循
序渐进地抽象
出重要不等式,
几何画板演示
直观形象,体会
数形结合的思
想.
问题 2:不等式222
a b ab
+≥对任意的实数都
成立吗?
重要不等式:222
a b ab
+≥(0,0)
a b
>>,
当且仅当a b
=时取等号
师:分析问题1中
推导出的不等式
中,a b的取值范
围,提出问题2
生:思考后回答
师:如何证明?
问题2培养学
生学习的严谨
性和逻辑推理
能力.
生:思考后证明 师:板书重要不等式,并解释当且仅当的含义
问题 3:如果0,0a b >>,用,a b 分别代替重要不等式中的,a b ,可得什么?取等号的条件是什么? 基本不等式:2
a b
ab +≤
(0,0)a b >>,当且仅当a b =时取等号.
生:思考后回答
师:板书基本不等

问题3体会代换在数学学习
中的作用,感受
数学知识间的
联系.
问题 4:还有没有其他证明基本不等式的方法?
法(一)作差比较法
2
()022
a b a b ab +--=≥ 法(二)分析法 要证明2
a b
ab +≤
①,只需证明:2a b ab +≥②,要证②只需证明
20a b ab +-≥③,要证③只需证明2()0a b -≥④.显然,④是成立的.当且仅
当a b =时,④中的等号成立.
师:指导学生分组讨论证明基本不等式 生:分组讨论证明基本不等式
师:实物投影展示
学生成果,并和学
生一起分析证明
思路
师生共同完成分析法的证明过程 先从几何图形中的面积关系获得基本不等式,然后从代数的角度推导,实现由感性认识
到理性认识的
升华.
引导学生从多
个角度证明基本不等式,培养逻辑推理能力,
小组讨论可培养学生的合作
交流能力,实物投影可及时发现学生的问题.
探究:如图,AB 是圆O 的直径,点C 是AB 上一点,,AC a BC b ==.过点C 作垂直于AB 的弦DE ,连接AD 、BD 、OD .则:
(1)半径OD = (2)CD = (3)显然CD OD , 即
师:指导学生分组讨论基本不等式的几何意义 生:分组讨论,探
索基本不等式的
几何意义
师:实物投影展示学生成果,难点是CD 的求法,及时指出问题,并用几何画板演示
借助初中阶段学生熟知的几何图形,并将问
题细化,以填空
形式呈现问题,
有利于学生循
序渐进地探索
出基本不等式
的几何意义,
并进一步领悟基本不等式中等
号成立的条件,。

相关文档
最新文档