带电粒子在磁场中的运动公式
电磁场公式总结

电磁场公式总结
整理了高考物理公式大全,所有公式均按知识点分类整理,有助于帮助大家集中掌握
高中物理公式考点。
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位t),1t=1n/a m
2.安培力f=bil;(备注:l⊥b) {b:磁感应强度(t),f:安培力(f),i:电流强度(a),l:导线长度(m)}
3.洛仑兹力f=qvb(注v⊥b);质谱仪〔见第二册p〕 {f:洛仑兹力(n),q:带电粒子电
量(c),v:带电粒子速度(m/s)}
4.在重力忽略不计(不考量重力)的情况下,带电粒子步入磁场的运动情况(掌控两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动v=v0
(2)带电粒子沿横向磁场方向步入磁场:搞匀速圆周运动,规律如下a)f向=f洛
=mv2/r=mω2r=mr(2π/t)2=qvb;r=mv/qb;t=2πm/qb;(b)运动周期与圆周运动的半径和线
速度毫无关系,
洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、
圆心角(=二倍弦切角)。
备注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的`
正负;
(2)磁感线的特点及其常用磁场的磁感线原产必须掌控〔见到图及第二册p〕高中自
学方法;(3)其它有关内容:地磁场/磁电式电表原理〔见到第二册p〕/转盘加速器〔见到
第二册p〕/磁性材料。
带电粒子在有界磁场磁场中的运动

d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电
3.6带电粒子在匀强磁场中运动(1)基本公式

接上 离子在磁场中运动,有 2
mv qvB r 若粒子恰从上极板右边射出, 则由几何关系: 2 L r 2 r L2 q 2
5qBL 解得: v 4m qBL 5qBL 所以 v 或v 4m 4m
v
v
B
m
L
v
L
练习2.如图所示,M、N两板相距为d,板长为5d,两板不带电,
接上
②离子在磁场中运动,有
mv2 qvB r 由几何关系,d rsin t θ 又因 为 2 3πd T 2π 解得: t 9v
B
v
θ
d θ
v
练习1、一正离子,电量为q ,以速度v 垂直射入磁感 应强度为B、宽度为d 的匀强磁场中,穿越磁场时速 度方向与其原来入射方向的夹角是30°,则该离子的 质量是多少?穿越磁场的时间又是多少? d v
第六节
带电粒子在匀强磁场中的运动
知识温故
1、洛伦兹力 方向:用左手定则判断 大小:f=Bvq 注意f⊥B且f⊥v
特点:只改变v的方向,对运动电荷永不做功 2、圆周运动的三个基本公式
v ω r
2 ω T
v a r
2
1、带电粒子在匀强磁场中的运动
思考:当带电粒子q以速度v垂直进入匀强磁
场中,它将做什么运动? 合力大小恒定,方向始终垂 直于速度方向的物体在什么 什么形式的运动?
这就是质谱仪的工作原理
3、带电粒子在磁场中的运动时间
t θ 由比例关系 T 2π
θ m θ 则有:t T 2π Bq
+
+
v
θ
m 2m 特例, θ 、一正离子,电量为q ,以速度v 垂直射入磁感
带电粒子在磁场中的运动及磁通量

磁通量大小的计算
磁场和面垂直: 磁场和面平行: 磁场和面成任 意角度:
S
B
S
B
S Sn
B
BS
0
BSn BS cos
例2. 如下图所示,在同一水平面内有三个闭合 线圈 a 、b 、 c,当 a 线圈中有电流通过时,它 们的磁通量 分别为 φa、 φb 、与φc ,下列说法正 确的是: ( B )
q/m,发射速度大小都为v0,且满足v0=
,发射方向由
图中的角度θ表示。对于粒子进入磁场后的运动(不计重力作 用),下列说法正确的是 A.在AC 边界上只有一半区域有粒子射出 B.以θ = 60°飞入的粒子运动时间最短 C.以θ<30°飞入的粒子运动的时间都相等 D.粒子有可能打到A 点
4、如图所示,边长为L的等边三角形ABC为两有界匀 强磁场的理想边界,三角形内的磁场方向垂直纸面向 外,磁感应强度大小为B,三角形外的磁场(足够大) 方向垂直纸面向里,磁感应强度大小也为B。把粒子源 放在顶点A处,它将沿∠A的角平分线发射质量为m、 电荷量为q、初速度为v0的带电粒子(粒子重力不计) 。若从A射出的粒子 ①带负电,v0=,第一次到达C点所用时间为t1 ②带负电,v0=,第一次到达C点所用时间为t2 ③带正电,v0=,第一次到达C点所用时间为t3 ④带正电,v0=,第一次到达C点所用时间为t4 A.
A. φa < φb < φc
B. φa > φb > φc
C. φa < φc < φb
I
a b c
D. φa > φc > φb
例3 如图示,矩形线圈面积为S,放在匀强磁场中,开 始处于水平位置a,磁场与线圈平面法线夹角为θ,当 线圈绕其一边顺时针转过90到达竖直位置b的过程中,
匀强磁场中带电粒子运动半径计算公式

匀强磁场中带电粒子运动半径计算公式1.概述在物理学中,磁场是一种十分重要的物理现象,它对带电粒子的运动轨迹有着重要影响。
当带电粒子穿过均匀磁场时,会受到洛伦兹力的作用而产生弯曲的运动轨迹。
在研究带电粒子在磁场中的运动时,运动半径是一个十分重要的物理量,它可以描述带电粒子在磁场中的轨迹大小。
2.洛伦兹力和带电粒子的运动轨迹当带电粒子在磁场中运动时,会受到洛伦兹力的作用。
洛伦兹力的大小和方向分别与带电粒子的电荷、速度以及磁场的强度和方向有关。
具体来说,洛伦兹力的大小可以通过以下公式来计算:\[F = qvBsin\theta\]其中,\(F\)表示洛伦兹力的大小,\(q\)表示带电粒子的电荷,\(v\)表示带电粒子的速度,\(B\)表示磁场的强度,\(\theta\)表示磁场和带电粒子速度的夹角。
根据洛伦兹力的作用,带电粒子在磁场中会产生圆周运动。
为了描述这种圆周运动的大小,引入了运动半径的概念。
3.带电粒子运动半径计算公式带电粒子在磁场中的运动半径可以通过以下公式来计算:\[r = \frac{mv}{qB}\]其中,\(r\)表示运动半径,\(m\)表示带电粒子的质量,\(v\)表示带电粒子的速度,\(q\)表示带电粒子的电荷,\(B\)表示磁场的强度。
4.运动半径计算公式的推导关于带电粒子在磁场中的运动半径计算公式的推导,可以通过牛顿第二定律和洛伦兹力的平衡来进行。
根据牛顿第二定律,带电粒子在磁场中的圆周运动可以描述为:\[F = \frac{mv^2}{r}\]其中,\(F\)表示圆周运动的向心力,\(m\)表示带电粒子的质量,\(v\)表示带电粒子的速度,\(r\)表示运动半径。
将洛伦兹力的大小公式代入上面的式子中,可以得到:\[qBv = \frac{mv^2}{r}\]整理上式可以得出带电粒子运动半径的计算公式:\[r = \frac{mv}{qB}\]这就是带电粒子在磁场中运动半径的计算公式。
高二物理电和磁的公式详细介绍

高二物理电和磁的公式详细介绍在高二的物理学习中学生会遇到很多的公式,这些是需要记忆的,下面店铺的小编将为大家带来高二的物理需要记忆的公式介绍,希望能够帮助到大家。
高二物理电和磁的公式磁场1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);©解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;(2)磁感线的特点及其常见磁场的磁感线分布要掌握;(3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料电磁感应1.[感应电动势的大小计算公式]1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。
带电粒子在匀强磁场中的运动

带电粒⼦在匀强磁场中的运动1.若v∥B,带电粒⼦不受洛伦兹⼒,在匀强磁场中做匀速直线运动.2.若v⊥B,带电粒⼦仅受洛伦兹⼒作⽤,在垂直于磁感线的平⾯内以⼊射速度v做匀速圆周运动.3.半径和周期公式:(v⊥B)【解题⽅法点拨】带电粒⼦在匀强磁场中的匀速圆周运动⼀、轨道圆的“三个确定”(1)如何确定“圆⼼”①由两点和两线确定圆⼼,画出带电粒⼦在匀强磁场中的运动轨迹.确定带电粒⼦运动轨迹上的两个特殊点(⼀般是射⼊和射出磁场时的两点),过这两点作带电粒⼦运动⽅向的垂线(这两垂线即为粒⼦在这两点所受洛伦兹⼒的⽅向),则两垂线的交点就是圆⼼,如图(a)所⽰.②若只已知过其中⼀个点的粒⼦运动⽅向,则除过已知运动⽅向的该点作垂线外,还要将这两点相连作弦,再作弦的中垂线,两垂线交点就是圆⼼,如图(b)所⽰.③若只已知⼀个点及运动⽅向,也知另外某时刻的速度⽅向,但不确定该速度⽅向所在的点,如图(c)所⽰,此时要将其中⼀速度的延长线与另⼀速度的反向延长线相交成⼀⾓(∠PAM),画出该⾓的⾓平分线,它与已知点的速度的垂线交于⼀点O,该点就是圆⼼.⼆、解题思路分析1.带电粒⼦在磁场中做匀速圆周运动的分析⽅法.2.带电粒⼦在有界匀强磁场中运动时的常见情形.3.带电粒⼦在有界磁场中的常⽤⼏何关系(1)四个点:分别是⼊射点、出射点、轨迹圆⼼和⼊射速度直线与出射速度直线的交点.(2)三个⾓:速度偏转⾓、圆⼼⾓、弦切⾓,其中偏转⾓等于圆⼼⾓,也等于弦切⾓的2倍.三、求解带电粒⼦在匀强磁场中运动的临界和极值问题的⽅法由于带电粒⼦往往是在有界磁场中运动,粒⼦在磁场中只运动⼀段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒⼦运动的轨迹作相关图去寻找⼏何关系,分析临界条件,然后应⽤数学知识和相应物理规律分析求解.(1)两种思路①以定理、定律为依据,⾸先求出所研究问题的⼀般规律和⼀般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;②直接分析、讨论临界状态,找出临界条件,从⽽通过临界条件求出临界值.(2)两种⽅法物理⽅法:①利⽤临界条件求极值;②利⽤问题的边界条件求极值;③利⽤⽮量图求极值.数学⽅法:①利⽤三⾓函数求极值;②利⽤⼆次⽅程的判别式求极值;③利⽤不等式的性质求极值;④利⽤图象法等.(3)从关键词中找突破⼝:许多临界问题,题⼲中常⽤“恰好”、“最⼤”、“⾄少”、“不相撞”、“不脱离”等词语对临界状态给以暗⽰.审题时,⼀定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.。
高中物理确定带电粒子在磁场中运动轨迹的四种方法

高中物理确定带电粒子在磁场中运动轨迹的四种方法-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远射出的时间差是多少解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。