带电粒子在匀强磁场中运动轨迹

合集下载

带电粒子在匀强磁场中的匀速圆周运动

带电粒子在匀强磁场中的匀速圆周运动

洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述

带电粒子在垂直的匀强电场和匀强磁场的运动轨迹

带电粒子在垂直的匀强电场和匀强磁场的运动轨迹

带电粒子在垂直的匀强电场和匀强磁场的运动轨迹带电粒子在垂直的匀强电场和匀强磁场的运动轨迹作为我们物理学领域中一个重要的概念,带电粒子在垂直的匀强电场和匀强磁场中的运动轨迹,一直是一个备受关注的问题。

在这篇文章中,我将着重对这一主题展开探讨,尝试以从简到繁、由浅入深的方式来解释这一现象的原理和运动规律。

1.概念解释带电粒子在垂直的匀强电场和匀强磁场中的运动轨迹,是指当一个带电粒子同时受到垂直方向上的匀强电场和匀强磁场的作用时,其运动轨迹的规律和特点。

这一现象在物理学中有着广泛的应用和研究价值,如粒子加速器、质谱仪等。

2.匀强电场下的运动轨迹当带电粒子处于垂直方向上的匀强电场中时,根据电场力的作用规律,粒子将受到一个沿着电场方向的恒定力。

这时,粒子的运动轨迹呈现出直线运动的特点,且运动方向与电场方向相同或相反,取决于粒子带电性质的正负。

3.匀强磁场下的运动轨迹在垂直方向上的匀强磁场中,带电粒子受到洛伦兹力的作用,引发其偏转运动。

洛伦兹力的大小与粒子电荷量、速度以及磁场强度等因素相关。

粒子在磁场中的运动轨迹将呈现出圆弧或螺旋状的特征。

4.电场与磁场共同作用下的运动轨迹当带电粒子同时受到垂直方向上的匀强电场和匀强磁场的作用时,这两种力将共同影响粒子的运动状态。

根据洛伦兹力的合成规律,粒子的运动轨迹将呈现出复杂的轨迹,具有螺旋线和螺线螺旋线等特点。

5.个人观点对于带电粒子在垂直的匀强电场和匀强磁场的运动轨迹,我个人认为,其运动规律的复杂性体现了物理学中力的多种作用的复合效果。

其研究和理解不仅有助于我们更深入地认识电磁力学的基本原理,还为相关技术和设备的设计和应用提供了重要参考。

总结回顾通过对带电粒子在垂直的匀强电场和匀强磁场的运动轨迹的探讨,我们可以看到,这一主题涉及到电场力和磁场力的相互作用,体现了物理学中的电磁学理论的实际应用和研究意义。

深入理解这一主题,有助于我们更好地掌握电磁学知识,推动相关领域的科学研究和技术发展。

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动

即 eUd2=evB1,代入 v 值得 U2=B1d
2eU1 m
(3)在 c 中,e 受洛伦兹力作用而做圆周运动,回
转半径 R=Bm2ve,代入 v 值得 R=B12
2U1m e
答案:(1)
2eU1 m
(2)B1d
2eU1 m
1 (3)B2
2U1m e
点评:解答此类问题要做到: (1)对带电粒子进行正确的受力分析和运动过程 分析. (2)选取合适的规律,建立方程求解.
[错误解法]由 Bqv0=mvR02,得 B=
mqvR0. 则
B

3×10-20×105 10-13× 3×10-1
T≈0.17T.
[错因点评]对公式中有关物理量不甚明了,在套
用公式 Bqv0=mRv20时,误将 R 的值代为磁场区域半径 之值了.
[正确解答]作进、出磁场点处 速度的垂线 PO、QO 得交点 O,O 点即粒子做圆周运动的圆心.据此
A.增大匀强电场间的加速电压 B.增大磁场的磁感应强度 C.增加周期性变化的电场的频率 D.增大 D 形金属盒的半径 答案:BD
解析:粒子最后射出时的旋转半径为 D 形盒的最 大半径 R,R=mqBv,Ek=12mv2=q22Bm2R2.可见,要增大 粒子的动能,应增大磁感应强度 B 和增大 D 形盒的 半径 R,故正确答案为 B、D.
︵ 作出运动轨迹如图中的PQ.此圆半 径为 PO,记为 r.
易知∠POQ=60°,则 r=PQ= 3R=0.3m. 由 Bqv0=mvr20得 B=mqvr0.则 B=3×101-01-3 ×20×0.1305T =0.1T.
[正确答案]0.1T
[感悟心语]像这种不太复杂的带电粒子在匀强磁 场中的圆周运动问题,解题要点在于作出带电粒子实 际运动的轨迹.方法有两种:

1.3带电粒子在匀强磁场中的运动

1.3带电粒子在匀强磁场中的运动
思路导引:
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2



.
55

10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7


5
.
6875






洛伦兹力提供向心力
v2
qvB m
r



圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间

t
T

(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法

(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法

确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。

但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。

只要确定了带电粒子的运动轨迹,问题便迎刃而解。

现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。

正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。

由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

高中物理确定带电粒子在磁场中运动轨迹的四种方法

高中物理确定带电粒子在磁场中运动轨迹的四种方法

确定带电粒子在磁场中运动轨迹的四种方法 带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。

但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。

只要确定了带电粒子的运动轨迹,问题便迎刃而解。

现将确定带电粒子运动轨迹的方法总结如下: 一、对称法 带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3所示,直线MN 上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少? 解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s =2r =,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r 的圆形区域内,有一个匀强磁场。

一带电粒子以速度v 0从M 点沿半径方向射入磁场区,并由N 点射出,O 点为圆心。

当∠MON =120°时,求:带电粒子在磁场区的偏转半径R 及在磁场区中的运动时间。

解析:分别过M 、N 点作半径OM 、ON 的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。

由图中的几何关系可知,圆弧MN 所对的轨道圆心角为60°,O 、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r /tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期: 带电粒子在磁场区域中运动的时间 二、旋转圆法 在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动

〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.

(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法

(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法

确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。

但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。

只要确定了带电粒子的运动轨迹,问题便迎刃而解。

现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2 )。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3 所示,直线MN上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s =2r= ,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

图6 所示。

O以与MN 成30°角的例2.如图5 所示,在半径为r 的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0 从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠ MO=N 120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

解析:分别过M、N 点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O' 的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30 ° =又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在匀强磁场中运动轨迹
带电粒子在匀强磁场中运动轨迹
一、带电粒子在匀强磁场中运动轨迹
带电粒子只受洛伦兹力作用的条件下,在匀强磁场中的运动有:
1.粒子初速度方向平行磁场方向(V ∥B ):
运动轨迹:匀速直线运动
2.粒子初速度方向垂直磁场方向(V ⊥B ):
(1)动力学角度:洛伦兹力提供了带电粒子做匀速圆周运动所需的向心力
(2)运动学角度:加速度方向始终和运动方向垂直,而且加速度大小不变。

运动轨迹:匀速圆周运动
二、轨道半径和运动周期
1.轨道半径r :qB
m v r = 在匀强磁场中做匀速圆周运动的带电粒子,轨道半径跟运动速率成正比。

2.运动周期T :qB
m T π2= (1)周期跟轨道半径和运动速率均无关
(2)粒子运动不满一个圆周的运动时间:qB m t θ=
,θ为带电粒子运动所通过的圆弧所对的圆
心角三、有界磁场专题:(三个确定)
1、圆心的确定
已知进出磁场速度方向已知进出磁场位置和一个速度方向
2. 半径的确定:
半径一般都在确定圆心的基础上用平面几何知识求解,常常要解三角形
带电粒子在匀强磁场中运动轨迹
3、时间的确定(由圆心角确定时间)
粒子速度的偏转角(?)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍
即.θα?2==
粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:T t π
α2= (1)直界磁场区: 如图,虚线上方存在无穷大的磁场B ,一带正电的粒子质量m 、电量q 、若它以速度v 沿与虚线成o o o o o o
*****6030、、、、、
角分别射入,请你作出上述几种情况下粒子的轨迹、并求其在磁场中运动的半径和时间。

粒子在直界磁场(足够大)的对称规律:从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等。

(2)、圆界磁场
带电粒子在匀强磁场中运动轨迹
偏转角:r
R =2tan θ
R :磁场半径r:圆周运动半径经历时间:qB
m
t θ= 圆运动的半径:qB
m v r = 圆界磁场对称规律:在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。

练习:1、(2014青岛一模)如图所示,在边长为L 的正方形区域内有垂直于纸面向里的匀强磁场,有一带正电的电荷,从D 点以0v 的速度沿DB 方向射入磁场,恰好从A 点射出,已知电荷的质量为m ,带电量为q ,不急电荷的重力,则下列说法正确的是()
A .匀强磁场的磁感应强度为qL m v 0
B .电荷在磁场中运动的时间为0
v L π C .若电荷从CD 边界射出,随着入射速度的减小,电荷在磁场中运动的时间会减小
D .若电荷的入射速度变为02v ,则粒子会从AB 中点射出
带电粒子在匀强磁场中运动轨迹
2、如图所示,水平放置的两平行金属板M 、N ,板长为L ,间距为d ,板间充满垂直纸面向里的匀强磁场,质量为m 、电量为q 的粒子(不考虑重力)从两板中央的O 点沿中轴线'OO 以速度0v 水平射入。

(1)若粒子恰从N 板右边缘飞出,求匀强磁场磁感应强度B 的大小;
(2)若M 、N 板加电压U ,可使粒子沿直线OO ′通过平行板电容
器,求U 的大小;
(3)若撤去磁场,保持(2)问中两板间电压和粒子入射速度不变,求粒子在两板间运动的时间t 及沿电场力方向的位移y .
3、(2014天津二模)以坐标原点为中心、边长为L 的正方形EFGH 区域内,存在磁感应强度为B 、方向垂直于纸面向里的匀强磁场,如图所示,在A 处有一个粒子源,可以连续不断的沿x 轴负方向射入速度不同的带电粒子,且都能从磁场的上边界EF 射出.已知粒子的质量为
m ,电量大小为q ,不计重力和粒子间的相互作用.
(1)若粒子从EF 与y 轴的交点射出,试判断粒子的电性并计算粒子射入磁场的速度1v 的大小;
(2)若粒子以速度m
v qBL 0 射入磁场,求粒子在磁场中运动时间t .
4、(2014昭通模拟)如图所示的平面直角坐标系y x 0,在第一象限内有平行于y 轴负方向;在第四象限的正方形abcd 区域内有匀强磁场,方
带电粒子在匀强磁场中运动轨迹
向垂直于y
0x平面向外,正方形边长为L,且ab边与y轴平行.一质量为m、的速度沿x轴正方向电荷量为q的粒子,从y轴上的P(0,h)点,以大小为v
射入电场,通过电场后从x轴上的a(h2,0)点进入第四象限,又经过磁场从y轴上的某点进入第三象限,且速度与y轴负方向成45°角,
不计粒子所受的重力.求:
(1)判断粒子带电的电性,并求电场强度E的大小;
(2)粒子到达a点时速度的大小和方向;
(3)abcd区域内磁场的磁感应强度B的最小值
5、(2014漳州模拟)如图所示,在y轴的右侧存在磁感应强度为B 的方向垂直纸面向外的匀强磁场,在x轴的上方有一平行板式加速电场。

有一薄绝缘板放置
带电粒子在匀强磁场中运动轨迹
在y轴处,且与纸面垂直.现有一质量为m、电荷量为q的粒子由静止经过加速电压为U的电场加速,然后以垂直于板的方向沿直线从A 处穿过绝缘板,而后从x轴上的D处以与x轴负向夹角为30°的方向进入第四象限,若在此时再施加一个电场可以使粒子沿直线到达y轴上的C点(C 点在图上未标出).已知OD长为L,不计粒子的重力.求:。

相关文档
最新文档