苯取代基的定位效应

合集下载

浅谈苯环的亲电取代定位效应

浅谈苯环的亲电取代定位效应
难进行. 二 、 位 效 应 的 理 论 解 释 定
对芳环上 的亲电取代反应来说 , 环上电子云密度高 , 芳 有 利 于 亲 电试 剂 的进 攻 . 环 上 取 代 基 的 电 子 效 应 直 接 影 响 了 芳 芳 环 上 电子 云 密 度 , 代 基 通 常 通 过 诱 导 效 应 和 共 轭 效 应 两 取 种 方 式 来 影 响芳 环上 的 电 子 云 密 度 . 如 果 直 接 与 芳 环 相 连 的 原 子 或 原 子 团 有 比碳 原 子 更 强 的 电 负性 , 通 过 键 传递 表 现 为 吸 电 子 诱 导 效 应 . 原 子 或 原 则 如 子 团 的 电负 性 比碳 原 子 小 , 表 现 为给 电子 的诱 导 效 应 . 则 共 轭 效 应 是 指 当 取 代 基 上 的 P 或 ) 道 和 苯 环 上 的 P ( 轨
两大类 : ( ) 、 位 定 位 基 , 称 为 O oto 、 ( ga 定 位 基 , 1邻 对 又 (rh ) p p r) 它 使 新 基 主要 进 入它 的 邻 位 和 对 位 ( p 6 ) o-> O . g

般使 苯 环活 化 , 电取 代 反应 易 于进行 , 卤素 等例 外 . 亲 但
浅 谈 苯 环 的亲 电取 代 定 位 效 应
■ 于 富 门
芳 香 族 化 合 物 是 高 考 的 重 点 , 中 苯 环 的 取 代 反 应 比 较 其 常 见 , 文 对 苯 环 的 取 代 反 应 做 } 总 结 与 概 括 , 出 定 位 效 本 j j 给 应 , 对 其的应用进行 了阐述. 并 具 有 亲 电性 的 缺 电 子 的 物 种 如 正 离 子 , 被 极 化 的 双 原 易 子 分 子 如 卤素 X 一 X 一等 称 为 亲 电 试 剂 , 环 上 的 H 被 亲 汁 。 苯 电试剂( 下称 取 代 基 ) 代 的 反 应 称 为 亲 电 取 代 . 环 上 新 导 取 苯

苯环上取代反应的定位规律

苯环上取代反应的定位规律
苯环上取代反应的定位规律
《 第 ➢ 一元取代苯:苯环上有一个氢原子被其他的原子或者基团取代后生成 六 章 的产物。 芳 烃 ➢ 二元取代苯:苯环上有二个氢原子被其他的原子或者基团取代后生成 》
的产物。
➢ 一元取代苯或者二元取代苯再发生取代反应时,反应是按照一定的规律
进行的。


一、一元取代苯的定位规律


CH3
COOH
Cl
OH
OH
NO2
苯环上取代反应的定位规律


2、两个定位的定位效应不一致

章 ➢ (2)两个定位基不是同一类:当两类不同定位基的定位作用发生矛盾

时,一般由邻、对位定位基决定新基团进入环上的位置。


CH3
少量(空间位阻)
NHCOCH3
少量(空间位阻)
NO2
COOH
苯环上取代反应的定位规律

氧负离子
二甲氨基
氨基
羟基
甲氧基

OCH3> NHCOCH3 > R > X > C6H5
甲氧基
乙酰氨基
烷基
卤素
苯基
邻、对位定位基的特点:负离子或与苯环直接相连的原子是饱和的(苯基除外)。 上述邻、对位定位基定位能力依次减弱。一般来说,对苯环活化能力程度较大的基团, 基定位能力较强。
苯环上取代反应的定位规律
苯环上取代反应的定位规律
SO3H
磺基
CONH2
氨基甲酰基
间位定位基的特点:正离子或与苯环直接相连的原子是不饱和的。 上述间位定位基定位能力依次减弱。一般来说,对苯环纯化能力程度较大的基团,基 定位能力较强。
苯环上取代反应的定位规律

苯环上的亲电子取代反应及定位效应与反应活性正文

苯环上的亲电子取代反应及定位效应与反应活性正文

苯环上的亲电子取代反应及定位效应与反应活性一、苯的亲电子取代反应1.简介苯环平面的上下有π电子云①,与σ键②相比,平行重叠的π电子云结合较疏松,因此在反应中苯环可充当一个电子源,与缺电子的亲电试剂③发生反应,类似于烯烃中π键④的性质。

但是苯环中π电子又有别于烯烃,π键共振形成的大π键⑤使苯环具有特殊的稳定性,反应中总是保持苯环的结构。

苯的结构特点决定苯的化学性质,它容易发生亲电子取代反应⑥。

π键σ键电子云2.卤代⑦苯与卤素作用,在三卤化铁(FeX3)的催化下,得到卤代苯,同时放出卤化氢。

(1)与Cl2反应FeCl3+Cl2+HCl反应2FeBr3+ Br2 +HBr(3)与I2反应:碘活性不够,只有与非常活泼的芳香化合物才能发生取代反应。

目前采用氧化剂将碘氧化为碘正离子后直接引入苯环。

HNO3I+I286%)铁屑与卤素反应产生三卤化铁,起到同样的作用。

3Br2+2Fe 2FeBr3苯与氯、溴的取代反应应用十分广泛。

其公认的反应历程是首先缺电子的FeX3与卤素络合,促进卤素之间σ键的极化、异裂。

FeX3+X2X++FeX4-带正电的卤素进攻苯环的π电子。

形成苯碳正离子中间体,类似于烯烃的亲电加成,这一步是速度决定步骤+二卤代烃+X-也可失去质子,恢复苯的骨架。

苯的稳定性起了决定作用,得到取代而不是加成产物。

-H++FeX3+HX3.硝化苯与浓硝酸和浓硫酸的混合物(称混酸)反应,生成硝基苯。

浓H2SO4+HNO3(浓)(98%)+H2O50℃其反应历程如下:浓硫酸的酸性比硝酸的强,它作为酸提供质子(H+),硝酸作为碱提供氢氧根(OH-),去掉一分子水,产生硝基正离子,硝基正离子具有很强的亲电子性,与苯发生亲电子取代反应。

若采用浓硝酸,则反应速度明显减慢,这是由于浓硝酸中仅存在少量的硝基正离子。

4.磺化不同浓度的硫酸与苯反应的速度不同,浓度越高反应越快。

含三氧化硫的发烟硫酸的反+H2SO4(7%SO3(52%)+H2O磺化反应也是亲电取代反应,通常认为亲电试剂是三氧化硫。

苯环上亲电取代反应的定位规律

苯环上亲电取代反应的定位规律

苯环上亲电取代反应的定位规律苯环上亲电取代反应的定位规律基本概念:定位基:在进行亲电取代反应时,苯环上原有取代基,不仅影响着苯环的取代反应活性,同时决定着第二个取代基进入苯环的位置,即决定取代反应的位置。

原有取代基称做定位基。

一、两类定位基在一元取代苯的亲电取代反应中,新进入的取代基可以取代定位基的邻、间、对位上的氢原子,生成三种异构体。

如果定位基没有影响,生成的产物是三种异构体的混合物,其中邻位取代物40%(2/5)、间位取代物40%(2/5)和对位取代物20%(1/5)。

实际上只有一种或二种主要产物。

例如各种一元取代苯进行硝化反应,得到下表所示的结果:1.第一类定位基对苯环的影响及其定位效应以甲基、氨基和卤素原子为例说明。

甲基在甲苯中,甲基的碳为sp3杂化,苯环碳为sp2杂化,sp2杂化碳的电负性比sp3杂化碳的大,因此,甲基表现出供电子的诱导效应(A)。

另外,甲基C—H σ 键的轨道与苯环的π 轨道形成σ—π 超共轭体系(B)。

供电诱导效应和超共轭效应的结果,苯环上电子密度增加,尤其邻、对位增加得更多。

因此,甲苯进行亲电取代反应比苯容易,而且主要发生在邻、对位上。

亲电试剂E+进攻甲基的邻、间、对位置,形成三种σ 络合物中间体,三种σ 络合物碳正离子的稳定性可用共振杂化体表示:进攻邻位:进攻对位:进攻间位:亲电试剂进攻苯生成的σ 络合物的碳正离子也可以用共振杂化体表示:苯环上亲电取代反应的定位规律显然,共振杂化体Ⅰ和Ⅱ比Ⅲ稳定,因为Ⅰc和Ⅱb的正电荷在有供电基的叔碳上,较分散。

而在Ⅲ中,正电荷都分布在仲碳上,不稳定。

所以甲基是邻对位定位基。

共振杂化体Ⅲ比Ⅳ稳定,虽然在Ⅲ和Ⅳ中的共振极限结构式都是正电荷分布在仲碳上,但甲基有供电性,使Ⅲ的正电荷可以分散在环和甲基上,因此,甲基活化了苯环。

从共轭效应和共振论两种观点分析、考察甲苯的亲电取代反应,都得出甲基是第一类定位基、有活化苯环作用的一致结论。

苯环上的取代定位规则

苯环上的取代定位规则

苯环上的取代定位规则(一)大量实验事实表明,当一些基团处于苯环上时,苯环的亲电取代反应会变得容易进行,同时指使再进入的基团将连接在它的邻位或对位。

例如,当苯环上已存在一个甲基时(即甲苯),它的卤化、硝化和磺化等反应,反应温度均远低于苯,且新基团的导入均进入苯环上甲基的邻或对位:甲基的这种作用称为定位效应。

在这里甲基是一个邻、对位指向基,具有活化苯环的作用,称为活化基。

类似的活化基团还有许多,它们也被称为第一类取代基,并按活化能力由大到小的顺序排列如下:-NH2,-NHR,-NR2,-OH>-NHCOR,-OR,>-R,-Ph>-X处于这一顺序最末的卤素是个特例。

它一方面是邻、对位指向基,另一方面又是使苯环致钝的基团,这是由于卤素的电负性远大于碳,因此其吸电子效应已超过了本身的供电子能力,这就使环上的电子云密度比卤素进入前有所降低,因而使亲电试剂的进攻显得不力。

此称为钝化作用。

还有许多比卤素致钝力更强,而且使再进基团进入间位的取代基,它们被称为间位指示基或第二类取代基,按其致钝能力由大到小的顺序排列如下:-NR3+,-NO2,-CF3,-CCl3>-CN,-SO3H,-CH=O,-COR,-COOH,-COOR常见的取代基的定位作用见表邻对位定位基间位定位基活化苯环钝化苯环-NR 2 -NR2 -NHR-NH2-OH-OCH3 -NHCOR-CH3-C2H5 -CH(CH3)2 -C(CH3)2-Ar(-H)(-H)(-H)-CH2Cl-CH2Cl-F-Cl-Br-I-NO2-CN-SO3H-CHO-COCH3-COOH-COOR-CONH2由于取代基的指向和活化或钝化作用,在合成一个指定化合物时,采取哪种路线就必须事先作全面考虑。

如:欲合成下列化合物时,显然b-路线是合理的。

如果以苯为原料,欲合成对-硝基苯甲酸(此物质在后面章节将学到)时,则应该先对苯进行甲基化后再进行硝化,最后将甲基氧化:。

苯环取代基定位效应

苯环取代基定位效应

苯环取代基定位效应苯环取代基定位效应,这可是有机化学里相当有趣的一个事儿呢。

咱就把苯环想象成一个大家庭的院子,这个院子里有好多房间(碳原子)。

当有个外来的取代基要住进来的时候,就像来了个新邻居,它可不是随便找个地方就住下的,而是有一定的规律。

有一些取代基啊,就像是那种特别热情好客、影响力还特别大的邻居。

比如说羟基( -OH),它一旦住进这个苯环大院,就会让周围的房间变得很特别。

它就像个磁场中心一样,会让接下来再要来住的新邻居更倾向于住在它的邻位或者对位。

这就好比在一个小区里,有一家特别热情的人家,他家周围的房子就特别抢手,大家都想挨着他们家。

而像硝基( -NO₂)这样的取代基呢,就有点不一样了。

它住进苯环大院后,会让后来的新邻居更倾向于住在间位。

这就好比是一个有点严肃、让人有点距离感的邻居,他周围的地方大家不太想挨着,反而是隔一个位置的地方更受新来者的欢迎。

那为啥会有这样的定位效应呢?这就和电子云的分布有关系啦。

像羟基这种,它会把自己的电子云拿出来一部分,和苯环的电子云分享,这样就使得邻位和对位的电子云密度变得更大。

新的取代基啊,就像那些喜欢热闹、电子云丰富地方的小粒子,自然就更喜欢往邻位和对位跑啦。

而硝基呢,它会把苯环上的电子云往自己这边拉一点,导致邻位和对位的电子云密度变小,间位相对来说电子云密度就比较大了,新的取代基就倾向于去间位。

这定位效应在有机合成里可太重要了。

就好像是在盖房子的时候,你得先知道哪里的地基好打,哪里适合盖什么样的房子。

如果我们想在苯环上特定的位置引入一个新的基团,就必须要考虑已有的取代基是什么样的,它会让新基团更容易去哪里。

比如说我们想要合成一种药物分子,这个分子的结构里苯环上的基团位置很关键。

如果不按照这个定位效应来,就像是在黑暗里乱撞,很难得到我们想要的东西。

再打个比方,这苯环取代基定位效应就像是下棋。

每个取代基就像棋盘上的棋子,它们各自有着自己的影响力范围,决定了下一个棋子可以放在哪里更合适。

苯环上的亲电子取代反应及定位效应与反应活性正文

苯环上的亲电子取代反应及定位效应与反应活性正文

苯环上的亲电子取代反应及定位效应与反应活性一、苯的亲电子取代反应1.简介苯环平面的上下有π电子云①,与σ键②相比,平行重叠的π电子云结合较疏松,因此在反应中苯环可充当一个电子源,与缺电子的亲电试剂③发生反应,类似于烯烃中π键④的性质。

但是苯环中π电子又有别于烯烃,π键共振形成的大π键⑤使苯环具有特殊的稳定性,反应中总是保持苯环的结构。

苯的结构特点决定苯的化学性质,它容易发生亲电子取代反应⑥。

π键σ键电子云2.卤代⑦苯与卤素作用,在三卤化铁(FeX3)的催化下,得到卤代苯,同时放出卤化氢。

(1)与Cl2反应FeCl3+Cl2+HCl反应2FeBr3+ Br2 +HBr(3)与I2反应:碘活性不够,只有与非常活泼的芳香化合物才能发生取代反应。

目前采用氧化剂将碘氧化为碘正离子后直接引入苯环。

HNO3I+I286%)实际反应中往往加入少量铁屑,铁屑与卤素反应产生三卤化铁,起到同样的作用。

3Br2+2Fe 2FeBr3苯与氯、溴的取代反应应用十分广泛。

其公认的反应历程是首先缺电子的FeX3与卤素络合,促进卤素之间σ键的极化、异裂。

FeX3+X2X++FeX4-π电子。

形成苯碳正离子中间体,类似于烯烃的亲电加成,这一步是速度决定步骤+X+苯的碳正离子中间体既可与卤素负离子结合成二卤代烃+X-也可失去质子,恢复苯的骨架。

苯的稳定性起了决定作用,得到取代而不是加成产物。

-H++HX33.硝化浓H2SO4+HNO3(浓)(98%)+H2O50℃浓硫酸的酸性比硝酸的强,它作为酸提供质子(H+),硝酸作为碱提供氢氧根(OH-),去掉一分子水,产生硝基正离子,硝基正离子具有很强的亲电子性,与苯发生亲电子取代反应。

若采用浓硝酸,则反应速度明显减慢,这是由于浓硝酸中仅存在少量的硝基正离子。

4.磺化不同浓度的硫酸与苯反应的速度不同,浓度越高反应越快。

含三氧化硫的发烟硫酸的反应最快,在常温下即可与苯发生磺化反应,生成苯磺酸。

+H2SO4(7%SO3(52%)+H2O磺化反应也是亲电取代反应,通常认为亲电试剂是三氧化硫。

苯环上取代反应的定位规则

苯环上取代反应的定位规则

苯环上原有的取代基对新导入取代基有影响,这种影响包括反应活性和进入位置两个方面。

通常,苯环上原有的第一取代基称为定位基,从大量实验事实的分析总结中发现,定位基的定位作用遵循一定的规律,这一规律称为苯环上亲电取代反应定位规律(又称定位规则)。

下面分别讨论定位基的类型;定位规则的理论解释;二元取代苯的定位规律;定位规律的应用。

(一)定位基的类型1.邻、对位定位基。

这类定位基的结构特征是定位基中与苯环直接相连的原子不含不饱和键(芳烃基例外),不带正电荷,且多数具有未共用电子对。

常见的邻、对位定位基及其反应活性(相对苯而言)如下:强致活基团:―NH2(―NHR,―NR2),―OH中致活基团:―OCH3(―OR),―NHCOCH3(-NHCOR)弱致活基团:―ph(―Ar),―CH3(-R)弱致钝基团:―F,―Cl,―Br,―I这类定位基多数使亲电取代反应较苯容易进行,但卤素例外。

2.间位定位基。

这类定位基的结构特征是定位基中与苯环直接相连的原子一般都含有不饱和键(-CX3例外)或带正电荷。

常见的间位定位基及其定位效应从强到弱顺序如下:―N+H3,―N+R3,―NO2,―CF3,―CCl3,―CN,―SO3H,―COH,―COR,―CO OH,―COOR,―CONH2等。

这类定位基属致钝基团,通常使苯环上亲电取代反应较苯难进行,且排在越前面的定位基,定位效应越强,反应也越难进行。

(二)定位规则的理论解释苯环上的取代反应是亲电取代反应。

因此,从反应活性的角度分析,凡有助于提高苯环上电子云密度的基团,就能使苯环活化,反应活性提高;反之,凡是使环上电子云密度降低的基团,就能使苯环钝化,反应活性降低。

从反应位置的角度分析,当苯环上没有取代基时,环上六个碳原子的电子云密度是均等的;但当苯环上有取代基时,由于取代基的电子效应沿着苯环共轭体系传递。

在环上出现了出现了电子云密度的疏密交替分布现象。

第二个取代基总是进入苯环上电子云密度相对较大的部位,从而使这些碳原子上的取代物占了多数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苯取代基的定位效应
苯取代基的定位效应,指的是苯环上的取代基会对反应发生在苯上的位置产生一定的影响。

一、电子效应
苯环上的取代基会改变苯环的电子密度,这种改变就被称为电子效应。

电子效应可分为两种类型:电子给体效应和电子吸引效应。

1. 电子给体效应
取代基为电子给体时,它的存在会使得苯环上的电子云对它起较为弱的吸引作用,从而导致其周围苯环中的电子云较为密集。

这样,反应发生的位置往往会在给体基团的邻位或对位上。

例如,当苯环上有一个甲基(Me)取代的时候,甲基是一个电子给体,可以加强邻位或对位上的电子密度。

因此,向苯环中加入亲电试剂时,它们会在邻位或对位上进行反应。

2. 电子吸引效应
这是指苯环上的取代基为电子吸引体时,会使得周围的电子云相对稀薄。

在这种情况下,反应发生的位置通常是取代基所在的位置,即在本实例中为对位。

例如,在苯环上含有强电子吸引基硝基(NO2)时,它会强烈吸引邻位和对位上的电子云,从而使得苯环上其他位置的电子云相对稀薄。

因此,亲电试剂会选择在取代基的位置进行反应。

二、立体效应
苯环上的取代基还会影响苯上的反应位置,具体原因是取代基存在时,它们周围的空间有一定的障碍,绕过取代基需要消耗的能量会增加,因此会影响反应进展的位置。

例如,在β-溴苯乙酸甲酯的加成反应中,苯环上存在一个甲基时,它会在邻位和对位上形成立体障碍,使得反应发生在较远的对位上,从而形成β-溴苯乙酸甲酯。

总之,苯取代基的定位效应可以使得我们更加准确地设计和控制反应的位置,从而提高反应效率和成品产率。

相关文档
最新文档