2018年江西省中考数学试卷及答案
2018年江西各市中考数学试题及答案汇总

2018年江西各市中考数学试题及答案汇总
中考频道以最快的速度为大家呈现《2018年江西各市中考数学试题及答案汇总》,如果您需要查找的真题及答案没有显示,请按ctrl+F5刷新。
9
2018年江答案
11
2018年江西景德镇中考数学试题及答案
整理
1
2018年江西鹰潭中考数学试题及答案
2
2018年江西萍乡中考数学试题及答案
3
2018年江西新余中考数学试题及答案
4
2018年江西抚州中考数学试题及答案
5
2018年江西宜春中考数学试题及答案
6
2018年江西赣州中考数学试题及答案
7
2018年江西吉安中考数学试题及答案
8
2018年江西上饶中考数学试题及答案
2018年江西省中考数学试题含答案解析

. 【解析】 本题考察分式有意义的条件,当分母不为 0 时,分式有意义,所以������ ‒ 1 ≠ 0. 【答案】 ������ ≠ 1 ★ 8.2018 年 5 月 13 日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过 6 万吨,将数 60000 用科学记数法表示应 为 . ������ 【解析】 本题考察科学记数法,把 60000 写成������ × 10 的形式,注意1 ≤ ������<10 4 【答案】 6 × 10 ★ 9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金 十 两。牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛 5 头,羊 2 头,共值金 10 两,
江西省 2018 中考数学试题卷解析
乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 (乒 4乒 )
5.小军同学在网格纸上将某些图形进行平移操作,他发现平移 前后的两个图形所组成的图形可以是轴对称图形.如图所示, 现在他将正方形ABCD从当前位置开始进行一次平移操作, 平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A. 3 个 B. 4 个 C. 5 个 D. 无数个 【解析】
G D F
10.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转 得到矩形AEFG,点B的对应点E落在CD上,且DE = EF,则 AB 的长为 . 【解析】 【答案】 本题考察矩形的性质和旋转的对应线段,利用勾股定理 计算AB的长.DE = EF = BC = AD=3, ∠D=90°,所以 AB = 3 2 ★★
AB = AE = 3 2
A
E B C 乒 乒 10乒 乒
2 2 11.一元二次方程������ ‒ 4������ + 2 = 0的两根为������1,������2 ,则������1 ‒ 4������1 + 2������1������2的值为
最新-2018年江西省中招考试数学试题卷及答案【word版】 精品

江西省2018年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第5题)8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5·12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 12.计算:1sin 60cos302-= . 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .14.方程(1)x x x -=的解是 . 15.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 . 16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF(第7题) A . B . C . D .俯视图 主视图 (第8题)(第13题)35°的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ . 三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12x =-.18.如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标. (1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD19.有两个不同形状的计算器(分别记为A ,B 图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率. (2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.A B a b20.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A 'x处;(1)求证:B E BF '=;(2)设AE a AB b BF c ===,,,试猜想a b c ,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分)21.如图,AB 为O 的直径,CD AB ⊥于点E ,交O 于点D ,OF AC ⊥于点F . (1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.22.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?23.为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后ABCDFA 'B 'EB A告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下: (1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.1228 ⎪⎝⎭,于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=).(1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):0.030.29 (4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.62621.732sin150.259sin 750.96644-+==,≈,≈.)江西省南昌市2018年初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.D 2.C 3.D 4.D 5.A 6.A 7.B 8.C图1图2B (E A (F D图3H DACB图4二、填空题(本大题共8小题,每小题3分,共24分) 9.91.51410⨯10.(2)(2)x x x +-11.231y x =-+12.1413.12514.10x =,22x =15.416.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共4小题,每小题6分,共24分)17.解:原式222(1)x x x =+-- ······································································ 2分2221x x x =+-+ ··························································································· 3分 21x =+. ···································································································· 4分当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ···························································· 6分 18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ···································································· 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+,由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ······························································· 5分∴直线1BD 的解析式为1133y x =+. ································································· 6分 ②选择点2(21)D -,时,类似①的求法,可得直线2BD 的解析式为1y x =--. ······································································ 6分 ③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ·········· 6分 说明:第(1)问中,每写对一个得1分.19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况.恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ················································································ 2分 (2)用树形图法表示:ABabBAaba ABbb ABa所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba ·················· 4分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 或用列表法表示:A B a b A AB Aa Ab B BA Ba Bb a aA aB ab bbAbBba······························································· 6分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 20.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, ········································ 1分 在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. ················································· 2分B F B E ''∴=. B E BF '∴=. ·························································· 3分(2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. ················································· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ······························································ 5分 在ABE △中,90A ∠=,222AE AB BE ∴+=.AE a =,AB b =,222a b c ∴+=. ······························································ 6分(ⅱ)a b c ,,三者存在的关系是a b c +>. ················· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ·························· 5分 在ABE △中,AE AB BE +>, a b c ∴+>. ···························································· 6分 说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分; 3.a b c ,,三者关系写成a c b +>或b c a +>参照给分. 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)答案不唯一,只要合理均可.例如:①BC BD =;②OF BC ∥;③BCD A ∠=∠;④BCE OAF △∽△;⑤2BC BE AB =;A B CD F A 'B ' E ABCDFA 'B 'E⑥222BC CE BE =+;⑦ABC △是直角三角形;⑧BCD △是等腰三角形. ············ 3分 (2)连结OC ,则OC OA OB ==.30D ∠=,30A D ∴∠=∠=,120AOC ∴∠=. ······ 4分 AB 为O 的直径,90ACB ∴∠=.在Rt ABC △中,1BC =,2AB ∴=,AC = ········ 5分OF AC ⊥,AF CF ∴=.OA OB =,OF ∴是ABC △的中位线.1122OF BC ∴==.1112224AOC S AC OF ∴==⨯=△. ························································· 6分 2133AOC S OA π=π⨯=扇形. ·············································································· 7分34AOC AOC S S S π∴=-=-△阴影扇形. ······························································· 8分 说明:第(1)问每写对一条得1分,共3分.22.解一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ······················ 1分 根据题意,得60606501.2x x ⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分∴甲同学所用的时间为:606261.2x +=(秒), ···················································· 6分 乙同学所用的时间为:6024x=(秒). ······························································ 7分 2624>,∴乙同学获胜. ············································································ 8分 解二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ······························ 1分根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩,································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意.x y >,∴乙同学获胜. ··············································································· 8分BA23.(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. ························································· 4分 (2)可从不同角度分析.例如: ①从平均偏差率预测:甲同学的平均偏差率是16%,估计的字数所在范围是84~116; ································ 6分乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ································ 8分②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; ····························· 6分 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ····························· 8分 ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117.····································· 6分 乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它. ··················· 8分 说明:1.第(1)问每写对一条结论得1分;2.每写对一条偏差率及估计字数范围的各得1分; 3.答案不唯一,只要合理均参照给分. 五、(本大题共2小题,每小题12分,共24分) 24.解:(1)点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··················································································· 2分解得12a =. ································································································· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··········· 5分当2111022x x --+=时,解得12x =-,21x =. 点M 在点N 的左边,2M x ∴=-,1N x =. ················ 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ····················································· 7分0M F x x +=,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称.···························································· 8分 (3)102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. ··················· 9分 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ············································· 11分 A B x x x ≤≤,∴当0x =时,CD 有最大值2. ············································· 12分 说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“M N E F =”均得1分. 25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠=,1BG =,MG ∴=,12BM =. ··············································································· 2分1x ∴=12y =. ·················································································· 3分(2)当45α=时,点G 在对角线AC 上,其理由是: ········································· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,, 过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.GE GF =,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠=,AEF AFE ∴∠=∠. 90EAF ∠=,45AEF AFE ∴∠=∠=.即45α=时,点G 落在对角线AC 上.····························································· 6分 (以下给出两种求x y ,的解法) 方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,6sin 75GI GE ==,14GQ IQ GI ∴=-=-. ····································································· 7分 B (EA (FD14x y ∴==-. ················································································· 8分 方法二:当点G 在对角线AC 上时,有12= ···················································································· 7分解得1x =14x y ∴==-. ················································································· 8分 (3)α0 153045607590x0.13 0.03 0 0.03 0.13 0.29 0.50y 0.50 0.29 0.13 0.03 0 0.03 0.13···························································· 10分 (4)由点G 所得到的大致图形如图所示:········································································ 12分说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x y ,的值各得1分; 2.第(3)问表格数据,每填对其中4空得1分;3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.H AC DB。
2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析一、试卷概述2018年中考数学试卷总分为150分,分为选择、填空、解答三个部分。
选择题和填空题共计65分,解答题共计85分。
试卷难度适中,覆盖了中学数学的各个知识点,考查重点突出,难度适中,题型形式多样。
二、选择题分析选择题共计15道,每道2分,共计30分。
选择题难度适中,覆盖了中学数学基础知识点,考查了学生的记忆和理解能力,其中有几道题需要细心审题,避免失分。
如下是部分选择题:1.若$a>b>0$,则$\frac{a+b}{a-b}$的值为()A.$-\frac{a+b}{b-a}$B.$\frac{a+b}{b-a}$C.$-\frac{a-b}{b-a}$D.$\frac{a-b}{b-a}$2.有一只蚂蚁位于正方形的一个顶点上,若此蚂蚁只能在正方形边界上爬行,并且每次只能向左或向下,那么它到对角线对面的点至少需要爬行多少条边长?A.1B.2C.3D.43.一根梯子,顶端靠在13米高的树上,底端离树8米,求梯子长。
A.15B.16C.17D.24四、解答题分析解答题共计10道,每道8分,共计80分。
解答题部分难度适中,考查了学生的运算能力和理解能力。
基础题型占多数,部分题目需要思维拓展,需要学生多加思考。
如下是部分解答题:1.已知$\frac{1}{\sqrt{u_1}}+\frac{1}{\sqrt{u_2}}=\frac{3}{2}$,求$\frac{1}{2u_1}+\frac{1}{u_2}$的值。
2.如图,在$\triangle ABC$中,点$E$和$F$分别是$\overline{AC}$和$\overline{AB}$的中点,$\overline{BE}$交$\overline{CF}$于点$G$。
如果$AG=4$,$GB=6$,$CG=8$,那么$\overline{BC}$的长为多少?总体来看,2018年中考数学试卷难度适中,考查范围覆盖了中学数学基础知识点,不易出偏题,对于实力较强的学生来说,可以拿到不错的成绩。
2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。
每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。
2018年中考数学试卷及答案

2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
江西省中考数学试题含答案解析

A
D
B
C
(乒 5乒 )
本题考察图形变换,平移的方向只有 5 个,向上,下,右,右上 45°,右下 45°方向,
否则两个图形不轴对称. 【答案】 C ★★ 6.在平面直角坐标系中,分别过点A(m,0),B(m﹢2, 0)作������轴的垂线������1和������2 ,探究直线������1和������2与双曲 3 ������ = ������ 的关系,下列结论中错误的是 线 A.两直线中总有一条与双曲线相交 B.当������=1 时,两条直线与双曲线的交点到原点的距离相等 C.当 ‒ 2﹤������﹤0 时,两条直线与双曲线的交点在������轴两侧 D.当两直线与双曲线都有交点时,这两交点的最短距离是 2 【解析】 本题考察直线与双曲线的关系,当������=0 时,������2与双曲线有交点,当������=-2 时,������1与双曲线 有交点,当������ ≠ 0,������ ≠ ﹣2时,������1与������2和双曲线都有交点,所以A正确;当������ = 1时, 两交点分别是(1,3),(3,1),到原点的距离都是 10,所以B正确;当 ‒ 2﹤������﹤0 时, ������1在������轴 3 3 ������, 和(������ + 2, ������ ������ ������ + 2),两交点 的左侧, 2在������轴的右侧,所以������正确;两交点分别是
﹣
A. ‒ 2 【解析】 【答案】 B.2 C.
1 2
1 D. 2
本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. B★ ������ ������2 的结果为 B. - ������ C. ������������ ������ D. ������
江西省2018年中考数学模拟试卷(Word版,1)(Word版,带答案)

2018年江西中考模拟卷(一)时间:120分钟 满分:120分题号 一 二 三 四 五 六 总分 得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.|-2|的值是( ) A .-2 B .2 C .-12 D.122.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为( )A .4.64×105B .4.64×106C .4.64×107D .4.64×1083.观察下列图形,其中既是轴对称又是中心对称图形的是( )4.下列计算正确的是( )A .3x 2y +5xy =8x 3y 2B .(x +y )2=x 2+y 2C .(-2x )2÷x =4x D.y x -y +xy -x=15.已知一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则1x 1+1x 2的值为( )A .2B .-1C .-12D .-26.如图,在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE ∥AC ,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD ⊥BC ,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD =CD ,则四边形AEDF 是菱形D .若AD 平分∠BAC ,则四边形AEDF 是菱形第6题图 第8题图二、填空题(本大题共6小题,每小题3分,共18分) 7.计算:-12÷3=________.8.如图,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为________.9.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=-1,那么(1+i )·(1-i )=________.10.已知某几何体的三视图如图所示,根据图中数据求得该几何体的表面积为____________.第10题图 第12题图11.一个样本为1,3,2,2,a ,b ,c ,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________. 12.如图,在平面直角坐标系中,△ABC 为等腰直角三角形,点A (0,2),B (-2,0),点D 是x 轴上一个动点,以AD 为一直角边在一侧作等腰直角三角形ADE ,∠DAE =90°.若△ABD 为等腰三角形,则点E 的坐标为__________.三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:⎩⎪⎨⎪⎧3x -1≥x +1,x +4<4x -2.(2)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:△ADF ≌△BCE .14.先化简,再求值:⎝⎛⎭⎫m m -2-2m m 2-4÷m m +2,请在2,-2,0,3当中选一个合适的数代入求值.15.为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.16.根据下列条件和要求,仅使用无刻度的直尺画图,并保存画图痕迹:(1)如图①,△ABC中,∠C=90°,在三角形的一边上取一点D,画一个钝角△DAB;(2)如图②,△ABC中,AB=AC,ED是△ABC的中位线,画出△ABC的BC边上的高.17.某市需要新建一批公交车候车厅,设计师设计了一种产品(如图①),产品示意图的侧面如图②所示,其中支柱DC长为2.1m,且支柱DC垂直于地面DG,顶棚横梁AE长为1.5m,BC为镶接柱,镶接柱与支柱的夹角∠BCD =150°,与顶棚横梁的夹角∠ABC=135°,要求使得横梁一端点E在支柱DC的延长线上,此时经测量得镶接点B 与点E的距离为0.35m(参考数据:2≈1.41,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,结果精确到0.1m).(1)求EC的长;(2)求点A到地面DG的距离.四、(本大题共3小题,每小题8分,共24分)18.某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是________°; (2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.19.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20页时,每页收费0.12元;一次复印页数超过20页时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数).(1)一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.5 2 … 乙复印店收费(元)0.62.4…(2)1212的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.20.如图,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为点E .过点B 作BD ⊥y 轴,垂足为点D ,且点D 的坐标为(0,-2),连接DE .(1)求k 的值;(2)求四边形AEDB 的面积.五、(本大题共2小题,每小题9分,共18分)21.如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°:①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.22.二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.六、(本大题共12分)23.综合与实践【背景阅读】早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或32,42,52的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.【实践操作】如图①,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图③,将图②中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF .第三步:如图④,将图③中的矩形纸片沿AH 折叠,得到△AD ′H ,再沿AD ′折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.【问题解决】(1)请在图②中证明四边形AEFD 是正方形; (2)请在图④中判断NF 与ND ′的数量关系,并加以证明; (3)请在图④中证明△AEN 是(3,4,5)型三角形.【探索发现】(4)在不添加字母的情况下,图④中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.参考答案与解析1.B 2.C 3.D 4.C 5.D 6.D7.-4 8.60° 9.2 10.(225+252)π 11.2 12.(2,2)或(2,4)或(2,22)或(2,-22) 解析:连接EC .∵∠BAC =∠DAE =90°,∴∠BAD =∠CAE .在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ,∴BD =EC ,∠ABD =∠ACE =45°.∵∠ACB =45°,∴∠ECD=90°,∴点E 在过点C 且垂直x 轴的直线上,且EC =DB .①当DB =DA 时,点D 与O 重合,则BD =OB =2,此时E 点的坐标为(2,2).②当AB =AD 时,BD =CE =4,此时E 点的坐标为(2,4).③当BD =AB =22时,E 点的坐标为(2,22)或(2,-22).故答案为(2,2)或(2,4)或(2,22)或(2,-22).13.(1)解:解不等式3x -1≥x +1,得x ≥1.解不等式x +4<4x -2,得x >2,∴不等式组的解集为x >2.(3分) (2)证明:∵AE =BF ,∴AE +EF =BF +EF ,∴AF =BE .(4分)在△ADF 与△BCE 中,⎩⎪⎨⎪⎧AD =BC ,∠A =∠B ,AF =BE ,∴△ADF ≌△BCE (SAS).(6分)14.解:原式=⎣⎡⎦⎤m m -2-2m (m -2)(m +2)·m +2m =m m -2·m +2m -2m (m -2)(m +2)·m +2m =m +2m -2-2m -2=mm -2.(4分)∵m ≠±2,0,∴m 只能选取3.当m =3时,原式=3.(6分) 15.解:(1)∵垃圾要按A ,B ,C 三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类的概率为13.(2分)(2)如图所示:(4分)由树状图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以P (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=1218=23.(6分)16.解:(1)如图①所示.(3分)(2)如图②所示,AF 即为BC 边上的高.(6分)17.解:(1)连接EC .∵∠ABC =135°,∠BCD =150°,∴∠EBC =45°,∠ECB =30°.过点E 作EP ⊥BC ,则EP =BE ×sin45°≈0.25m ,CE =2EP ≈0.5m.(2分)(2)过点A 作AF ⊥DG ,过点E 作EM ⊥AF ,∴四边形EDFM 是矩形,∴MG =ED ,∠DEM =90°,∴∠AEM =180°-∠ECB -∠EBC -90°=15°.在Rt △AEM 中,AM =AE ×sin15°≈0.39m ,(4分)∴AF =AM +CE +DC ≈0.39+0.5+2.1≈3.0(m),∴点A 到地面的距离约是3.0m.(6分)18.解:(1)126(2分)(2)根据题意得抽取学生的总人数为40÷40%=100(人),∴3小时以上的人数为100-(2+16+18+32)=32(人),补全条形统计图如图所示.(5分)(3)根据题意得1200×32+32100=768(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有768人.(8分)19.解:(1)1 3 1.2 3.3(2分)(2)y 1=0.1x (x ≥0);y 2=⎩⎪⎨⎪⎧0.12x (0≤x ≤20),0.09x +0.6(x >20).(5分)(3)顾客在乙复印店复印花费少.(6分)理由如下:当x >70时,y 1=0.1x ,y 2=0.09x +0.6,∴y 1-y 2=0.1x -(0.09x+0.6)=0.01x -0.6.(6分)∵x >70,∴0.01x -0.6>0.1,∴y 1>y 2,∴当x >70时,顾客在乙复印店复印花费少.(8分)20.解:(1)∵一次函数y =-2x +1的图象经过点A (-1,m ),∴m =2+1=3,∴A (-1,3).(2分)∵反比例函数y =kx的图象经过A (-1,3),∴k =-1×3=-3.(4分)(2)延长AE ,BD 交于点C ,则∠ACB =90°.∵BD ⊥y 轴,垂足为点D ,且点D 的坐标为(0,-2),∴令y =-2,则-2=-2x +1,∴x =32,即B ⎝⎛⎭⎫32,-2,∴C (-1,-2),∴AC =3-(-2)=5,BC =32-(-1)=52,(6分)∴S 四边形AEDB =S △ABC -S △CDE =12AC ·BC -12CE ·CD =12×5×52-12×2×1=214.(8分)21.(1)证明:∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴AD ∥OC ,∴∠DAC =∠OCA .∵OC =OA ,∴∠OCA=∠OAC ,∴∠OAC =∠DAC ,∴AC 平分∠DAO .(3分)(2)解:①∵AD ∥OC ,∴∠EOC =∠DAO =105°.∵∠E =30°,∴∠OCE =180°-105°-30°=45°.(5分)②过点O 作OG ⊥CE 于点G ,则CG =FG .∵OC =2,∠OCE =45°,∴CG =OG =2,∴FG = 2.(7分)在Rt △OGE 中,∵∠E =30°,∴GE =OG tan30°=6,∴EF =GE -FG =6- 2.(9分)22.解:(1)由函数y 1的图象经过点(1,-2),得(a +1)(-a )=-2,解得a 1=-2,a 2=1.当a =-2或1时,函数y 1化简后的结果均为y 1=x 2-x -2,∴函数y 1的表达式为y =x 2-x -2.(3分)(2)当y =0时,(x +a )(x -a -1)=0,解得x 1=-a ,x 2=a +1,∴y 1的图象与x 轴的交点是(-a ,0),(a +1,0).(4分)当y 2=ax +b 经过(-a ,0)时,-a 2+b =0,即b =a 2;(5分)当y 2=ax +b 经过(a +1,0)时,a 2+a +b =0,即b =-a 2-a .(6分)(3)由题意知函数y 1的图象的对称轴为直线x =-a +a +12=12.(7分)∴点Q (1,n )与点(0,n )关于直线x =12对称.∵函数y 1的图象开口向上,所以当m <n 时,0<x 0<1.(9分)23.(1)证明:∵四边形ABCD 是矩形,∴∠D =∠DAE =90°.由折叠知AE =AD ,∠AEF =∠D =90°,∴∠D =∠DAE =∠AEF =90°,∴四边形AEFD 是矩形.∵AE =AD ,∴矩形AEFD 是正方形.(3分)(2)解:NF =ND ′.(4分)证明如下:如图,连接HN .由折叠知∠AD ′H =∠D =90°,HF =HD =HD ′.∴∠HD ′N =90°.∵四边形AEFD 是正方形,∴∠EFD =90°.在Rt △HNF 和Rt △HND ′中,⎩⎪⎨⎪⎧HN =HN ,HF =HD ′,∴Rt △HNF ≌Rt △HND ′,∴NF=ND ′.(6分)(3)证明:∵四边形AEFD 是正方形,∴AE =EF =AD =8cm.设NF =ND ′=x cm ,由折叠知AD ′=AD =8cm ,EN =EF -NF =(8-x )cm.在Rt △AEN 中,由勾股定理得AN 2=AE 2+EN 2,即(8+x )2=82+(8-x )2,解得x =2,∴AN =10cm ,EN =6cm ,∴EN ∶AE ∶AN =6∶8∶10=3∶4∶5,∴△AEN 是(3,4,5)型三角形.(9分) (4)解:∵△AEN 是(3,4,5)型三角形,∴与△AEN 相似的三角形都是(3,4,5)型三角形,故△MFN ,△MD ′H ,△MDA 也是(3,4,5)型三角形.(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省2018年中等学校招生考试数学试题卷一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-6的相反数是( ) A .16 B .16- C . 6 D .-6 2. 在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( ) A .50.1310⨯ B . 41.310⨯ C .51.310⨯ D .31310⨯ 3.下列图形中,是轴对称图形的是( )A .B .C .D .4. 下列运算正确的是( ) A .()2510aa -= B .22236a a a = C. 23a a a -+=- D .623623a a a -÷=-5.已知一元二次方程22510x x -+=的两个根为12,x x ,下列结论正确的是( ) A . 1252x x +=-B .121x x = C. 12,x x 都是有理数 D .12,x x 都是正数 6. 如图,任意四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A .当,,,E F G H 是各边中点,且AC BD =时,四边形EFGH 为菱形B .当,,,E F G H 是各边中点,且AC BD ⊥时,四边形EFGH 为矩形C. 当,,,E F G H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当,,,E F G H 不是各边中点时,四边形EFGH 不可能为菱形二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7. 函数y =x 的取值范围是___________.8. 如图1是一把园林剪刀,把它抽象为图2,其中OA OB =,若剪刀张开的角为30°,则A ∠=_________度.9. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为___________.10.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是_____________.11.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是______________.12.已知点()()()0,4,7,0,7,4A B C ,连接,AC BC 得到矩形AOBC ,点D 的边AC 上,将边OA 沿OD 折叠,点A 的对应边为A ',若点A '到矩形较长两对边的距离之比为1:3,则点A '的坐标为____________.三、解答题 (本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(1)计算:21211x x x +÷--; (2)如图,正方形ABCD 中,点,,E F G 分别在,,AB BC CD 上,且090EFG ∠=. 求证:EBFFCG ∆∆.14.解不等式组:()26324x x x -<⎧⎨-≤-⎩,并把解集在数轴上表示出来.15.端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.16.如图,已知正七边形ABCDEFG ,请仅用无刻度的直尺,分别按下列要求画图. (1)在图1中,画出一个以AB 为边的平行四边形; (2)在图2中,画出一个以AF 为边的菱形.17. 如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽20BC cm =,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离100DG cm =,上臂30DE cm =,下臂EF 水平放置在键盘上,其到地面的距离72FH cm =.请判断此时β是否符合科学要求的100°? (参考数据:00001414414sin 69,cos 21,tan 20,tan 4315151115≈≈≈≈,所有结果精确到个位)四、(本大题共3小题,每小题8分,共24分).18. 为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有___________人,其中选择B类的人数有_____________人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;A B C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出(3)该市约有12万人出行,若将,,行”方式的人数.19.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.20. 如图,直线()10y k x x =≥与双曲线()20k y x x=>相交于点()2,4P .已知点()()4,0,0,3A B ,连接AB ,将Rt AOB ∆沿OP 方向平移,使点O 移动到点P ,得到A PB ''∆.过点A '作//A C y '轴交双曲线于点C .(1)求1k 与2k 的值; (2)求直线PC 的表达式; (3)直接写出线段AB 扫过的面积.五、(本大题共2小题,每小题9分,共18分).21.如图1,O 的直径12,AB P =是弦BC 上一动点(与点,B C 不重合),030ABC ∠=,过点P 作PD OP ⊥交O 于点D .(1)如图2,当//PD AB 时,求PD 的长;(2)如图3,当DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O 的切线;②求PC 的长.22.已知抛物线()21:450C y ax ax a =-->.(1)当1a =时,求抛物线与x 轴的交点坐标及对称轴; (2)①试说明无论a 为何值,抛物线1C 一定经过两个定点,并求出这两个定点的坐标;②将抛物线1C 沿这两个定点所在直线翻折,得到抛物线2C ,直接写出2C 的表达式;(3)若(2)中抛物线2C 的顶点到x 轴的距离为2,求a 的值.六、(本大题共12分)23. 我们定义:如图1,在ABC ∆看,把AB 点A 顺时针旋转()000180αα<<得到AB ',把AC 绕点A逆时针旋转β得到AC ',连接B C ''.当0180αβ+=时,我们称A B C '''∆是ABC ∆的“旋补三角形”,AB C ''∆边B C ''上的中线AD 叫做ABC ∆的“旋补中线”,点A 叫做“旋补中心”.特例感知:(1)在图2,图3中,AB C ''∆是ABC ∆的“旋补三角形”, AD 是ABC ∆的“旋补中心”. ①如图2,当ABC ∆为等边三角形时,AD 与BC 的数量关系为AD =_____________BC ; ②如图3,当090,8BAC BC ∠==时,则AD 长为_________________. 猜想论证:(2)在图1中,当ABC ∆为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD ,090,150,12C D BC ∠=∠==,6CD DA ==.在四边形内部是否存在点P ,使PDC ∆是PAB ∆的“旋补三角形”?若存在,给予证明,并求PAB ∆的“旋补中线”长;若不存在,说明理由.江西省2018年中等学校招生考试数学试题卷(参考答案)一、选择题1.C2.B3.C4.A5.D6.D 二。
、填空题7. 2x ≥ 8. 75 9. -3 10. 8 11. 5 12.2)-1)或三、解答题13.(1)计算:21211x x x +÷--; 11=(1)(1)212x x x x +-⨯+-=解:原式(2)90?90?90?90?=ABCD B C EFG EFB GFC EFB FEB FEB GFC EBFFCG∴∠=∠=∠=∴∠+∠=∠+∠=∴∠∠∴证明:正方形,又又14. 32x -<≤解:15.(1)14解: (2)16解:16.解答:17.°°°°=tan202055tan 20(2)=cm 30cm 2814sin ==sin 69301569=180?69=111>100100BC ABAB cm FE DG DG P DE DP DEP DE DEP ββ⋅===∴∠=≈∴∠≈∴∠-∴解:(1)延长至交于则DP DG-FH=100-72=28 又此时的不符合科学要求的四、(本大题共3小题,每小题8分,共24分).(1)800 240 (2)=90α (3)25%30%25%=++⨯()12000096000(人)19.175212017529090cm 30751 50y x x y y x x y l =-+=⎧⎪⎨=-⎪⎩=⎧⎨=⎩≤≤解:(1)(2)依题意得:解得:此时单层部分的长度为(3) 20.五、(本大题共2小题,每小题9分,共18分).21.tan 30?60?21290?30?33DC ACDOE OE OD ODE ODE DE DB AC DBP OBP BP BP DB OBDBP OBPBC B OP P PC r PD =∴∠===⋅=∴∠=∴∠=∠===∴=≅==+∴=-①证明:连接OD又是直角三角形,解:(1)依题意得:根据勾股定理可得(且是O 的切线②连接又2)、,可知 2112,2,8(2)4321633(3)22k P y k x y x k k C PC y x S ====''∴∴=-+=解:(1)将点(2,4)代入已知点A(4,0),B(0,3)则点A 的横坐标为6,又A C 平行于y 轴即点C 的横坐标为6点的坐标为(6,)直线的表达式为22.已知抛物线()21:450C y ax ax a =-->.222222245(4)50454454545(2)454524527344y ax ax x ax a x y ax ax x y ax ax y ax ax y ax ax a x a a a a a =--=--==--==--=-+-=-+-=--+--=-=-==解:(1)点(-4,0),(5,0)(2)当时,函数恒经过点(0,-5)当时,函数恒经过点(4,-5)(①3)依题意得:或式:或②C 解析六、(本大题共12分)23. (1)在图2,图3中,AB C ''∆是ABC ∆的“旋补三角形”, AD 是ABC ∆的“旋补中线”. ①如图2,当ABC ∆为等边三角形时,AD 与BC 的数量关系为AD =______12 _______BC ; ②如图3,当090,8BAC BC ∠==时,则AD 长为________4_________.猜想论证:(2)解(2)猜想12AD BC = 解题过程:如图,将三角形DAC ' 绕点D 逆时针旋转,使DC 与DB ' 重合,证明QB A CAB '≅拓展应用(3)0090,150,126=C D BC CD DA BD AB BD AB P ABCD AB ∠=∠====∴=∴∴解:存在.连接BD,延长CD 作BC 的平行线交CD 延长线于点E ,,点必在四边形内根据(3)所的结论:旋补中线等于的一半可得不用注册,免费下载!。