最全面的实验室误差分析,一篇文章帮您搞懂实验室误差!
实验报告中误差分析

实验报告中误差分析实验报告中误差分析实验是科学研究的基础,通过实验可以验证理论,揭示事物的本质。
然而,在实验过程中,误差是不可避免的。
误差是指实际测量值与真实值之间的差异,它可能来自于仪器的精度限制、操作者的技术水平、环境条件的变化等多种因素。
因此,对实验中的误差进行分析和处理是十分重要的。
一、误差的分类误差可以分为系统误差和随机误差两大类。
1. 系统误差:系统误差是由于实验装置、仪器设备或实验条件的固有缺陷而引起的,它在一系列实验中具有一定的规律性。
例如,仪器的刻度不准确、温度的波动、材料的不均匀性等都可能导致系统误差。
系统误差会使得实验结果偏离真实值,并且在多次实验中具有一定的一致性。
2. 随机误差:随机误差是由于种种偶然因素而引起的,它在一系列实验中具有无规律性。
例如,实验者的手颤抖、电路中的噪声干扰等都可能导致随机误差。
随机误差是不可避免的,但可以通过多次实验取平均值的方法来减小其影响。
二、误差的评估在实验中,我们需要对误差进行评估,以确定实验结果的可靠性和准确性。
常用的误差评估方法有以下几种。
1. 绝对误差:绝对误差是指实际测量值与真实值之间的差异。
绝对误差可以通过实验测量值减去真实值来计算得到。
绝对误差越小,说明实验结果越接近真实值。
2. 相对误差:相对误差是指绝对误差与真实值之比。
相对误差可以用来评估实验结果的相对准确性。
相对误差越小,说明实验结果越可靠。
3. 标准偏差:标准偏差是用来评估随机误差的大小的指标。
标准偏差越小,说明随机误差越小,实验结果越可靠。
标准偏差可以通过多次实验取得的数据的方差来计算得到。
三、误差的处理对于实验中的误差,我们可以采取一些方法来进行处理,以提高实验结果的准确性和可靠性。
1. 仪器校准:在进行实验之前,应对使用的仪器进行校准,以确保仪器的准确度和精度。
如果仪器存在明显的偏差,应及时进行调整或更换。
2. 多次测量:通过多次测量取平均值的方法,可以减小随机误差的影响。
实验结果的偏差与误差分析

实验结果的偏差与误差分析实验是科学研究中常用的方法之一,通过实验可以验证理论假设并获取数据结果。
然而,在实验中我们常常会面对实验结果与理论值之间的偏差与误差。
本文将探讨实验结果的偏差与误差产生的原因,并分析如何进行误差分析以提高实验结果的准确性。
一、偏差与误差的定义在实验中,偏差和误差是常见的概念,但两者有着不同的含义。
偏差是指实验结果与理论值或标准值之间的差异,它可以是正向的或负向的。
而误差则是指实验结果相对于实际值的差异,它包括了系统误差和随机误差两个方面。
二、偏差的原因分析1.系统误差:系统误差是由于实验设置、仪器精度、操作方法等方面引入的固定偏差。
例如,在实验测量中如果仪器的刻度存在固定的偏移或者实验条件中存在系统性的误差,都会导致实验结果产生偏差。
2.随机误差:随机误差是由于实验环境、人为操作等因素引起的不确定的、无规律的误差。
例如,在重复实验中由于个体差异、观察判断的主观性等原因都会导致实验结果的随机误差。
三、误差分析方法1.确定系统误差:首先要通过仔细分析实验过程和条件,确定可能引入系统误差的原因。
然后,采取相应的修正措施,如校准仪器、优化实验设计等,以减小系统误差的影响。
2.重复实验:通过重复实验来减小随机误差的影响,获取更加准确的实验结果。
多次实验可以通过对数据进行统计处理,如计算平均值和标准偏差,以评估实验结果的准确性。
3.数据分析:对实验数据进行统计分析,可以进一步揭示偏差和误差。
利用统计方法,如相关性分析、回归分析等,可以探究实验结果与各个因素之间的关系,找出可能导致偏差和误差的原因。
四、实验结果的准确性提高为提高实验结果的准确性,除了要进行误差分析,还可以采取以下方法:1.提高实验技能:熟练掌握实验技术和操作方法,减少人为误差的发生。
2.增加样本量:增加实验样本数量可以提高数据的可靠性,降低随机误差的影响。
3.改进实验设计:精心设计实验方案,优化实验条件,减小系统误差和随机误差的发生。
实验报告 误差分析

实验报告误差分析实验报告:误差分析引言:实验是科学研究中不可或缺的一部分,通过实验可以验证理论的正确性,探索未知的领域。
然而,实验中难免会出现误差,这些误差可能会对实验结果产生一定的影响。
因此,我们需要进行误差分析,以了解误差的来源、大小以及对实验结果的影响程度,从而更准确地解读实验结果。
一、误差的分类误差可以分为系统误差和随机误差两种类型。
1. 系统误差系统误差是由于实验设备、测量仪器、操作方法等方面的固有缺陷或不准确性引起的误差。
它具有一定的可预测性和一致性,会对实验结果产生持续性的偏差。
例如,如果实验仪器的刻度不准确,或者实验操作中存在固定的偏差,那么实验结果就会受到系统误差的影响。
2. 随机误差随机误差是由于实验过程中的各种偶然因素引起的误差,它具有不可预测性和不规律性。
随机误差会导致实验结果的波动和不确定性增加。
例如,实验中的环境条件、人为操作的不稳定性、测量仪器的灵敏度等都可能引起随机误差。
二、误差的来源误差的来源多种多样,下面列举几个常见的来源。
1. 人为误差人为误差是由于实验操作者的技术水平、主观判断等因素引起的误差。
例如,实验操作者对实验步骤的理解不准确、操作不规范、读数不准确等都可能导致人为误差的出现。
2. 仪器误差仪器误差是由于测量仪器的精度、灵敏度等方面的限制引起的误差。
例如,实验仪器的刻度不准确、仪器的响应时间较长等都可能导致仪器误差。
3. 环境误差环境误差是由于实验环境的变化、干扰等因素引起的误差。
例如,实验室温度的波动、噪音的干扰等都可能对实验结果产生影响。
三、误差的影响与控制误差对实验结果的影响程度取决于误差的大小和实验的目的。
在一些实验中,误差的影响可能会被忽略,而在一些对结果要求较高的实验中,误差的控制则显得尤为重要。
1. 影响程度误差的影响程度可以通过误差分析和数据处理来评估。
例如,可以通过计算误差的标准差、置信区间等指标来评估误差的大小,并根据实验目的和要求判断误差对结果的影响程度。
实验报告中误差分析

实验报告中误差分析误差分析在科学实验中扮演着非常重要的角色。
通过对实验结果的误差进行分析,我们可以更好地理解实验数据的可靠性和准确性。
本文将逐步介绍误差分析的思考过程,以帮助读者更好地理解和运用误差分析方法。
第一步:定义误差在进行误差分析之前,我们首先需要明确什么是误差。
误差可以简单地定义为实验测量结果与真实值之间的差距。
一般来说,误差分为系统误差和随机误差两种类型。
系统误差是由于实验设备、测量方法或操作过程引起的固定偏差。
它可能是由于仪器的校准不准确、实验环境的不稳定或者实验者的技术能力等原因造成的。
系统误差往往会导致测量结果的偏离真实值的方向一致。
随机误差是由于种种随机因素引起的测量结果的不确定性。
随机误差是不可避免的,它会导致多次重复实验的测量结果有所差异。
第二步:分析误差来源在进行误差分析之前,我们需要识别和分析误差的来源。
这需要我们对实验的整个过程进行仔细的回顾和思考。
以下是一些可能导致误差的常见来源:1.仪器误差:实验设备的不准确性或者校准不良可能会导致系统误差。
2.环境误差:实验过程中环境的变化或者干扰可能会导致随机误差。
3.操作误差:实验者的技术能力、注意力或者实验操作方法的不准确性可能会导致系统误差或者随机误差。
4.样本误差:样本的质量或者特性可能会导致实验结果的误差。
5.测量误差:测量方法的不准确性或者误差传递可能会导致系统误差或者随机误差。
第三步:定量评估误差一旦我们确定了误差的来源,我们就可以对误差进行定量评估。
这有助于我们更好地理解误差的大小和影响。
以下是一些常用的误差评估方法:1.绝对误差:计算每个测量结果与真实值之间的差距的绝对值,并对所有差值求平均值。
这可以帮助我们估计实验的整体准确性。
2.相对误差:计算每个测量结果与真实值之间的差距的绝对值,并将其与真实值进行归一化。
这有助于我们评估实验的准确性相对于真实值而言的比例。
3.标准偏差:计算多次重复实验的测量结果之间的差异,并对其进行统计分析。
实验室误差分析报告

实验室误差分析报告摘要:本报告旨在分析实验室实验过程中的误差来源,并提出改进措施,以提高实验结果的准确性和可靠性。
通过对实验设备、操作人员以及实验方法的细致调查和分析,我们确定了不同类型的误差,并提出了相应的纠正建议。
我们的研究结果表明,通过控制误差源和加强实验室管理,可以显著降低实验误差,提高实验的可重复性和准确性。
1. 引言实验室误差是任何实验都难以避免的。
因此,我们需要对误差进行分析与评估,从根本上提高实验结果的准确性、可靠性和可重复性。
本文将针对实验室误差进行详细的分析和讨论,以期为实验室质量管理提供参考和指导。
2. 实验设备误差实验设备误差是实验中经常遇到的一种误差类型。
其原因主要包括设备使用年限、设备不精确度以及设备的标定与校准等。
为了减小实验设备误差,我们建议定期维护和检验实验设备,并确保其标定和校准的准确性。
此外,在选择设备时,应尽可能选用精确度较高的设备,以减小设备误差对实验结果的影响。
3. 操作人员误差操作人员误差是实验中造成误差的另一个重要因素。
不熟悉实验操作流程、操作时的不精确性以及操作技能的差异等都可能导致误差的产生。
为了减小操作人员误差,我们建议在实验前充分培训操作人员,并确保他们对实验流程和操作步骤的理解。
此外,操作过程中应严格按照实验操作规程进行操作,避免不必要的误差。
4. 实验方法误差实验方法误差是由于实验方法选择不当、实验步骤不明确以及实验参数设置不合理等原因造成的误差。
为了减小实验方法误差,我们建议在选择实验方法时,要充分考虑其适用范围、准确性和可重复性等因素,并确保所有实验步骤详细、明确。
实验参数设定应符合实验要求,合理调整参数范围,以保证实验结果的准确性和可重复性。
5. 实验室管理对误差的影响实验室管理对实验误差的影响也是不可忽视的。
缺乏严格的实验室管理制度、无有效的数据记录方法以及缺乏效果评估等都会对实验结果造成一定的影响。
为了改进实验室管理,我们建议建立完善的实验室管理制度,规范实验的各个环节。
实验数据的误差分析和修正方法

实验数据的误差分析和修正方法引言:在科学研究和实验中,准确的数据是非常重要的。
然而,由于各种原因,实验数据往往存在一定的误差。
误差可能来自仪器的精度、实验操作的不完全精确、环境因素等。
因此,对实验数据的误差进行分析和修正是确保研究结果可靠性的基础。
一、误差来源分析1. 仪器误差:每个仪器都会存在一定的测量误差,精密仪器相对精确,但也无法避免误差的产生。
2. 人为误差:操作者的技术水平、观察力的差异以及操作不精确等都会导致实验结果的误差。
3. 随机误差:由于各种随机因素的影响,重复进行相同实验可能得到不同结果,这是随机误差的表现。
4. 环境误差:实验环境的变化,例如温度、湿度等因素的变化都会对实验结果产生影响。
二、误差分析方法1. 精确度分析:通过重复实验,计算数据的平均值和标准偏差来评估数据的精确度。
标准偏差越小,数据越接近真实值。
2. 绝对误差分析:求得实验测量结果与已知真实值之间的差值,以此来评估实验误差。
3. 相对误差分析:将绝对误差以某种相对的方式表示,例如相对误差等于绝对误差与已知真值的比值。
4. 随机误差分析:通过测量多次来计算数据的标准差以及相关系数等,以揭示随机误差的大小和变化规律。
三、误差修正方法1. 仪器校正:对于存在系统误差的仪器,可以通过一系列标准样品的测量来进行校正,以消除仪器本身的误差。
2. 数据处理修正:可以采用如拟合曲线等方法对数据进行拟合和修正,以减小实验数据的误差。
3. 数据剔除:当出现明显异常值时,可以考虑将其剔除,以避免异常值对结果的影响。
4. 系统误差修正:通过对误差来源的分析,找出导致系统误差的原因并加以修正,以提高实验数据的准确性。
结论:误差分析和修正是在科学研究和实验中不可或缺的一环。
只有进行全面的误差分析,并且根据分析结果采取相应的修正方法,才能得到准确可靠的实验数据。
通过不断改进和完善误差分析和修正方法,可以提高实验的可重复性,并且为科学研究提供更加可靠的数据依据。
实验误差分析范文

实验误差分析范文
实验误差分析是评估实验数据的精确性和可靠性的过程。
误差是指由
于各种因素引起的数据值与真实值之间的差异。
误差可以包括系统误差和
随机误差。
系统误差是由于实验设备、实验操作方法、实验条件等固有因
素导致的,而随机误差则是由于实验中的偶然因素导致的。
1.仪器误差:仪器的测量精度和稳定性能直接影响实验数据的准确性。
仪器误差可以来自于校准误差、零点漂移、灵敏度变化等。
为了降低仪器
误差,可以定期对仪器进行校准和维护,并使用多台仪器进行平均测量以
提高准确性。
2.人为误差:实验操作人员的技能水平和操作规范对实验数据的精确
性有着重要影响。
人为误差包括读数误差、操作不规范、实验条件的控制等。
为了减小人为误差,应该对实验人员进行培训和指导,并建立标准的
操作程序。
3.环境误差:实验环境的温度、湿度、气压等因素都可能对实验数据
产生影响。
环境误差应该在实验过程中进行控制,例如控制实验室温度和
湿度、使用恒温器等。
4.技术误差:包括实验数据处理过程中的计算误差和测量结果的分析
误差。
计算误差可能来自于数值逼近和截断误差,而分析误差可能来自于
模型的简化和假设的不准确等。
为了减小技术误差,可以采用更准确的计
算方法和更精细的数据分析方法。
误差分析的基本步骤包括以下几个方面:。
实验报告误差分析

实验报告误差分析实验报告是科学研究的重要形式之一,用于总结、分析和呈现实验过程和结果。
其中,误差分析是不可或缺的步骤,它可以帮助研究者评估实验数据的准确性和稳定性,并识别可能影响结果的因素。
本文将介绍实验报告误差分析的基本原理和方法。
一、误差来源的分类误差是指测量值与真实值之差,其来源有多种可能。
一般来说,误差可以分为系统误差和随机误差两类。
系统误差是由于实验条件和测量设备的固有偏差而引起的,比如温度的不均匀分布、仪器漂移等。
随机误差是由于无法控制或随机变化的因素而引起的,比如人为误差、环境干扰等。
二、误差的评估方法为了评估误差的大小和影响,可以使用各种指标和方法。
以下是常用的几种:1. 绝对误差:即测量值与真值之差的绝对值,常用于评价单个数据的精度。
2. 相对误差:即绝对误差除以真值,以百分数表示,常用于评价多个数据的平均精度。
3. 标准差:是样本值的离散程度的度量,反映测量数据的分散情况,可用于评估随机误差的大小和稳定性。
4. 方差分析:可用于对比实验组之间的差异,通过分析变异原因和来源,识别可能存在的系统误差和随机误差。
三、误差改善和纠正方法如果发现误差较大或偏差较明显,需要采取一些措施来改善或纠正。
这些措施可能包括:1. 增加重复测量:通过多次测量并计算平均值,可以减少随机误差。
2. 校准仪器:及时检查、校准和维护仪器,可以降低系统误差和漂移。
3. 控制环境:保持实验室的稳定环境和恒定条件,可以减少人为和环境因素对实验结果的影响。
4. 比较标准:在某些实验中,可以选择一个公认的标准来与实验结果进行比较,以帮助评估误差大小和可靠性。
总之,误差分析是实验报告不可或缺的一部分,它可以帮助研究者识别可能对实验结果造成影响的因素,并采取适当的措施来改善和纠正误差。
通过严谨的误差分析和改善措施,可以提高实验结果的准确性和可靠性,为科学研究提供更加可信的依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最全面的实验室误差分析,一篇文章帮您搞懂实验室误差!问题:怎样才能每天都收到这种文章呢??答案:只需要点击图片上边蓝字药源网制药在线即可!误差理论简介在日常检测工作中,我们虽然有最好的检验方法、有检定合格的仪器设备、有满足检验要求的环境条件和熟悉检验工作的操作人员,但是,得到的检验结果却往往不可能是绝对准确的,即使是同一检测人员对同一检测样品、对同一项目的检测,其结果也不会完全一样,总会产生这样或那样的差别,也就是说,任何物理量的测定,都不可能是绝对准确的,在测得值与真实值之间总是或多或少的存在着差别,这就是误差。
误差是客观存在的,用它可以衡量检测结果的准确度,误差越小,检测结果的准确度越高。
一、术语和定义1.准确度准确度指,检测结果与真实值之间相符合的程度。
(检测结果与真实值之间差别越小,则分析检验结果的准确度越高)。
2.精密度精密度指,在重复检测中,各次检测结果之间彼此的符合程度。
(各次检测结果之间越接近,则说明分析检测结果的精密度越高)3.重复性重复性指,在相同测量条件下,对同一被测量进行连续、多次测量所得结果之间的一致性。
重复性条件包括:相同的测量程序、相同的测量者、相同的条件下,使用相同的测量仪器设备,在短时间内进行的重复性测量。
4.再现性(复现性)在改变测量条件下,同一被测量的测定结果之间的一致性。
改变条件包括:测量原理、测量方法、测量人、参考测量标准、测量地点、测量条件以及测量时间等。
如:实验室资质认定现场操作考核的方法之一:样品复测即是样品再现性(复现性)的一种考核、样品复测包括对盲样(即标准样品)的检测,也可以是对检验过的样品、在有效期内的再检测。
或是原检测人员或是重新再安排检测人员。
※ 通常再现性或复现性好,意味着精密度高。
精密度是保证准确度的先决条件,没有良好的精密度就不可能有高的的准确度,但精密度高准确度不一定高;反之,准确度高,精密度必然好。
二、误差的种类、来源和消除根据误差的来源和性质,误差可以分为以下几种:1.系统误差(又称规律误差)1.1系统误差的定义系统误差是指,在偏离检测条件下,按某个规律变化的误差。
系统误差是指,同一量的多次测量过程中,保持恒定或可以预知的方式变化的测量误差。
1.2 系统误差的特点系统误差又称可测量误差,它是由检测过程中某些经常性原因引起的,再重复测定中会重复出现,它对检测结果的影响是比较固定的。
1.3系统误差的主要来源a)方法误差主要由于检测方法本身存在的缺陷引起的。
如重量法检测中,检测物有少量分解或吸附了某些杂质、滴定分析中,反应进行的不完全、等当点和滴定终点不一致等。
b)仪器误差由仪器设备精密度不够,引起的的误差。
如天平(特别是电子天平,在0.1-0.9mg之间)、砝码、容量瓶等。
c)试剂误差试剂的纯度不够、蒸馏水中含的杂质,都会引起检测结果的偏高或偏低。
d)操作误差由试验验人员操作不当、不规范所引起的的误差。
如,有的检验人员对颜色观察不敏感,明明已到等当点、颜色已发生突变,可他却看不出来;或在容量分析滴定读数时,读数时间、读数方法都不正确,按个人习惯而进行的操作。
1.4 系统误差的消除a)对照试验即用可靠的分析方法对照、用已知结果的标准试样对照(包括标准加入法),或由不同的实验室、不同的分析人员进行对照等。
(实验室资质认定要求做比对计划,如人员比对、样品复测及实验室之间的比对等都属于比对试验)。
b)空白试验即在没有试样存在的情况下,按照标准检测方法的同样条件和操作步骤进行试验,所得的结果值为空白值,最终,用被测样品的检验结果减去空白值,即可得到比较准确的检测结果。
(即实测结果=样品结果-空白值)(再例:重量法中的空白坩埚)。
c)校正试验即对仪器设备和检验方法进行校正,以校正值的方式,消除系统误差。
被测样品的含量 = 样品的检测结果× 标样含量/标样检测结果公式中:标样含量/标样检测结果—即校正系数K例题:若样品的检测结果为5.24,为验证结果的准确性,检测时带一标准样品,已知标准样品含量为1.00,则检测的结果可能出现三种情况:a)检测结果 > 1.00 假设标样(标物)检测结果为:1.05b)检测结果 = 1.00 假设标样(标物)检测结果为:1.00c)检测结果 < 1.00 假设标样(标物)检测结果为:0.95校正系数K分别为:a)校正系数为:K = 1.00÷1.05 =0.95(检测结果>标准值,则校正系数<1)b)校正系数为:K = 1.00÷1.00 =1.00(检测结果 = 标准值,则校正系数=1)c)校正系数为:K = 1.00÷0.95 =1.05(检测结果<标准值,则校正系数>1通过校正后,其真实结果应分别为:a)5.24 ×0.95 =4.978 ≅ 4.98(点评:∵ 标样检测结果高于标样明示值,则说明被检样品检测结果也同样偏高,∴为了接近真值,用<1的校正系数进行较正,其结果肯定比原检测值低)b)5.24 ×1.00 =5.240 = 5.24c) 5.24 ×1.05 =5.502 ≅ 5.50(点评:∵ 标样检测结果低于标样明示值,则说明被检样品检测结果也同样偏低,∴为了接近真值,用>1的校正系数进行较正,其结果肯定比原检测值高)【检测结果的校正非常重要,特别是在检测结果的临界值时,加入了校正系数后,结果的判定可能由合格→不合格,也可能由不合格→合格两种完全不同的结论,尤其是对批量产品的判定有着更重大的意义】2.误差偶然(随机误差、不定误差)2.1误差偶然(也称随机误差、不定误差)定义偶然误差指,由于在测定过程中一系列有关因素微小的随机波动而形成的具有相互抵偿性的误差。
2.2误差偶然(随机误差、不定误差)特点误差偶然(随机误差、不定误差)特点就个体而言是不确定的,产生的的这种误差的原因是不固定的,它的来源往往也一时难以察觉,可能是由于测定过程中外界的偶然波动、仪器设备及检测分析人员某些微小变化等所引起的,误差的绝对值和符号是可变的,检测结果时大时小、时正时负,带有偶然性。
但当进行很多次重复测定时,就会发现,误差偶然(随机误差、不定误差)具有统计规律性,即服从于正态分布。
如果用置信区间〔-△、△〕,来限制这条曲线(因为我们不可将试验无限次的做下去,即使做得再多,检测结果的误差愈来愈接近于零,但永远也不会等于零),这样得到截尾正态分布,该正态分布图较好地描述了符合该类分布的偶然误差(随机误差,不定误差)出现的客观规律,且具有以下的基本性质(偶然误差的四性)。
a)单峰性:绝对直小的误差比绝对值大的误差,出现的机会多得多(±1σ占68.3﹪)b)对称性:绝对值相等的正、负误差出现的概率相等;c)有界性:在一定条件下,有限次的检测中,偶然误差的绝对值不会超出一定的界限;d)抵偿性:相同条件下,对同一量进行检测,其偶然误差的平均值,随着测量次数的无限增加,而趋于零。
【抵偿性是偶然误差最本质的统计特性,凡有抵偿性的误差都可以按偶然误差处理】。
显然,从误差的曲线本身就提供了决定了这类误差的理论根据,即用在相同条件下的一系列测量数值的算术平均值来表示分析结果,这样的平均值是比较可靠的。
但,在实际工作中,进行大量的、无限次的测定显然是不真实的。
因而,必须根据实际情况、根据对检测结果要求的不同,采取适当的检测次数。
采用数理统计方法以证明:标准偏差在±1σ内的检测结果,占全部结果的68.3﹪;标准偏差在±2σ内的检测结果,占全部结果的95.5﹪;准偏差在±3σ内标的检测结果,占全部结果的99.7﹪;而误差>±3σ内的检测结果,仅占全部结果的0.3﹪;而且,由正态分布曲线可以看出,σ3 > σ2 > σ1,σ 值愈小,曲线愈陡,偶然误差的分布愈密集,反之,σ 值愈大,曲线愈平坦,偶然误差的分布就愈分散。
3.粗大误差(简称粗差、也称过失误差、疏忽误差)3.1粗大误差定义粗大误差指,在一定测量条件下,测量值明显偏离实际值所形成的误差(亦称离群值)。
粗大误差指,明显超出测定条件下预期的误差,即是明显歪曲检测结果的误差。
3.2粗大误差的来源产生粗大误差的原因有主观因素,也有客观因素。
例如,由于实验人员的疏忽、失误,造成检测时的错读、错记、错算或电压不稳定到致使仪器波动导致检测结果出现的异常值等。
含有粗大误差的检测结果成为“坏值”,坏值应想办法予以发现和剔除。
3.3粗大误差的消除剔除粗大误差最常用的方法是莱依达(即3S)准则(3S即3倍的标准偏差),该准则要求检测结果的次数不能小于10次,否则不能剔除任何“坏值”,对于非从事计量检测工作而言,进行检验10次以上的分析化学不太现实,因此,我们采取4 法和Q检验法。
在后面将逐一以介绍。
以上我们较详细的介绍了系统误差、偶然误差及粗大误差。
区别三类误差的主要依据是人们对误差的掌握程度和控制的程度,能掌握其数值变化规律的,则认为是系统误差;掌握其统计规律的,则认为偶然(随机)误差;实际上未掌握规律的认为是粗大误差。
由于掌握和控制的程度受到需要和可能两方面的制约,当检测要求和观察范围不同时、掌握和控制的程度也不同,就会出现同一误差在不同的场合下属于不同的类别。
因而,系统误差与偶然误差没有一条不可逾越的明显界限(只能是一个过渡区)。
而且,两者在一定条件下可能互相转化。
例如,某一产品,由于其用途不同其精度要求也不同,对于精度要求高的,出现的粗大误差,对于精度要求低的产品而言属于随机误差。
同样,粗大误差和数值很大随机误差间的也没有明显的界限,也存在类似的转化。
因而,如果想刻意的划定不同类别间的误差的界限,是没有必要的。
三、误差理论在质量控制中的应用利用误差理论对日常检验工作进行质量控制,有着重要的意义。
如在《实验室资质认定评审准则》的5.7结果质量控制中的5.7.1提出了质量控制的几种方法:a)定期使用有证标准物质,开展内部质量控制;b)参加实验室之间的比对或能力试验;c)使用不同的方法进行重复性检测;d)对留存样品进行再检测;e)分析同一样品不同特性结果的相关性。
1.利用系统误差和偶然误差对日常检验工作进行质量控制为保证检测结果的稳定性和准确性,通过用标准物质进行质量监控,具体的做法是:用一标准物质或用检测结果稳定、均匀的在有效期内的样品,在规定的时间间隔内,对同一(标物)样品进行重复检测,将检测结果汇成曲线,通过坐标上检测点的结果,将其联成线,通过曲线可判定误差的类型:a)假设我们每10天检测一次,共有10个点,而这10个点在标准值之间上下波动,无规律可言,则说明是偶然误差,是正常状态;b)当检测的结果呈现出规律性,或在真值线以上、或在真值线以下、或呈现一条斜线,则视为出现了系统误差,这种情况下,应查找出现系统的原因,并找到消除系统误差的原因。