勾股定理应用几何专题一

合集下载

勾股定理的应用

勾股定理的应用

勾股定理的应用勾股定理的应用1.长方体(或正方体)面上的两点间的最短距离长方体(或正方体)是立体图形,但它的每个面都是平面.若计算同一个面上的两点之间的距离比较容易,若计算不同面上的两点之间的距离,就必须把它们转化到同一个平面内,即把长方体(或正方体)设法展开成为一个平面,使计算距离的两个点处在同一个平面中,这样就可以利用勾股定理加以解决了.所以立体图形中求两点之间的最短距离,一定要审清题意,弄清楚到底是同一平面中两点间的距离问题还是异面上两点间的距离问题.谈重点长方体表面上两点间最短距离因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况——前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【例1-1】如图①是一个棱长为3 cm的正方体,它的6个表面都分别被分成了3×3的小正方形,其边长为1 cm.现在有一只爬行速度为2 cm/s的蚂蚁,从下底面的A点沿着正方体的表面爬行到右侧表面上的B点,小明把蚂蚁爬行的时间记录了下来,是2.5 s.经过简短的思考,小明先是脸上露出了惊讶的表情,然后又露出了欣赏的目光.你知道小明为什么会佩服这只蚂蚁的举动吗?解:如图②,在Rt△ABD中,AD=4 cm,BD=由勾股定理,AB2=BD2+AD2=32 +42=25,AB=5 cm,∴蚂蚁的爬行距离为又知道蚂蚁的爬行速度为2 cm/s,∴它从点A沿着正方体的表面爬行到点B处,需要时间为52=2小明通过思考、判断,发现蚂蚁爬行的时间恰恰就是选择了这种最优的方式,所以他感到惊讶和佩服.【例1-2】如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?解:蚂蚁由A点沿长方体的表面爬行到C1点,有三种方式,分别展成平面图形如下:如图①,在Rt△ABC1中,AC21=AB2+BC21=42+32=52=25.故AC1=5.如图②,在Rt△ACC1中,AC21=AC2+CC21=62+12=如图③,在Rt△AB1C1中,AC21=AB21+B1C21 =52+22=29.∵2 5<29<37,∴沿图①的方式爬行路线最短,最短的路线是5.点技巧巧展长方体求解此类问题时只需对长方体进行部分展开,画出局部的展开图,若将长方体全部展开,不仅没有必要反而会扰乱视线.2.圆柱体(或圆锥体)面上的两点间的最短距离圆柱体(或圆锥体)是立体图形,从其表面看两点之间的连线绝大部分是曲线,那么怎样确定哪一条是最短的呢?解决问题的方法是将圆柱(或圆锥)的侧面展开,转化为平面图形,应用勾股定理解决,而不能盲目地凭感觉来确定.【例2】如图①所示,一只蚂蚁在底面半径为20 cm,高为30πcm的圆柱下底的点A处,发现自己正上方圆柱上边缘的B处有一只小昆虫,便决定捕捉这只小昆虫,为了不引起这只小昆虫的注意,它故意不走直线,而绕着圆柱,沿一条螺旋路线,从背后对小昆虫进行突然袭击,结果蚂蚁偷袭成功,得到了一顿美餐.根据上述信息,请问蚂蚁至少爬行多少路程才能捕捉到小昆虫?分析:解此题的关键是把圆柱的侧面展开,利用两点之间线段最短和勾股定理作答.解:假设将圆柱体的侧面沿AB剪开铺平如图②,则对角线AB即为蚂蚁爬行的最短路线.在Rt△ACB中,AC=40πcm,BC=30π由勾股定理,得AB2=AC2+BC2=(40π)2+(30π)2=(50π)2,∴AB=50π∴蚂蚁至少爬行50πcm才能捕捉到小昆虫.谈重点圆柱体两点间的最短距离本题文字叙述较多,要求在阅读的基础上提炼有用的信息,具体解题时先将圆柱沿AB剪开,将侧面展开成一矩形,会发现对角线AB即为蚂蚁爬行的最短路线,再运用勾股定理即可求得.3.生活中两点间的最短距离用勾股定理解决实际问题的关键是从实际问题中构建数学模型——直角三角形,再正确利用两点之间线段最短解答.【例3】如图①是一个三级台阶,它的每一级的长、宽和高分别为5 dm,3 dm和1 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是多少?分析:由于蚂蚁是沿台阶的表面由A爬行到B,故需把三个台阶展开成平面图形(如图②).解:将台阶展开成平面图形后,可知AC=5 dm,BC=3×(3+1)=12 dm,∠C=90°.在Rt△ABC中,∵AB2=AC2+BC2,∴AB2=52+122=132,∴AB=13 dm.故蚂蚁爬到B点的最短路程是13 dm.4.如何正确利用勾股定理及其逆定理解决生活中的问题利用勾股定理及其逆定理解决生活中的实际问题,重要的是将实际问题转化成数学模型(直角三角形模型),将实际问题中的“数”转化为定理中的“形”,再转化为“数”.解题的关键是深刻理解题意,并画出符合条件的图形.解决几何体表面上两点之间的最短距离问题的关键是要设法把立体图形转化为平面图形,具体步骤是:(1)把立体图形展成平面图形;(2)确定点的位置;(3)确定直角三角形;(4)分析直角三角形的边长,用勾股定理求解.【例4】如图①,圆柱形玻璃容器的高为18 cm,底面周长为60 cm,在外侧距下底1 cm的点S处有一只蜘蛛,在与蜘蛛相对的圆柱形容器的上口外侧距上口1 cm的点F处有一只苍蝇,急于捕获苍蝇充饥的蜘蛛需要爬行的最短距离是__________cm.解析:将圆柱的侧面展开得到它的侧面展开图(如图②),CD∥AB,且AD=BC=12底面周长,BS=DF=1 cm.则蜘蛛所走的最短路线的长度即为线段SF的长度.过S点作SM⊥CD,垂足为M,由条件知,SM=AD=12×60=30 cm,MC=SB=DF=1 cm,所以MF=18-1-1=16 cm,在Rt△MFS中,由勾股定理得SF2=162+302=342,所以SF=34 cm.故蜘蛛需要爬行的最短距离是答案:345.勾股定理与方程相结合的应用方程思想是一种重要的数学思想.所谓方程思想是指从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式.而勾股定理反映的直角三角形三边的关系正是构建方程的基础.故勾股定理的许多问题的解决都要跟方程相结合.方程思想是勾股定理中的重要思想.【例5】如图,有一张直角三角形状纸片ABC,两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?解:设CD=x cm,由题意知DE=x cm,BD=(8-x) cm,AE=AC=6 cm,在Rt△ABC中,由勾股定理得AB=AC2+BC2=10于是BE=10-6=在Rt△BDE中,由勾股定理得42+x2=(8-x)2,解得x=3.故CD的长为。

专题01 勾股定理与几何综合的三种考法(原卷版)

专题01 勾股定理与几何综合的三种考法(原卷版)

专题01勾股定理与几何综合的三种考法类型一、翻折问题【变式训练1】如图,在等腰两点,连接DE,将BDE△BB'交于点F,则折痕类型二、最值问题例1.(垂线段最值)将ABD △沿BD 折叠,【变式训练1】如图,C为线段AC,EC.已知AB=2,DE=(1)用含x的代数式表示AC+CE(2)探究:当点C满足什么条件时,(3)根据(2)中的结论,请构造图形求代数式A.21cm B.15类型三、解三角形问题A.13B.△Rt ABC【变式训练2】如图,在长方形△ABE 的轴对称图形△于点F ,已知AB =9【变式训练3】如图,ABC 26AD BC ==,:5AB BC =A .32B .52课后训练1.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上点F 处,已知3CE =,8AB =,则图中阴影部分的面积为()A .20B .24C .28D .303.如图所示,将一张矩形纸片沿着BF 折叠(其中点F 为:3:5BCF BGF S S =△△,且AB 5.如图,在Rt ABC △中,C ∠折后,点A 落在点E 处,如果7.如图,在矩形ABCD 称点分别是点M 、N .如果直线8.如图,在四边形ADC B DAE ∠=∠+∠9.如图,如果四边形ABCD 13DC =,9FC =,则10.如图,在矩形ABCD 中,已知为,MN 连接.CN CDN △的面积与11.如图的实线部分是由Rt ABC∆沿高CH折叠,使点B∆经过两次折叠得到的.首先将Rt ABC落在斜边上的点B'处,再沿CM折叠,使点A落在CB'的延长线上的点A'处.若图中∠=︒,15cmACB90AC=,则MB'的长为______.BC=,20cm12.如图,矩形ABCD中,5V沿AE折叠,AD=,7AB=,点E为DC上一个动点,把ADE∠的角平分线上时,DE的长为______.当点D的对应点D¢落在ABC。

勾股定理的应用-课件

勾股定理的应用-课件
02
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解

创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。

在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。

专题一 勾股定理(解析版)

专题一 勾股定理(解析版)

八年级北师大版上册第一章勾股定理培优专题一、勾股定理的应用(最短路径)1.如图是放在地面上的一个长方体盒子,其中AB=18,BC=12,BF=10,点M在棱AB上,且AM=6,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程的平方为()A.400B.424C.136D.324【答案】A【解析】【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【详解】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∵BM=18-6=12,BN=10+6=16,∵MN2=122+162=400如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∵PM=18-6+6=18,NP=10,∵MN2=182+102=424.∵因为400<424,所以蚂蚁沿长方体表面从点M爬行到点N的最短距离的平方为400.故选:A.【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.2.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_______cm.【答案】15.【分析】过C作CQ∵EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【详解】沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ∵EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∵AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,在Rt∵A′QC中,由勾股定理得:,故答案为15.3.有一个如图所示的长方体的透明鱼缸,假设其长AD=80 cm,高AB=60 cm,水深AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;(2)试求小虫爬行的最短路程.【答案】(1)如图所示见解析,AQ→QG为最短路线;(2)小虫爬行的最短路程为100 cm.【分析】(1)根据轴对称性质,通过作对称点将折线转化成两点之间线段距离最短.(2)根据AE=40cm,AA′=120cm,可得:A′E=120-40=80(cm),再根据EG=60cm,可得:A′G2=A′E2+EG2=802+602=10000,A′G=100cm,进而可得:AQ+QG=A′Q+QG=A′G=100cm.【详解】(1)如图所示,AQ→QG为最短路线,(2)因为AE=40cm,AA′=120cm,所以A′E=120-40=80(cm),因为EG=60cm,所以A′G2=A′E2+EG2=802+602=10000,所以A′G=100cm,所以AQ+QG=A′Q+QG=A′G=100cm,所以小虫爬行的最短路程为100cm.【点睛】本题主要对称性质和勾股定理的应用,解决本题的关键是要熟练掌握利用轴对称性质和勾股定理解决实际问题的方法.勾股定理的实际应用4.有一辆装满货物的卡车,高2.5米,宽1.6米,要开进如图所示的上边是半圆,下边是长方形的桥洞,已知半圆的直径为2米,长方形的另一条边长是2.3米.(1)这辆卡车能否通过此桥洞?试说明你的理由.(2)为了适应车流量的增加,想把桥洞改为双行道,并且要使宽1.2米,高为2.8米的卡车能安全通过,那么此桥洞的宽至少应增加到多少米?【答案】(1)能通过,理由见解析;(2) 桥洞的宽至少应增加到2.6米.【分析】(1)如图①,当桥洞中心线两边各为0.8米时,由勾股定理得方程2220.81x +=,解出x 的值,再用x +2.3与卡车的高2.5作比较即可;(2)如图②,在直角三角形AOB 中,已知OB =1.2,AB =2.8-2.3=0.5,由此可求OA 的长,即桥洞的半径,再乘以2即得结果.【详解】解:(1)能通过.理由如下:如图①所示,当桥洞中心线两边各为0.8米时,由勾股定理得2220.81x +=,解得0.6x =,∵2.5 2.30.6<+,∵卡车能通过.(2)如图②所示,在直角三角形AOB 中,已知OB =1.2,AB =2.8-2.3=0.5,由勾股定理得:22221.20.5 1.3OA =+=,∵ 1.3OA =,∵桥洞的宽至少应增加到1.32 2.6⨯=(米).① ②【点睛】本题考查了勾股定理的应用,解题的关键是正确理解题意,画出图形,弄清相关线段所表示的实际数据. 5.如图,公路MN 和公路PQ 在点P 处交会,公路PQ 上点A 处有学校,点A 到公路MN 的距离为80m ,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音的影响,试问该校受影响的时间为多长?【答案】24s.【解析】试题分析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt∵ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.试题解析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt∵ABC中,CB60(m),∵CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∵该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.6.如图是某体育广场上的秋千,秋千静止时,其下端离地面0.7m,秋千荡到最高位置时,其下端离地面1.2 m,此时秋千与静止位置时的水平距离为1.5 m,请你根据以上数据计算秋千摆绳的长度.【答案】2.5m .【分析】根据题意画出图形,表示出图形中相关线段的长,再利用勾股定理得出答案.【详解】解:如图,作BE∵OA ,垂足为E ,由题意得,0.7m AC =, 1.2m BD =, 1.5m BE =,∵ 1.2m CE BD ==, 1.20.70.5(m)AE =-=.设m OA OB x ==,则(0.5)m OE x =-.在Rt OBE 中,由勾股定理得,222OE O E B B -=,即222(0.5) 1.5x x --=,解得 2.5x =.答:秋千摆绳的长度为2.5m .二、勾股定理与几何问题的应用7.如图,把长方形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∵FPH =90°,PF =8,PH =6,则长方形ABCD 的边BC 的长为( )A .20B .22C .24D .30【答案】C【详解】 由折叠得: ,,FP BF CH PH ==在Rt PHF ∆ 中,∵FPH =90°,PF =8,PH =6,则10.FH == 故BC=BF+FH+HC=6+8+10=24. 故选C.8.如图,在四边形ABCD 中,AD∵BC ,∵ABC+∵DCB=90°,且BC=2AD ,分别以AB 、BC 、DC 为边向外作正方形,它们的面积分别为S 1、S 2、S 3.若S 2=48,S 3=9,则S 1的值为( )A.18B.12C.9D.3【答案】D【分析】过A作AH∵CD交BC于H,根据题意得到∵BAE=90°,根据勾股定理计算即可.【详解】∵S2=48,∵BC A作AH∵CD交BC于H,则∵AHB=∵DCB.∵AD∵BC,∵四边形AHCD是平行四边形,∵CH=BH=AD AH=CD=3.∵∵ABC+∵DCB=90°,∵∵AHB+∵ABC=90°,∵∵BAH=90°,∵AB2=BH2﹣AH2=3,∵S1=3.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.9.如图,在∵ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB•PC的值为()A.m2B.m2+1C.2m2D.(m+1)2【答案】A【分析】如图,作AD∵BC交BC于D,根据勾股定理得AB2=BD2+AD2,AP2=PD2+AD2,再根据D是BC的中点,整理得到AB2﹣AP2=PB•PC,再把AB=m代入求解即可.【详解】解:如图,作AD∵BC交BC于D,AB2=BD2+AD2 ①,AP2=PD2+AD2 ②,①﹣②得:AB2﹣AP2=BD2﹣PD2,∵AB2﹣AP2=(BD+PD)(BD﹣PD),∵AB=AC,∵D是BC中点,∵BD+PD=PC,BD﹣PD=PB,∵AB2﹣AP2=PB•PC,∵PA2+PB•PC=AB2=m2.故选A.10.如图,点E 是正方形ABCD 内一点,将ABE ∆绕点B 顺时针旋转90到CBE '∆的位置,若1,2,3AE BE CE ===,求BE C '∠的度数.【答案】135︒【分析】连接EE`,如图,根据旋转的性质得BE=B E'=2,AE=C E'=1,∵EBE`=90°,则可判断∵BEE`为等腰直角三角形,根据等腰直角三角形的性质得在∵CE E'中,由于CE`2 +E E'2=CE 2,根据勾股定理的逆定理得到∵CEE`为直角三角形,即∵EE`C=90°,然后利用∵B E'C=∵B E'E+∵C E'E 求解【详解】连接EE`,如图,∵∵ABE 绕点B 顺时针旋转90°得到∵CBE`∵BE=BE'=2,AE=CE'=1,∵EB E'=90°∵∵BE E'为等腰直角三角形在∵CEE`中∵122=32∵CE 2+E E'2= CE 2∵∵CE E'为直角三角形∵∵E E'C=90°∵∵B E'C=∵B E'E+∵C E'E=135°【点睛】此题考查了等腰直角三角形,勾股定理的逆定理,正方形的性质和旋转的性质,利用勾股定理证明三角形是直角三角形是解题关键11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.【答案】5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形M TKN 的面积设为x ,将其余八个全等的三角形面积一个设为y ,正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=, ∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.12.如图,P 是等边三角形ABC 内的一点,连接PA ,PB ,PC ,以BP 为边作60PBQ ∠=︒,且BQ=BP ,连接CQ.若::3:4:5PA PB PC =,连接PQ ,试判断PQC △的形状,并说明理由.【答案】PQC △是直角三角形,理由详见解析【解析】【分析】先利用SAS 证明∵ABP ∵∵CBQ ,得到AP=CQ ;设PA =3a ,PB =4a ,PC =5a ,由已知可判定∵PBQ 为正三角形,从而可得PQ =4a ,再根据勾股定理的逆定理即可判定∵PQC 是直角三角形.【详解】解:PQC △是直角三角形. 理由如下:在ABP △与CBQ △中,∵AB CB =,BP BQ =,60ABC PBQ ∠=∠=︒,∵ABP ABC PBC PBQ PBC CBQ ∠=∠-∠=∠-∠=∠.∵ABP CBQ ≌△△.∵AP CQ =.∵::3:4:5PA PB PC =,∵设3PA a =,4PB a =,5.PC a =在PBQ △中,由于4PB BQ a ==,且60PBQ ∠=︒,∵PBQ △为等边三角形.∵4PQ a =.在PQC △中,∵22222216925PQ QC a a a PC +=+==,∵PQC △为直角三角形.【点睛】此题考查了等边三角形的性质、勾股定理逆定理和全等三角形的判定与性质,解题的关键是通过证明ABP CBQ≌△△得出AP=CQ.13.已知:如图,∵ABC中,AB=AC=10,BC=16,点D在BC上,DA∵CA于A.求:BD的长.【答案】7 2【分析】先根据等腰三角形的性质和勾股定理求出AE=6,设BD=x,则DE=8﹣x,DC=16﹣x.在Rt∵ADE和Rt∵ADC中利用勾股定理得:AD2=AE2+DE2=DC2﹣AC2,继而代入求出x的值即可.【详解】如图,过点A作AE∵BC于点E,∵AB=AC=10,BC=16,∵BE=CE=8,在Rt∵ACE中,利用勾股定理可知:AE=6,设BD=x,则DE=8﹣x,DC=16﹣x,又DA∵CA,在Rt∵ADE和Rt∵ADC中分别利用勾股定理得:AD2=AE2+DE2=DC2﹣AC2,代入为:62+(8﹣x)2=(16﹣x)2﹣102,解得:x=72.即BD=72.【点睛】本题考查了勾股定理及等腰三角形的性质,解题的关键是在Rt∵ADE和Rt∵ADC中分别利用勾股定理,列出等式AD2=AE2+DE2=DC2﹣AC2.14.已知:AB=AC,且AB∵AC,D在BC上,求证:2222BD CD AD+=.【答案】证明见解析【分析】作AE∵BC于E,由于∵BAC=90°,AB=AC,得到∵BAC是等腰直角三角形,再由等腰直角三角形的性质得到BE=AE=EC,进而得到BD= AE-DE,DC= AE+DE,代入BD2+CD2计算,结合勾股定理,即可得到结论.【详解】作AE∵BC于E,如图所示.∵AB=AC,且AB∵AC,∵∵BAC是等腰直角三角形.∵AE∵BC,∵BE=AE=EC,∵BD=BE -DE=AE-DE,DC=EC+DE= AE+DE,∵BD2+CD2= (AE-DE)2+(AE+DE)2= AE2+DE2-2AE•DE+ AE2+DE2+2AE•DE= 2AE2+2DE2= 2(AE2+DE2)=2AD2.【点睛】本题主要考查勾股定理及等腰直角三角形的性质,关键在于得出BD= AE-DE,DC= AE+DE.三、动点问题15.已知,如图,在Rt∵ABC中,∵C=90°,∵A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为______时,∵PBQ是等边三角形?(2)P,Q在运动过程中,∵PBQ的形状不断发生变化,当t为何值时,∵PBQ是直角三角形?说明理由.【答案】(1)12;(2)当t为9或725时,∵PBQ是直角三角形,理由见解析.【分析】(1)根据等边三角形的性质解答即可;(2)分两种情况利用直角三角形的性质解答即可.【详解】(1)要使,∵PBQ是等边三角形,即可得:PB=BQ,∵在Rt∵ABC中,∵C=90°,∵A=30°,BC=18cm.∵AB=36cm,可得:PB=36-2t,BQ=t,解得:t=12故答案为;12(2)当t为9或725时,∵PBQ是直角三角形,理由如下:∵∵C=90°,∵A=30°,BC=18cm∵AB=2BC=18×2=36(cm)∵动点P以2cm/s,Q以1cm/s的速度出发∵BP=AB-AP=36-2t,BQ=t∵∵PBQ是直角三角形∵BP=2BQ或BQ=2BP当BP=2BQ时,36-2t=2t解得t=9当BQ=2BP时,t=2(36-2t)解得t=72 5所以,当t为9或725时,∵PBQ是直角三角形.【点睛】此题考查了等边三角形的判定和含30°角的直角三角形的性质,关键是含30°角的直角三角形的性质的逆定16.如图1,Rt∵ABC 中,∵ACB =90.,直角边AC 在射线OP 上,直角顶点C 与射线端点0重合,AC =b ,BC =a ,30a -=.(1)求a ,b 的值;(2)如图2,向右匀速移动Rt∵ABC ,在移动的过程中Rt∵ABC 的直角边AC 在射线OP 上匀速向右运动,移动的速度为1个单位/秒,移动的时间为t 秒,连接OB .①若∵OAB 为等腰三角形,求t 的值;②Rt∵ABC 在移动的过程中,能否使∵OAB 为直角三角形?若能,求出t 的值:若不能,说明理由.【答案】(1)a =3,b =4(2)①t =4或t =1;②能.t =94. 【分析】(1)根据两个非负数的和为零则每一个数都为零,得出b -4=0 ,a -3=0 ,求解即可得出a ,b 的值;(2) ①首先根据勾股定理算出AB 的长及用含t 的式子表示出OA ,OB 2 ,然后分三类讨论:当OB =AB 时;当AB =OA 时 ;当OB =OA 时 ;一一列出方程求解即可得出t 的值; ②能.由于t >0,点C 在OP 上,∵ACB = 90,故只能是∵OBA =90°,根据勾股定理得出关于t 的方程求出t 的值即可. 【详解】(1)解0≥,30a -≥, 30a -=,0=, 30a -=∵a=3,b=4(2)解:①∵AC=4,BC=3,∵AB,∵OC=t∵OB2=t2+32=t2+9,OA=t+4,当OB=AB时,t2+9=25,解得t=4或t=﹣4(舍去);当AB=OA时,5=t+4,解得t=1;当OB=OA时,t2+9=(t+4)2,解得t=-78(舍去).综上所述,t=4或t=1;②能.∵t>0,点C在OP上,∵ACB ∵只能是∵OBA=90°,∵OB2+AB2=OA2,即t2+9+25=(t+4)2,解得t=94.∵Rt∵ABC在移动的过程中,能使∵OAB为直角三角形,此时t=94.【点睛】本题考查了非负数的性质,勾股定理的应用,等腰三角形的定义及分类讨论的数学思想.掌握非负数的性质是解(1)的关键,掌握勾股定理及分类讨论的数学思想是解(2)的关键.四、分类讨论的思想17.阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:22221()21()2a m n b mnc m n ⎧=-⎪⎪=⎨⎪⎪=+⎩其中m >n >0,m ,n 是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【答案】12,13或3,4.【详解】试题分析:由n=1,得到a= (m 2﹣1)①,b=m②,c=(m 2+1)③,根据直角三角形有一边长为5,分情况,列方程即可得到结论.试题解析:当n=1,a=12(m 2﹣1)①,b=m②,c=12(m 2+1)③, ∵直角三角形有一边长为5,∵∵、当a=5时,12(m 2﹣1)=5,解得:(舍去), ∵、当b=5时,即m=5,代入①③得,a=12,c=13,∵、当c=5时,12(m 2+1)=5,解得:m=±3, ∵m >0,∵m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.18.∵ABC 中,AB=15,AC=13,高AD=12,则∵ABC 的周长为( )A .42B .32C .42或32D .37或33 【答案】C【分析】存在2种情况,∵ABC是锐角三角形和钝角三角形时,高AD分别在∵ABC的内部和外部【详解】情况一:如下图,∵ABC是锐角三角形∵AD是高,∵AD∵BC∵AB=15,AD=12∵在Rt∵ABD中,BD=9∵AC=13,AD=12∵在Rt∵ACD中,DC=5∵∵ABC的周长为:15+12+9+5=42情况二:如下图,∵ABC是钝角三角形在Rt∵ADC中,AD=12,AC=13,∵DC=5在Rt∵ABD中,AD=12,AB=15,∵DB=9∵BC=4∵∵ABC的周长为:15+13+4=32故选:C【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.18.如图是某商品的商标,由七个形状、大小完全相同的正六边形组成.我们称正六边形的顶点为格点,已知∵ABC的顶点都在格点上,且AB边位置如图所示,则∵ABC是直角三角形的个数有()A.6个B.8个C.10个D.12个【答案】C【分析】根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.【详解】如图所示:AB是直角边时,点C共有6个位置,即有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,∵ABC是直角三角形的个数有6+4=10个.故答案选:C.【点睛】本题考查的知识点是正多边形和圆, 勾股定理的逆定理,解题的关键是熟练掌握正多边形和圆, 勾股定理的逆定理.。

专题01 勾股定理的基本应用(解析版)

专题01 勾股定理的基本应用(解析版)

专题01 勾股定理的基本应用题型一 求面积1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设“赵爽弦图”中直角三角形较长直角边长为a ,较短直角边长为b ,若2()24a b +=,大正方形的面积为14,则小正方形的面积为( )A .2B .3C .4D .5【解答】解:设大正方形的边长为c ,则22214c a b ==+,2()24a b +=Q ,22224a ab b \++=,解得5ab =,\小正方形的面积是:1441425141042ab -´=-´=-=,故选:C .2.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A 、B 、D 的面积依次为6、10、24,则正方形C 的面积为( )A .4B .6C .8D .12【解答】解:由题意:A B E S S S +=正方形正方形正方形,D C E S S S -=正方形正方形正方形,A B D CS S S S \+=-正方形正方形正方形正方形Q 正方形A 、B 、D 的面积依次为6、10、24,24610C S \-=+正方形,8C S \=正方形.故选:C .3.如图,点C 是线段AB 上的一点,分别以AC 、BC 为边向两侧作正方形.设6AB =,两个正方形的面积和1220S S +=,则图中BCD D 的面积为( )A .4B .6C .8D .10【解答】解:设AC a =,BC b =,由题意得:6a b +=,2220a b +=,222()2a b a b ab +=+-Q ,22062ab \=-,8ab \=,BCD \D 的面积118422ab ==´=.图中BCD D 的面积为4.故选:A .4.正方形ABCD 的边长为1,其面积记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为2S ,L 按此规律继续下去,则2022S 的值为( )A .20221()2B .20211()2C .2022D .2021【解答】解:在图中标上字母E ,如图所示.Q 正方形ABCD 的边长为1,CDE D 为等腰直角三角形,222DE CE CD \+=,DE CE =,221S S S \+=.观察,发现规律:2111S ==,211122S S ==,321124S S ==,431128S S ==,¼,11()2n n S -\=.当2022n =时,202212021202211()()22S -==,故选:B .5.如图,以正方形ABCD 的边AD 为直径作一个半圆,点M 是半圆上一个动点,分别以线段AM 、DM 为边各自向外作一个正方形,其面积分别为1S 和2S ,若正方形的面积为10,随点M 的运动12S S +的值为( )A .大于10B .小于10C .等于10D .不确定【解答】解:AB Q 为半圆的直径,90AMD \Ð=°,22210AM DM AD \+==,21S AM =Q ,22S DM =,1210S S \+=.故选:C .6.如图,在四边形ABDE 中,//AB DE ,AB BD ^,点C 是边BD 上一点,BC DE a ==,CD AB b ==,AC CE c ==.下列结论:①ABC CDE D @D ;②90ACE Ð=°;③四边形ABDE 的面积是21()2a b +;④22111()2222a b c ab +-=´;⑤该图可以验证勾股定理.其中正确的结论个数是( )A .5B .4C .3D .2【解答】解://AB DE Q ,AB BD ^,DE BD \^,90B D \Ð=Ð=°.在ABC D 和CDE D 中,90AB CD B D BC DE =ìïÐ=Ð=°íï=î,()ABC CDE SAS \D @D,A DCE \Ð=Ð,ACB E Ð=Ð.90A ACB Ð+Ð=°Q ,90DCE ACB \Ð+Ð=°.180DCE ACB ACE Ð+Ð+Ð=°Q ,90ACE \Ð=°,故①②正确;//AB DE Q ,AB BD ^,\四边形ABDE 的面积是21()2a b +;故③正确;Q 梯形ABDE 的面积-直角三角形ACE 的面积=两个直角三角形的面积,\22111()2222a b c ab +-=´,222a b c \+=.故③④⑤都正确.故选:A .7.如图,Rt ABC D 中,90C Ð=°,AD 平分BAC Ð,交BC 于点D ,6CD =,12AB =,则ABD D 的面积是( )A .18B .24C .36D .72【解答】解:作DH AB ^于D ,如图,AD Q 平分BAC Ð,DH AB ^,DC AC ^,6DH DC \==,1126362ABD S D \=´´=.故选:C .8.如图,Rt ABC D 中,90C Ð=°,5AC =,12BC =,分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为1S 、2S 、3S 、4S ,则1234S S S S +++等于( )A .60B .80C .90D .120【解答】解:连接PF ,过点F 作FD AK ^于点D ,AB EB =Q ,90ACB ENB Ð=Ð=°,而90CBA CBE EBN CBE Ð+Ð=Ð+Ð=°,CBA EBN \Ð=Ð,()CBA NBE AAS \D @D ,故4ABC S S D =;同理ADF ABC D @D ,AC DF AQ CP \===,90QAC KDF PCD Ð=Ð=Ð=°Q ,//AQ DF \,\四边形CDFP 是矩形,90CPF \Ð=°,180QPC CPF \Ð+Ð=°,Q \,P ,F 三点共线,又FA AB =Q ,90FDA ACB Ð=Ð=°,而90FAD CAB CAB ABC Ð+Ð=Ð+Ð=°,FAD ABC \Ð=Ð,()FAD ABC AAS \D @D ,同理可证ACT FDK D @D ,2FDA ABC S S S D D \==,同理可证TPF KME D @D ,AQF ABC D @D ,13ADF ABC S S S S D D \+==,综上所证:1234133125902ABC S S S S S D +++==´´´=.故选:C .9.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为4和10,则b 的面积为 14 .【解答】解:如图,a Q 、b 、c 都为正方形,BC BF \=,90CBF Ð=°,24AC =,210DF =,1290Ð+Ð=°Q ,2390Ð+Ð=°,13\Ð=Ð,在ABC D 和DFB D 中,13BAC FDB BC FB Ð=ÐìïÐ=Ðíï=î,ABC DFB \D @D ,AB DF \=,在ABC D 中,2222241014BC AC AB AC DF =+=+=+=,b \的面积为14.故答案为14.10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,90BAC Ð=°,3AB =,4AC =,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则空白部分的面积为 60 .【解答】解:如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,所以,四边形AOLP 是正方形,90BAC Ð=°Q ,3AB =,4AC =,347AO AB AC \=+=+=,3710KL \=+=,4711LM =+=,因此,矩形KLMJ 的面积为1011110´=,\空白部分的面积为22211034560---=,故答案为:60.11.我国古代著作《周髀算经》中记载了“赵爽弦图”.如图,若勾6AE =,弦10AD =,则小正方形EFGH 的面积是 4 .【解答】解:如图,Q 勾6AE =,弦AD =弦10AB =,\股8BE ==,\小正方形的边长862=-=,\小正方形的面积224==.故答案是:4.12.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、6、18,则正方形B 的面积为 8 .【解答】解:由题意:A B E S S S +=正方形正方形正方形,D C E S S S -=正方形正方形正方形,A B D CS S S S \+=-正方形正方形正方形正方形Q 正方形A 、C 、D 的面积依次为4、6、18,4186B S \+=-正方形,8B S \=正方形.故答案为:8.13.如图,在同一平面内,直线l 同侧有三个正方形A ,B ,C ,若A ,C 的面积分别为9和4,则阴影部分的总面积为 6 .【解答】解:如图,作LM FE ^交FE 的延长线于点M ,交JI 的延长线于点N ,Q 四边形A 、B 、C 都是正方形,且正方形A 、C 的面积分别为9、4,90EKI EDR IHG \Ð=Ð=Ð=°,29DE =,24HI =,3DE \=,2HI =,1809090EDK KHI Ð=Ð=°-°=°Q ,90DKE KHI HIK \Ð=°-Ð=Ð,在EDK D 和KHI D 中,EDK KHI DKE HIK EK KI Ð=ÐìïÐ=Ðíï=î,()EDK KHI AAS \D @D ,2DK HI \==,3DE HK ==,13232EDK KHI S S D D \==´´=;90DEF HIJ Ð=Ð=°Q ,18090DEM DEF \Ð=°-Ð=°,18090HIN HIJ Ð=°-Ð=°,90KEL KIL Ð=Ð=°Q,90MEL DEK KEM \Ð=Ð=°-Ð,90NIL HIK KIN Ð=Ð=°-Ð,//EF l Q ,//IJ l ,//EF IJ \,90EML EMN N \Ð=Ð=Ð=°,在EML D 和EDK D 中,MIL DEK EML EDK EL EK Ð=ÐìïÐ=Ðíï=î,()EML EDK AAS \D @D ,EM ED EF \==,3EFL EML EDK S S S D D D \===;在LNI D 和KHI D 中,NIL HIK N KHI IL IK Ð=ÐìïÐ=Ðíï=î,()LNI KHI AAS \D @D ,IN IE IJ ==Q ,3LJI LNI KHI S S S D D D \===,336EFL LJI S S D D \+=+=,\阴影部分的总面积为6.14.如图,正方形ABDE 、CDFI 、EFGH 的面积分别为25、9、16,AEH D 、BDC D 、GFI D 的面积分别为1S 、2S 、3S ,则123S S S ++= 18 .【解答】解:DF DC =Q ,DE DB =,且180EDF BDC Ð+Ð=°,过点A 作AJ EH ^,交HE 的延长线于点J ,90J DFE \Ð=Ð=°,90AEJ DEJ DEJ DEF Ð+Ð=Ð+Ð=°Q ,AEJ DEF \Ð=Ð,AE DE =Q ,()AEJ DEF AAS \D @D ,AJ DF \=,EH EF =Q ,AHE DEF S S D D \=,同理:BDC GFI DEF S S S D D D ==,1233AHE BDC GFI DEF S S S S S S S D D D D ++=++=´,13462DEF S D =´´=,12318S S S \++=.故答案为:18.题型二 求线段长15.一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB 的长为( )A .4B .6C .10D .16【解答】解:如图,Q 两个小正方形的面积分别为10和6,26AC \=,210BC =,由勾股定理得,4AB ===.故选:A .16.如图,在Rt ABC D 中,90ABC Ð=°,以AB 为边在ABC D 外作正方形,其面积为9,以BC 为斜边在ABC D 外作等腰直角三角形,其面积为4,过点B 作BD AC ^交AC 于点D ,则(AD = )A .85B .94C .95D .2【解答】解:Q 以AB 为边的正方形的面积为9,29AB \=,Q 以BC 为斜边的等腰直角三角形的面积为4,\等腰直角三角形的腰长为216BC \=,在Rt ABC D 中,90ABC Ð=°,则5AC ===,1122ABC S AB AC AC BD D =´´=´´Q ,\1134522BD ´´=´´,解得:125BD =,由勾股定理得:95AD ===,故选:C .17.如图,在Rt ABC D 中,90ACB Ð=°,CD AB ^于D .已知15AB =,Rt ABC D 的周长为15+,则CD 的长为( )A .5BC .D .6【解答】解:如图所示:Rt ABC D Q 的周长为15+,90ACB Ð=°,15AB =,AC BC \+=,222215225AC BC AB +===,22()AC BC \+=,即222405AC AC BC BC +´+=,2405225180AC BC \´=-=,90AC BC \´=,Q 1122AB CD AC BC ´=´,90615AC BC CD AB ´\===;故选:D .18.若ABC=,高24=,则BC的长为( )cm.AD cmAC cmD中,30AB cm=,26A.28或8B.8C.28D.以上都不对Q为边BC上的高,【解答】解:AD\Ð=Ð=°.90ADB ADCBD===,在Rt ABDD中,18CD===.在Rt ACDD中,10当点D在线段BC上时,如图1,181028=+=+=;BC BD CD当点D在线段CB的延长线上时,如图2,18108=-=-=.BC BD CD\的长为28或8.BC故选:A.19.如图,在ABCBC=,6AB=,4AC=,则DE的^于D,且5D中,CE是AB边上的中线,CD AB长 2 .【解答】解:设BD x=-,=,则5AD x在Rt ACD D 中,222CD AC AD =-,在Rt BCD D 中,222CD BC BD =-,2222AC AD BC BD \-=-,即22226(5)4x x --=-,解得,12x =,则12BD =,2DE BE BD \=-=,贵答案为:2.20.如图,锐角三角形ABC 中,2C B Ð=Ð,AB =,8BC CA +=,则ABC D 的面积为 【解答】解:过A 作AE BC ^于E ,延长BC 到D 使CD AC =,则CAD D Ð=Ð,ACB D CAD Ð=Ð+ÐQ ,2ACB D \Ð=Ð,2C B Ð=ÐQ ,B D \Ð=Ð,AB AD \=,BE DE \=,8BC CA +=Q ,8BD BC CD BC AC \=+=+=,4BE \=,AE \==,222AE CE AC \+=,即228(4)(8)BC BC +-=-,解得:5BC =,ABC \D 的面积11522BC AE ==´´=g故答案为:.21.如图所示,ABC D 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD AC ^于点D ,则BD 的长为 3 .【解答】解:由图形可知,5BC =,BC 边上的高为3,ABC \D 的面积1155322=´´=,由勾股定理得,5AC ==,则115522BD ´´=,解得,3BD =,故答案为:3.22.如图,在Rt ABC D 中,90B Ð=°,3AB =,6BC =,AC 的中垂线DE 交AC 于点D ,交BC 于点E .延长DE 交AB 的延长线于点F ,连接CF .(1)求出CD 的长;(2)求出CF 的长.【解答】解:(1)在Rt ABC D 中,90B Ð=°,3AB =,6BC =,则AC ===,DE Q 是AC 的中垂线,12CD AC \==(2)DF Q 是AC 的中垂线,FA FC \=,3AB =Q ,33FB FA CF \=-=-,在Rt FBC D 中,222CF BC FB =+,即2226(3)CF CF =+-,解得:152CF =.23.如图,在ABC D 中,AB AC =,AD BC ^于点D ,45CBE Ð=°,BE 分别交AC ,AD 于点E 、F .(1)如图1,若13AB =,10BC =,求AF 的长度;(2)如图2,若AF BC =,求证:222BF EF AE +=.【解答】(1)解:如图1,AB AC =Q ,AD BC ^,BD CD \=,10BC =Q ,5BD \=,Rt ABD D 中,13AB =Q ,12AD \==,Rt BDF D 中,45CBE Ð=°Q ,BDF \D 是等腰直角三角形,5DF BD \==,1257AF AD DF \=-=-=;(2)证明:如图2,在BF 上取一点H ,使BH EF =,连接CF 、CH 在CHB D 和AEF D 中,Q 45BH EFCBH AFE BC AF=ìïÐ=Ð=°íï=î,()CHB AEF SAS \D @D ,AE CH \=,AEF BHC Ð=Ð,CEF CHE \Ð=Ð,CE CH \=,BD CD =Q ,FD BC ^,CF BF \=,45CFD BFD \Ð=Ð=°,90CFB \Ð=°,EF FH \=,Rt CFH D 中,由勾股定理得:222CF FH CH +=,222BF EF AE \+=.24.如图,在ABC D 中,AD BC ^,垂足为点D ,13AB =,5BD =,15AC =.(1)求AD 的长;(2)求BC的长.【解答】解:(1)AD BC ^Q ,90ADB CDA \Ð=Ð=°.在Rt ADB D 中,90ADB Ð=°Q ,222AD BD AB \+=,222144AD AB BD \=-=.0AD >Q ,12AD \=.(2)在Rt ADC D 中,90CDA Ð=°Q ,222AD CD AC \+=,22281CD AC AD \=-=.0CD >Q ,9CD \=.5914BC BD CD \=+=+=.题型三 通过勾股定理设方程25.如图,四个全等的直角三角形围成正方形ABCD 和正方形EFGH ,即赵爽弦图.连接AC ,分别交EF 、GH 于点M ,N ,连接FN .已知3AH DH =,且21ABCD S =正方形,则图中阴影部分的面积之和为( )A .214B .215C .225D .223【解答】解:21ABCD S =Q 正方形,221AB \=,设DH x =,则33AH DH x ==,22921x x \+=,22110x \=,根据题意可知:AE CG DH x ===,3CF AH x ==,32FE FG CF CG x x x \==-=-=,2FGN CGNS S D D \=AEM CGN S S D D =Q ,FGN AEM CGN S S S D D D \=+,\阴影部分的面积之和为:()12NGFM S NG FM FG =+×梯形1()2EM MF FG =+×12FE FG =×21(2)2x =´22x =215=.故选:B .26.如图,在ABC D 中,90C Ð=°,点M 是AB 的中点,点N 在AC 上,MN AB ^.若8AC =,4BC =,则NC 的长为( )A .3B .4C .5D .【解答】解:如图,连接BN ,AB Q 的垂直平分线交AB 、AC 于点M 、N ,AN BN \=,设NC x =,则8AN BN x ==-,在Rt BCN D 中,由勾股定理得:222BN BC CN =+,即222(8)4x x -=+,解得:3x =,即3NC =,故选:A .27.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是()A B C .a b +D .a b-【解答】解:设CD x =,则DE a x =-,HG b =Q ,AH CD AG HG DE HG a x b x \==-=-=--=,2a bx -\=,22a b a bBC DE a -+\==-=,2222222()()222a b a b a b BD BC CD +-+\=+=+=,BD \=,故选:B .28.在长方形ABCD 中,52AB =,4BC =,CE CF =,延长AB 至点E ,连接CE ,CF 平分ECD Ð,则BE = 76 .【解答】解:如图,延长CF ,BA 交于点G ,连接EF ,过点F 作FH CE ^于H ,过点E 作EM CF ^于M ,Q 四边形ABCD 是矩形,且52AB =,4BC =,//AB CD \,52AB CD ==,90D ABC CBE Ð=Ð=Ð=°,DCF G \Ð=Ð,CF Q 平分ECD Ð,DCF FCE \Ð=Ð,FH DF =,G ECF \Ð=Ð,EC EG \=,ECG \D 是等腰三角形,CM MG \=,CE CF =Q ,ECF \D 是等腰三角形,EM CF ^Q ,FH CE ^,EM \和FH 是等腰三角形腰上的高,EM FH DF \==,Rt CDF Rt CME(HL)\D @D ,52CM CD \==,5CG \=,Rt CBG D 中,3BG ===,设BE x =,则3EC EG x ==+,Rt CBE D 中,222(3)4x x +=+,解得:76x =,76BE \=.故答案为:76.29.如图是“赵爽弦图”, ABH D ,BCG D ,CDF D 和DAE D 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果10AB =,且:3:4AH AE =.那么AH 等于 6 .【解答】解:10AB =Q ,:3:4AH AE =,设AH 为3x ,AE 为4x ,由勾股定理得:222222(3)(4)(5)AB AH AE x x x =+=+=,510x \=,2x \=,6AH \=,故答案为:6.30.[阅读理解]如图,在ABC D 中,4AB =,6AC =,7BC =,过点A 作直线BC 的垂线,垂足为D ,求线段AD 的长.解:设BD x =,则7CD x =-.AD BC ^Q ,90ADB ADC \Ð=Ð=°.在Rt ABD D 中,222AD AB BD =-,在Rt ACD D 中,222AD AC CD =-,2222AB BD AC CD \-=-.又4AB =Q ,6AC =,222246(7)x x \-=--.解得2914x =,2914BD \=.AD \==.[知识迁移](1)在ABC D 中,13AB =,15AC =,过点A 作直线BC 的垂线,垂足为D .)i 如图1,若14BC =,求线段AD 的长;)ii 若12AD =,求线段BC 的长.(2)如图2,在ABC D 中,AB =,AC =,过点A 作直线BC 的垂线,交线段BC 于点D ,将ABD D 沿直线AB 翻折后得到对应的ABD D ¢,连接CD ¢,若252AD =,求线段CD ¢的长.【解答】解:(1))i 设BD x =,则14CD x =-,AD BC ^Q ,90ADB ADC \Ð=Ð=°,在Rt ABD D 中,222AD AB BD =-,在Rt ACD D 中,222AD AC CD =-,2222AB BD AC CD \-=-,13AB =Q ,15AC =,22221315(14)x x \-=--,5x \=,5BD \=,12AD \===;)ii 在Rt ABD D 中,5BD ===,在Rt ACD D 中,9CD ===,当ABC Ð为锐角时,如图11-,5914BC BD CD =+=+=,当ABC Ð为钝角时,如图12-,954BC BD CD =-=-=;(2)如图2,连接DD ¢交AB 于点N ,则DD AB ¢^,过点D ¢作D H BD ¢^于H ,在Rt ABD D 中,254BD ==;在Rt ACD D 中,5CD ==,AB Q 垂直平分DD ¢,254D B DB ¢\==,2D D DN ¢=,1122ABD S AD BD AB DN D =×=×Q ,\252524DN ´=,DN \=2D D DN ¢\==,设HB m =,则254HD HB BD m =+=+,22222D H D D HD D B HB ¢¢¢=-=-Q ,22222525(()44m m \-+=-,154m \=,154HB \=,152541544HC HB BD CD \=++=++=,5D H ¢===,D C ¢\===.。

专题1-4 勾股定理的应用-重难点题型(举一反三)(北师大版)(原卷版)

专题1-4 勾股定理的应用-重难点题型(举一反三)(北师大版)(原卷版)

专题1.4 勾股定理的应用-重难点题型【北师大版】【题型1 勾股定理的应用(最短路径问题)】【例1】(2021春•肥乡区月考)如图所示,是一个三级台阶,它的每一级的长、宽、高分别为55cm,10cm,6cm,点A和点B是这个台阶的两个相对的端点,A点处有一只蚂蚁,那么这只蚂蚁从点A爬到点B的最短路程是多少?【变式1-1】(2020秋•长春期末)如图所示,有一个圆柱,底面圆的直径AB=16π,高BC=12cm,在BC的中点P处有一块蜂蜜,聪明的蚂蚁总能找到距离食物的最短路径,求蚂蚁从A点爬到P点的最短距离.【变式1-2】(2020秋•碑林区校级月考)如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上底面距离为4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为多少?【变式1-3】(2020秋•淅川县期末)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程是多少?【题型2 勾股定理的应用(方位角问题)】【例2】(2020秋•龙口市期中)甲、乙两船同时从港口A出发,甲船以30海里/时的速度沿北偏东35°方向航行,乙船沿南偏东55°向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,问乙船的速度是每小时多少海里?【变式2-1】(2020春•孟村县期末)如图,甲、乙两艘轮船同时从港口O出发,甲轮船以20海里/时的速度向南偏东45°方向航行,乙轮船向南偏西45°方向航行.已知它们离开港口O两小时后,两艘轮船相距50海里,求乙轮船平均每小时航行多少海里?【变式2-2】(2020春•鹿邑县期中)如图,北部湾诲面有一艘解放军军舰正在基地A的正东方向且距A地40海里的B处训练,突然接到基地命令,要该舰前往C岛接送一名患病的渔民到基地的医院救治.已知C岛在基地A的北偏东58°方向且距基地A32海里,在B处的北偏西32°的方向上.军舰从B处出发,平均每小时行驶40海里.问至少需要多长时间能把患病渔民送到基地?【变式2-3】(2020春•灌阳县期中)如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C处将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西23°.(1)求甲巡逻艇的航行方向;(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里?【题型3 勾股定理的应用(范围影响问题)】【例3】(2021春•江岸区校级月考)国家交通法规定:汽车在城市街道上行驶速度不得超过60km/h,一辆汽车在解放大道上由西向东行驶,此时小汽车在A点处,在它的正南方向21m处的B点处有一个车速检测仪,过了4s后,测得小汽车距离测速仪75m.这辆小汽车超速了吗?通过计算说明理由.【变式3-1】(2021春•南川区期中)为了积极宣传防疫,南川区政府采用了移动车进行广播,如图,小明家在南大街这条笔直的公路MN的一侧点A处,小明家到公路MN的距离为600米,假使广播车P周围1000米以内能听到广播宣传,广播车P以250米/分的速度在公路MN上沿PN方向行驶时,若小明此时在家,他是否能听到?若能,请求出他总共能听到多长时间的广播?【变式3-2】(2020秋•雁江区期末)拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?【变式3-3】(2020秋•内江期末)台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB由A行驶向B,已知点C为一海港,且点C与直线AB上的两点A,B的距离分别为AC=300km,BC=400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E处时,海港C刚好受到影响,当台风运动到点F 时,海港C刚好不受影响,即CE=CF=250km,则台风影响该海港持续的时间有多长?【题型4 勾股定理的应用(梯子问题)】【例4】(2021春•前郭县月考)如图,一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾AE到大厦墙面CD),升起云梯到火灾窗口B.已知云梯AB长17米,云梯底部距地面的高AE=1.5米,问发生火灾的住户窗口距离地面多高?【变式4-1】(2020秋•玄武区期末)如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC与AE的长度一样,滑梯的高度BC=4m,BE=1m.求滑道AC的长度.【变式4-2】(2020秋•阜宁县期中)如图,教学楼走廊左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜在右墙时,顶端距离地面2米,求教学楼走廊的宽度.【变式4-3】(2020秋•惠来县期末)如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?【题型5 勾股定理的应用(九章算术问题)】【例5】(2021春•合肥期中)《九章算术》是我国古代数学的经典著作.书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?【变式5-1】(2021春•汉阳区期中)“引葭赴岸”是《九章算术》中的一道题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个边长为10尺的正方形池塘,一棵芦苇AB生长在它的中央,高出水面BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).问水深和芦苇长各多少?(画出几何图形并解答)【变式5-2】(2020春•安庆期中)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=4,求AC的长.【变式5-3】(2020•庐阳区一模)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?【题型6 勾股定理的应用(其他问题)】【例6】(2020秋•沙坪坝区期末)如图是某“飞越丛林”俱乐部新近打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形CDEF为一木质平台的主视图.小敏经过现场测量得知:CD=1米,AD=15米,于是小敏大胆猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度.【变式6-1】(2020秋•宽城区期末)如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?【变式6-2】(2021春•越秀区校级期中)八年级11班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米:(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?【变式6-3】(2020秋•荥阳市期中)随着疫情的持续,各地政府储存了充足的防疫物品.某防疫物品储藏室的截面是由如图所示的图形构成的,图形下面是长方形ABCD,上面是半圆形,其中AB=1.8m,BC =2m,一辆装满货物的运输车,其外形高2.3m,宽1.6m,它能通过储藏室的门吗?请说明理由.。

全国通用版中考数学:勾股定理有关的几何证明(一)—详解版

【例1】如图,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,求证:AN2-BN2=AC2.证明:∵MN⊥AB于N,∴BN2=BM2-MN2,AN2=AM2-MN2,∴BN2-AN2=BM2-AM2,又∵∠C=90°,∴AM2=AC2+CM2 ,∴BN2-AN2=BM2-AC2-CM2,又∵BM=CM,∴BN2-AN2=-AC2,即AN2-BN2=AC2.【例2】四边形ABCD,AC⊥BD ,探究AB2,CD2,BC2,AD2之间的数量关系.【解析】AD2+BC2=AB2+CD2,设AC与BD的交点为E∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2,1.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.求证:四边形ABCD是以DC、BC为勾股边的勾股四边形.证明:连接CE,∵△DBE是由△ABC的顶点B按顺时针方向旋转60°而得,∴AC=DE,BC=BE,∠CBE=60°,∴△BCE是等边三角形,∴∠BCE=60°,EC=BC,又∵∠DCB=30°,∴∠DCE=90°,∴在Rt△DCE中,DE2=DC2+CE2∴AC2=DC2+BC2即四边形ABCD是以DC,BC为勾股边的勾股四边形.2.在△ABC中,AD⊥BC于D,求证:AB2+CD2=AC2+BD2.证明:在Rt△ABD中,根据勾股定理得:AB2-BD2=AD2;在Rt△ACD中,根据勾股定理得:AC2-CD2=AD2,∴AB2-BD2=AC2-CD2=AD2,则AB2+CD2=AC2+BD2.3.如图,△ABC中,AB=AC,∠BAC=90°,D是BC边上任意一点,求证:BD2+CD2=2AD2.证明:作AE⊥BC于E,如图所示:∵在△ABC中,∠BAC=90°,AB=AC,1BC,∴BE=CE=AE=2∴BD2+CD2=(BE+DE)2+(CE-DE)2=2AE2+2DE2=2AD2.4.如图,在△ABC中,∠C=90°,点P、Q分别在BC、AC上,求证:AP2+BQ2=AB2+PQ2.证明:∵在RT△APC中,AP2=AC2+CP2,在RT△BCQ中,BQ2=BC2+CQ2,∴AP2+BQ2=AC2+CP2+BC2+CQ2,∵在RT△ABC中,AC2+BC2=AB2,在RT△APC中,PC2+CQ2=PQ2,∴AP2+BQ2=AC2+CP2+BC2+CQ2=AB2+PQ2.5.如图,在△ABC中,∠C=90°,D是AC的中点,DE⊥AB于点E.求证:BC2=BE2-AE2.证明:连接BD,∵D是AC的中点,∴CD=AD.∵∠C=90°,DE⊥AB,∴BE2-AE2=(BD2-DE2)-(AD2-DE2)=BD2-AD2=(BC2+CD2)-AD2=BC2.【例1】在△ABC中,以AB为斜边,作Rt△ABD,使点D落在△ABC内,∠ADB=90°,AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).证明:BF2+FC2=2AD2,理由:如图3,连接AF、CD.∵EF⊥AC,且AE=EC,∴FA=FC,∠FAC=∠FCA,∵EF⊥AC,且AE=EC,∴∠DAC=∠DCA,DA=DC,∵AD=BD,∴BD=DC,∴∠DBC=∠DCB,∵∠FAC=∠FCA,∠DAC=∠DCA,∴∠DAF=∠DCB,∴∠DAF=∠DBC,∴∠AFB=∠ADB=90°,在Rt△ADB中,DA=DB,∴AB2=2AD2,在Rt△ABF中,BF2+FA2=AB2=2AD2,∵FA=FC∴BF2+FC2=2AD2.【例2】如图,∠C=90°,AM=CM,MP⊥AB于点P,求证:BP2=AP2+BC2.证明:∵△ABC是直角三角形,∠C=90°,∴AB2=BC2+AC2,则AB2-AC2=BC2.又∵在直角△AMP中,AP2=AM2-MP2,∴AB2-AC2+(AM2-MP2)=BC2+(AM2-MP2).又∵AM=CM,∴AB2-AC2+(AM2-MP2)=BC2+(MC2-MP2),①∵△APM是直角三角形,∴AM2=AP2+MP2,则AM2-MP2=AP2,②∵△BPM与△BCM都是直角三角形,∴BM2=BP2+MP2=MC2+BC2,MC2+BC2-MP2=BM2-MP2=BP2,③把②③代入①,得AB2-AC2+AP2=BP2,即BP2=AP2+BC2.1.如图,已知AM是△ABC的BC边上的中线,证明:AB2+AC2=2(AM2+MC2).证明:过点A作AD⊥BC于点D,在Rt△ABD中,AB2=AD2+BD2①,在Rt△ACD中,AC2=AD2+CD2②,由①+②得:AB2+AC2=2AD2+BD2+CD2,在Rt△ADM中,AD2=AM2-DM2,则AB2+AC2=2AM2-2DM2+BD2+CD2,∵AM是△ABC的BC边上的中线,∴BM=MC,∴BD2=(BM+DM)2=(MC+DM)2=MC2+2MC•DM+DM2,CD2=(MC-DM)2=MC2-2MC•DM+DM2,∴AB2+AC2=2AM2-2DM2+MC2+2MC•DM+DM2+MC2-2MC•DM+DM2,∴AB2+AC2=2AM2+2MC2=2(AM2+MC2).2.在△ABC中,AB=AC.(1)如图,若点P是BC边上的中点,连接AP.求证:BP•CP=AB2-AP2;(2)如图,若点P是BC边上任意一点,上面(1)的结论还成立吗?若成立,请证明、若不成立,请说明理由;(3)如图,若点P是BC边延长线上一点,线段AB,AP,BP,CP之间有什么样的数量关系?画出图形,写出你的结论.(不必证明)(1)证明:∵AB=AC,P是BC的中点,∴AP⊥BC,∴AB2-AP2=BP2=BP•CP;(2)成立,理由如下:如图所示,过点A作AD⊥BC于D,∵AB=AC,∴BD=CD在Rt△ABD中,AB2=AD2+BD2①在Rt△APD中,AP2=AD2+PD2②①-②得:AB2-AP2=BD2-PD2=(BD+PD)(BD-PD)=PC•BP;(3)结论:AP2-AB2=BP•CP.如图所示,理由如下:P是BC延长线任一点,连接AP,并做AD⊥BC,交BC于D,∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AB2=AD2+BD2,在Rt△ADP中,AP2=AD2+DP2,∴AP2-AB2=(AD2+BD2)-(AD2+DP2)=PD2-BD2,又∵BP=BD+DP,CP=DP-CD=DP-BD,∴BP•CP=(BD+DP)(DP-BD)=DP2-BD2,∴AP2-AB2=BP•CP.3.已知AM是△ABC的中线.(1)求证:AB2+AC2=2(AM2+BM2);(2)若AD是高,求证:AB2-AC2=2BC•MD.证明:(1)在Rt△ABD中,AB2=AD2+BD2①,在Rt△ACD中,AC2=AD2+CD2②,由①+②得:AB2+AC2=2AD2+BD2+CD2,在Rt△ADM中,AD2=AM2-DM2,则AB2+AC2=2AM2-2DM2+BD2+CD2,∵AM是△ABC的BC边上的中线,∴BM=MC,∴BD2=(BM+DM)2=(MC+DM)2=MC2+2MC•DM+DM2,CD2=(MC-DM)2=MC2-2MC•DM+DM2,∴AB2+AC2=2AM2-2DM2+MC2+2MC•DM+DM2+MC2-2MC•DM+DM2,∴AB2+AC2=2AM2+2BM2=2(AM2+BM2).(2)∵AD是高,∴△ABD和△ACD是直角三角形,∴AB2=BD2+AD2,AC2=AD2+DC2,∴AB2-AC2=BD2-DC2=(BD+CD)(BD-CD)=BC(BM+MD-CD),∵AM是中线,∴AB2-AC2=BC(CM+MD-CD)=BC(MD+MD)=2BC•MD.。

《勾股定理》专题复习(含答案)

第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180—60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A 3A4A 5A 5E2E 1E1D 1C 1B 4C 3C 2C图3122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C)222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7。

勾股定理的应用(知识讲解)八年级数学上册基础知识讲与练(北师大版)

专题1.6 勾股定理的应用(知识讲解)【学习目标】(1)利用勾股定理及逆定理解决生活中的实际问题。

(2)通过观察图形,探索图形间的关系,发展学生的空间观念.【要点梳理】勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,从而达到把三角形边的问题转化为角的问题,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 本专题分类进行巩固解决以下生活实际问题【典型例题】类型一、应用勾股定理解决梯子滑落高度问题1.一个25米长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24米,如果梯子的顶端A 沿墙下滑4米,那么梯子底端B 外移多少米?【答案】8米.【分析】梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB 、OB '的长度,进而求出BB '的长度即可.解:如图,依题意可知AB =25(米),AO =24(米),∠O =90°,∠ BO 2=AB 2﹣AO 2=252-242,∠ BO =7(米),移动后,A O '=20(米),222222()()252015B O A B A O --''''===∠ 15B O '= (米),∠ =1578BB B O BO ''-=-=(米).答:梯子底端B 外移8米.【点拨】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求B O 的长度是解题的关键.举一反三:【变式】一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?【答案】(1)12米;(2)7米【分析】(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;(2)由题意得CO= 5米,然后根据勾股定理可得求解.解:(1)由题意得,AB=CD=13米,OB=5米,在Rt AOB,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:这个梯子的顶端距地面有12米高;(2)由题意得,AC=7米,由(1)得AO=12米,∠CO=AO-AC=12-7=5米,△,由勾股定理得:在Rt CODOD2=CD2-CO2=132-52=169-25=144,解得OD=12米∠BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑动了7米.【点拨】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.类型二、应用勾股定理解决旗杆高度2.数学综合实验课上,同学们在测量学校的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开拉直后,下端刚好接触地面,测得绳子的下端离开旗杆底端8米,如图,根据以上数据,同学们就可以准确求出了旗杆的高度,你知道他们是如何计算出来的吗?【答案】旗杆的高度为15m【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中的数据,用勾股定理解答即可.解:设旗杆高x 米,则绳子长为()2x +米,∠旗杆垂直于地面,∠旗杆,绳子与地面构成直角三角形,在Rt ABC 中,222AB BC AC +=,∠()22282x x +=+,解方程得:15x =,答:旗杆高度为15米.【点拨】本题考查的是勾股定理的应用,根据题意得出∠ABC 是直角三角形式解答此题的关键.举一反三:【变式】滑撑杆在悬窗中应用广泛.如图,某款滑撑杆由滑道OC ,撑杆AB 、BC 组成,滑道OC 固定在窗台上.悬窗关闭或打开过程中,撑杆AB 、BC 的长度始终保持不变.当悬窗关闭时,如图∠,此时点A 与点O 重合,撑杆AB 、BC 恰与滑道OC 完全重合;当悬窗完全打开时,如图∠,此时撑杆AB 与撑杆BC 恰成直角,即90B ∠=︒,测量得12cm OA =,撑杆15cm AB =,求滑道OC 的长度.【答案】滑道OC 的长度为51cm .【分析】设OC m =cm ,可得出(15)BC m =-cm ,(12)AC m =-cm ,在在Rt ∠ABC 中,根据勾股定理可得m 的值,由此可得结论.解:设OC m =cm ,则由图∠可知(15)BC OC AB m =-=- cm ,由图∠可知(12)AC OC OA m =-=-cm ,∠90B ∠=︒,∠在Rt∠ABC 中,根据勾股定理可得,222AB BC AC +=,∠22215(15)(12)m m +-=-,解得51m =,∠滑道OC 的长度为51cm .【点拨】本题考查勾股定理的应用,能结合撑杆AB 、BC 的长度始终保持不变正确表示出BC 和AC 是解题关键.类型三、应用勾股定理解决小鸟飞行的距离3.有一只喜鹊在一棵3m 高的小树上觅食,它的巢筑在距离该树24m 的一棵大树上,大树高14m ,且巢离树顶部1m .当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m /s ,那它至少需要多少时间才能赶回巢中?【答案】它至少需要5.2s 才能赶回巢中.【分析】根据题意,构建直角三角形,利用勾股定理解答.解:如图,由题意知AB =3,CD =14-1=13,BD =24.过A 作AE ∠CD 于E .则CE =13-3=10,AE =24,∠在Rt ∠AEC 中,AC 2=CE 2+AE 2=102+242.∠AC =26,26÷5=5.2(s ).答:它至少需要5.2s 才能赶回巢中.【点拨】本题考查了勾股定理的应用.关键是构造直角三角形,同时注意:时间=路程÷速度.举一反三:【变式】有一只喜鹊在一棵高3米的小树的树梢上觅食,它的巢筑在距离该树24米,高为14米的一棵大树上,且巢离大树顶部为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它至少几秒能赶回巢中?【答案】它至少5.2秒能赶回巢中.【分析】过点A 作AF CD ⊥于点F .求出AF,EF,再根据勾股定理求出AE ,从而求出时间.解:如图所示,3AB =米,14CD =米,1DE =米,24BC =米.过点A 作AF CD ⊥于点F .在Rt AEF ∆中,24AF BC ==米,10EF CD CF DE =--=米,所以222222410676AE AF EF =+=+=.所以喜鹊离巢的距离26AE =米.喜鹊赶回巢所需的时间为265 5.2÷=(秒).即它至少5.2秒能赶回巢中.【点拨】考核知识点:勾股定理和逆定理运用.构造直角三角形是解题关键.类型四、应用勾股定理解决大树折断前的高度4.如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即8BC =,求这棵树在离地面多高处被折断(即求AC 的长度)?【答案】这棵树在离地面6米处被折断【分析】设AC x =,利用勾股定理列方程求解即可.解:设AC x =,∠在Rt ABC △中,222AC BC AB +=,∠()222816x x +=-,∠6x =.答:这棵树在离地面6米处被折断【点拨】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方. 当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.举一反三:【变式】我国古代的数学名著《九章算术》中记载“今有竹高一丈八,末折抵地,去本6尺.问:折者高几何?”译文:一根竹子,原高一丈八,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部6尺远.问:折处离地还有多高的竹子?(1丈=10尺)【答案】8尺【分析】设原处还有x 尺高的竹子,由题意得到折后竹子竖直高度+斜倒部分的长度=18尺,再运用勾股定理列方程即可求解.解:设折处离地还有x 尺高的竹子,如图,在Rt ABC 中,AC =x 尺,则AB =一丈八- AC =(18-x )尺由勾股定理得222AC BC AB +=,所以2226(18)x x +=-,解得:8x =.答:折处离地还有8尺高的竹子.【点拨】此题考查勾股定理解决实际问题.此题中的直角三角形只知道一直角边,另两边未知往往要列方程求解.类型五、应用勾股定理解决水杯中的筷子问题5.如图,一个直径为20cm 的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm ,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【答案】26cm【分析】设杯子的高度是x cm ,那么小木棍的高度是(x +2)cm ,因为直径为20cm 的杯子,可根据勾股定理列方程求解.解:设杯子的高度是x cm ,那么小木棍的高度是(x +2)cm ,∠杯子的直径为20cm ,∠杯子半径为10cm ,∠x 2+102=(x +2)2,即x 2+100=x 2+4x +4,解得:x =24,24+2=26(cm ).答:小木棍长26cm .【点拨】本题考查了勾股定理的运用,解题的关键是看到构成的直角三角形以及各边的长.举一反三:【变式】如图,有一个水池,水面是一个边长为16尺的正方形,在水池正中央有一根芦苇,它高出水面2尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则水池里水的深度是多少尺?请你用所学知识解答这个问题.【答案】水池里水的深度是15尺【分析】根据勾股定理列出方程,解方程即可.解:设水池里水的深度是x 尺,由题意得,()22282x x +=+,解得:x =l5,答:水池里水的深度是15尺.【点拨】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键. 类型六、应用勾股定理解决航海问题6.如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q ,R 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【答案】北偏东45°(或西北)【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海天”号航行方向.解:由题意可得:RP=18海里,PQ=24海里,QR=30海里,∠182+242=302,∠∠RPQ是直角三角形,∠∠RPQ=90°,∠“远航”号沿东北方向航行,即沿北偏东45°方向航行,∠∠RPS=45°,∠“海天”号沿北偏西45°(或西北)方向航行.【点拨】本题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大.举一反三:【变式】在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B.于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40°的方向向目标A前进,同时,另一艘搜救艇也从港口O出发,以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B.此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?【答案】第二艘搜救艇的航行方向是北偏西50度.【分析】根据题意求出OA、OB,根据勾股定理的逆定理求出∠AOB=90°,即可得出答案.解:根据题意得:OA =16海里/时×1.5小时=24海里;OB =12海里/时×1.5小时=18海里,∠OB 2+OA 2=242+182=900,AB 2=302=900,∠OB 2+OA 2=AB 2,∠∠AOB =90°,∠艘搜救艇以16海里/时的速度离开港口O (如图)沿北偏东40°的方向向目标A 的前进,∠∠BOD =50°,即第二艘搜救艇的航行方向是北偏西50度.【点拨】本题考查了方向角,勾股定理的逆定理的应用,能熟记定理的内容是解此题的关键,注意:如果三角形两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形.类型七、应用勾股定理解决河的宽度7.湖的两岸有A ,B 两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB 垂直的BC 方向上取点C ,测得30BC =米,50AC =米.求:(1)两棵景观树之间的距离;(2)点B 到直线AC 的距离.【答案】(1)A ,B 两点间的 距离是40米;(2)点B 到直线AC 的距离是24米.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.解:(1)因为ABC 是直角三角形,所以由勾股定理,得222AC BC AB =+.因为50AC =米,30BC =,所以22250301600AB =-=.因为0AB >,所以40AB =米.即A ,B 两点间的 距离是40米.(2)过点B 作BD AC ⊥于点D . 因为1122ABC S AB BC AC BD =⋅=⋅△, 所以AB BC AC BD ⋅=⋅. 所以30402450AB BC BD AC ⋅⨯===(米), 即点B 到直线AC 的距离是24米.【点拨】本题考查了勾股定理的应用,属于基础题,关键是掌握勾股定理在直角三角形中的表达式.举一反三:【变式】著名的赵爽弦图(如图∠,其中四个直角三角形较大的直角边长都为a ,较小的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为2c ,也可以表示为214()2ab a b ,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则222+=a b c .(1)图∠为美国第二十任总统伽菲尔德的“总统证法”,请你利用图∠推导勾股定理.(2)如图∠,在一条东西走向河流的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB AC =,由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在同一条直线上),并新修一条路CH ,且CH AB ⊥,测得 1.2CH =千米,0.9HB =千米,求新路CH 比原路CA 少多少千米?(3)在第(2)问中若AB AC ≠时,CH AB ⊥,4AC =,5BC =,6AB =,设AH x =,求x 的值.【答案】(1)见分析;(2)新路CH 比原路CA 少0.05千米;(3) 2.25x =.【分析】(1)梯形的面积可以由梯形的面积公式求出,也可利用三个直角三角形面积求出,两次求出的面积相等列出关系式,化简即可得证;(2)设CA x =,则AH 0.9x =-,根据勾股定理列方程,解得即可得到结果;(3)在Rt∠ACH 和Rt∠BCH 中,由勾股定理得求出CH 2=CA 2-AH 2=CB 2-BH 2,列出方程求解即可得到结果.解:(1)梯形ABCD 的面积为()()()21122b a b a a b ++=+, 也可以表示为2111222ab ab c ++, ∠()2211112222a b ab ab c +=++, 整理得:222a b c +=;(2)∠CA x =,∠AH 0.9x =-,在Rt∠ACH 中,222CA CH AH =+,即()2221.20.9x x =+-,解得x=1.25,即CA=1.25,CA -CH=1.25-1.2=0.05(千米),答:新路CH 比原路CA 少0.05千米;(3)设AH x =,则BH 6x =-,在Rt∠ACH 中,222CH CA AH =-,在Rt∠BCH 中,222CH CB BH =-,∠2222CA AH CB BH -=-,即()2222456x x -=--,解得: 2.25x =.【点拨】本题主要考查了勾股定理的证明与应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法, 类型八、应用勾股定理解决台阶上地毯问题8.如图所示,是一个三级台阶,它的每一级的长、宽、高分别为55cm ,10cm ,6cm ,点A 和点B 是这个台阶的两个相对的端点,A 点处有一只蚂蚁,那么这只蚂蚁从点A 爬到点B 的最短路程是多少?【答案】73cm【分析】首先把楼梯展开得到平面几何图,根据“两点之间,线段最短”得到蚂蚁所走的最短路线为AB ,则问题是求AB 的长,根据已知数据得出AC 、BC 的长,再利用勾股定理求出AB 的长,即可完成解答.解:如图所示,将这个台阶展开成一个平面图形,则蚂蚁爬行的最短路程就是线段AB 的长.在Rt ABC ∆中,55cm BC =,10+6+10+6+10+6=48cm AC =.由勾股定理,得222=5329AB AC BC +=.所以73cm AB =.因此,蚂蚁从点A 爬到点B 的最短路程是73cm.【点拨】此题考查勾股定理的应用,把立体几何图中的问题转化为平面几何图中的问题是解题的关键.举一反三:【变式】如图,小明准备把一支笔放入铅笔盒ABCD ,竖放时笔的顶端E 比铅笔盒的宽AB 还要长2cm ,斜着放入时笔的顶端F 与铅笔盒的边缘AB 距离为6cm ,求铅笔盒的宽AB 的长度.【答案】铅笔盒的宽AB 的长度为8cm .【分析】设铅笔盒的宽AB 的长度为cm x ,则笔长(2)cm x +,然后根据勾股定理列方程解答即可.解:设铅笔盒的宽AB 的长度为cm x ,则笔长(2)cm x +,由题意得2226(2)x x +=+,解得8x =.答:铅笔盒的宽AB 的长度为8cm .【点拨】本题考查了勾股定理的应用,弄清题意、根据勾股定理列出方程是解答本题的关键.类型九、应用勾股定理解决汽车是否超速问题9.我市《道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过60km /h .如图,一辆小汽车在一条城市街道上沿直道行驶,某一时刻刚好行驶到车速检测点A 正前方30m 的C 处,2秒后又行驶到与车速检测点A 相距50m 的B 处.请问这辆小汽车超速了吗?若超速,请求出超速了多少?【答案】超速了,超速了12km /h【分析】由勾股定理可求得小汽车行驶的距离,再除以小汽车行驶的时间即为小汽车行驶的车速,再与限速比较即可.解:.由已知得50m,30m AB AC ==∠在直角三角形ABC 中AB 2=AC 2+BC 2∠BC 2=AB 2-AC 2=222503040-=,40m BC ∴= 又4020m /s 22BC == 20m /s 72km/h 60km/h =>∠72-60=12km /h∠这辆小汽车超速了,超速了12km /h .【点拨】本题考查了勾股定理,其中1 米/秒=3.6 千米/时的速度换算是易错点. 举一反三:【变式】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 的正前方50米处的C 点,过了6秒后,测得小汽车所在的B 点与车速检测仪A 之间的距离为130米.(1)求BC 间的距离;(2)这辆小汽车超速了吗?请说明理由.【答案】(1)120米;(2)超速,理由见分析【分析】(1)根据勾股定理求出BC 的长;(2)直接求出小汽车的时速,进而比较得出答案.解:(1)在Rt∠ABC 中,∠AC=50m ,AB=130m ,且AB 为斜边,根据勾股定理得:BC=120(m );(2)这辆小汽车超速了.理由:∠120÷6=20(m/s ),平均速度为:20m/s ,20m/s=72km/h ,72>70,∠这辆小汽车超速了.【点拨】此题主要考查了勾股定理的应用,利用勾股定理求出BC 的长是解题关键. 类型十、应用勾股定理解决是否受台风影响问题10.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为海港,并且点C 与直线B 上的两点A ,B 的距离分别为300km AC =,400km BC =,又500km AB =,以台风中心为圆心周围250km 以内为受影响区域.(1)求ACB ∠的度数;(2)海港C 受台风影响吗?为什么?【答案】(1)90°;(2)受台风影响,理由见分析(1)利用勾股定理的逆定理得出∠ABC 是直角三角形,进而得出∠ACB 的度数; (2)利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响.解:(1)∠AC =300km ,BC =400km ,AB =500km ,∠AC 2+BC 2=AB 2,∠∠ABC 是直角三角形,∠ACB =90°;(2)海港C 受台风影响,理由:过点C 作CD ∠AB ,∠∠ABC 是直角三角形,∠AC ×BC =CD ×AB ,∠300×400=500×CD ,∠CD =240(km ),∠以台风中心为圆心周围250km 以内为受影响区域,∠海港C 受台风影响.【点拨】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.举一反三:【变式】如图,在甲村到乙村的公路旁有一块山地正在开发,现有C 处需要爆破.已知点C 与公路上的停靠站AB 、的距离分别为300m 和400m ,且AC BC ,为了安全起见,如果爆破点C 周围半径250m 的区域内不能有车辆和行人,问在进行爆破时,公路AB 段是否需要暂时封闭,为什么?【答案】爆破公路AB 段有危险,需要暂时封锁.过点C 作CD∠AB 于点D ,根据勾股定理求出AB 的长,再由面积公式求得CD 的长,并比较,即可得出公路AB 上是否有危险.解:如图,过点C 作CD AB ⊥于点D .在Rt ABC 中,由勾股定理,得:22222300400250000AB AC BC ,所以500AB m = 由1122ABC S AB CD AC BC =⋅=⋅,得500300400CD ,解得240CD m , 因为240250<,所以爆破公路AB 段有危险,需要暂时封锁.【点拨】本题考查了勾股定理的应用和三角形的面积,解题的关键是利用直角三角形的面积列出方程求出CD 的长.类型十一、应用勾股定理解决选扯距离相离问题11.如图,烟台市正政府决定在相距50km 的A 、B 两村之间的公路旁E 点,修建一个大樱桃批发市场,且使C 、D 两村到E 点的距离相等,已知DA ∠AB 于A ,CB ∠AB 于B ,DA =30km ,CB =20km ,那么大樱桃批发市场E 应建什么位置才能符合要求?【答案】大樱桃批发市场E 应建在离A 站20千米的地方【分析】由勾股定理两直角边的平方和等于斜边的平方分别求出2DE 和2CE ,列等式求解即可.解:设大樱桃批发市场E 应建在离A 站x 千米的地方,则()50BE x =-千米.在直角ADE 中,根据勾股定理得:222AD AE DE +=,∠22230x DE +=,在直角CBE △中,根据勾股定理得:222CB BE CE +=,∠()222205x CE +-=.又∠C 、D 两村到E 点的距离相等,∠DE CE =,∠22DE CE =,所以()2222302050x x +=+-,解得20x .∠大樱桃批发市场E 应建在离A 站20千米的地方.【点拨】本题考查勾股定理的实际应用,掌握两直角边的平方和等于斜边的平方是解题的关键.举一反三:【变式】如图,小明家在一条东西走向的公路MN 北侧200米的点A 处,小红家位于小明家北500米(500AC =米)、东1200米(1200BC =米)点B 处.(1)求小明家离小红家的距离AB ;(2)现要在公路MN 上的点P 处建一个快递驿站,使PA PB +最小,请确定点P 的位置,并求PA PB +的最小值.【答案】(1)1300AB =米;(2)见分析,1500米【分析】(1)如图,连接AB ,根据勾股定理即可得到结论;(2)如图,作点A 关于直线MN 的对称点A ',连接A 'B 交MN 于点P .驿站到小明家和到小红家距离和的最小值即为A 'B ,根据勾股定理即可得到结论.解:(1)如图,连接AB ,由题意知AC =500,BC =1200,∠ACB =90°,在Rt∠ABC中,∠∠ACB=90°,∠AB2=AC2+BC2=5002+12002=1690000,∠AB>0∠AB=1300米;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,由题意知AD=200米,A'C∠MN,∠A'C=AC+AD+A'D=500+200+200=900米,在Rt∠A'BC中,∠∠ACB=90°,∠A'B2=A'C2+BC2=9002+12002=2250000,∠A'B>0,∠A'B=1500米,即从驿站到小明家和到小红家距离和的最小值为1500米.【点拨】本题考查轴对称-最短问题,勾股定理,题的关键是学会利用轴对称解决最短问题.。

勾股定理的应用课件

利用勾股定理确定卫星轨 道参数,提高卫星通信的 覆盖范围和信号质量。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档