实验1拉格朗日插值与牛顿插值
拉格朗日插值牛顿插值

杜丁坤 20171506003 自动化1班实验二 插值法一、实验目的和要求(1)学会Langrange 插值、Newton 插值和Hermite 插值等基本插值方法.(2)学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题(3) 按照题目要求完成实验内容、写出相应的Matlab 程序给出实验结果.(4)对实验结果进行分析讨论.(5)写出相应的实验报告.一、 实验内容1. Lagrange 插值公式.练习11=2=3=,利用Lagrange 拉格朗日插值的函数%%%%%%%%%function yi=Lagrange(x,y,xi)n=length(x);m=length(y);if n~=merror('The length of X must be equal!');endp=zeros(1,n);for k=1:nt=ones(1,n);for j=1:nif j~=kif abs(x(k)-x(j))<epserror('the DATA is error');return;endt(j)=(xi-x(j))/(x(k)-x(j));endendp(k)=prod(t);endyi=sum(y.*p);%%%%%主函数是:%%%%%X=[1 3 9];Y=[1 2 3];Xi=5;Lagrange(X,Y,xi)练习21=2=3=,利用Newton 进行比较。
牛顿插值函数%%%%%%%%function yi=Newton(x,y,xi)n=length(x);m=length(y);if n~=merror('The length of X must be equal!');endA=zeros(n,n);A(:,1)=y;for j=2:nfor i=1:n-j+1A(i,j)=(A(i+1,j-1)-A(i,j-1))/(x(i+j-1)-x(i));endendX1=xi*ones(1,n)-x;X=ones(1,n);for p=2:nfor q=1:p-1X(p)=X(p)*X1(q);endendY=zeros(1,n);for r=1:nY(r)=A(1,r)*X(r);endyi=sum(Y);%%%%%%%%%%主函数:X=[1 3 9];Y=[1 2 3];Xi=5;Newton(X,Y,xi)三、实验要求要求在实验前必须预习,将实验内容事先准备好,否则不允许上机。
数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
插值法实验报告

插值法实验报告插值法实验报告一、引言插值法是一种常用的数值分析方法,用于通过已知数据点的函数值来估计在其他位置的函数值。
它在科学计算、图像处理、工程设计等领域有广泛的应用。
本实验旨在通过实际操作,深入理解插值法的原理和应用。
二、实验目的1. 掌握拉格朗日插值法和牛顿插值法的原理和计算方法;2. 通过实验比较不同插值方法的精度和效率;3. 分析插值法在实际问题中的应用。
三、实验步骤1. 收集实验数据:在实验室内设置几个测量点,记录它们的坐标和对应的函数值;2. 使用拉格朗日插值法计算其他位置的函数值:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;3. 使用牛顿插值法计算其他位置的函数值:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;4. 比较不同插值方法的精度和效率:通过计算误差和运行时间,比较拉格朗日插值法和牛顿插值法的性能差异;5. 分析插值法在实际问题中的应用:结合实验结果,探讨插值法在实际问题中的优势和局限性。
四、实验结果与分析1. 拉格朗日插值法的计算结果:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;2. 牛顿插值法的计算结果:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;3. 误差分析:比较插值结果与真实函数值之间的误差,分析误差的来源和影响因素;4. 运行时间分析:比较不同插值方法的运行时间,分析其效率和适用场景。
五、实验结论1. 拉格朗日插值法和牛顿插值法都是常用的插值方法,它们在不同场景下有各自的优势;2. 插值法在实际问题中的应用需要考虑数据的分布、函数的性质和计算效率等因素;3. 本实验结果表明,拉格朗日插值法和牛顿插值法在精度和效率上存在差异,具体选择哪种方法应根据实际需求进行权衡。
六、实验总结通过本次实验,我们深入了解了插值法的原理和应用。
实验结果表明,插值法在科学计算和工程设计中具有重要的作用。
在实际应用中,我们需要根据具体问题的要求和数据的特点选择合适的插值方法,以达到更好的效果。
东南大学计算方法实验报告

计算方法与实习实验报告学院:电气工程学院指导老师:***班级:160093******学号:********实习题一实验1 拉格朗日插值法一、方法原理n次拉格朗日插值多项式为:L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x)n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+ y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0)n=2时,称为二次插值或抛物线插值,精度相对高些L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1)二、主要思路使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。
对节点x i(i=0,1,…,n)中任一点x k(0<=k<=n)作一n 次多项式l k(x k),使它在该点上取值为1,而在其余点x i(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x) 上式表明:n 个点x i(i=0,1,…,k-1,k+1,…,n)都是l k(x)的零点。
可求得l k三.计算方法及过程:1.输入节点的个数n2.输入各个节点的横纵坐标3.输入插值点4.调用函数,返回z函数语句与形参说明程序源代码如下:#include<iostream>#include<math.h>using namespace std;#define N 100double fun(double *x,double *y, int n,double p);void main(){int i,n;cout<<"输入节点的个数n:";cin>>n;double x[N], y[N],p;cout<<"please input xiangliang x= "<<endl;for(i=0;i<n;i++)cin>>x[i];cout<<"please input xiangliang y= "<<endl;for(i=0;i<n;i++)cin>>y[i];cout<<"please input LagelangrichazhiJieDian p= "<<endl;cin>>p;cout<<"The Answer= "<<fun(x,y,n,p)<<endl;system("pause") ;}double fun(double x[],double y[], int n,double p){double z=0,s=1.0;int k=0,i=0;double L[N];while(k<n){ if(k==0){ for(i=1;i<n;i++)s=s*(p-x[i])/(x[0]-x[i]);L[0]=s*y[0];k=k+1;}else{s=1.0;for(i=0;i<=k-1;i++)s=s*((p-x[i])/(x[k]-x[i]));for(i=k+1;i<n;i++) s=s*((p-x[i])/(x[k]-x[i]));L[k]=s*y[k];k++;}}for(i=0;i<n;i++)z=z+L[i];return z;}五.实验分析n=2时,为一次插值,即线性插值n=3时,为二次插值,即抛物线插值n=1,此时只有一个节点,插值点的值就是该节点的函数值n<1时,结果都是返回0的;这里做了n=0和n=-7两种情况3<n<100时,也都有相应的答案常用的是线性插值和抛物线插值,显然,抛物线精度相对高些n次插值多项式Ln(x)通常是次数为n的多项式,特殊情况可能次数小于n.例如:通过三点的二次插值多项式L2(x),如果三点共线,则y=L2(x)就是一条直线,而不是抛物线,这时L2(x)是一次式。
数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
插值运算实验报告

插值运算实验报告通过实验掌握插值运算的原理和方法,并利用插值运算技术对离散数据进行插值和逼近。
实验设备:计算机、Matlab软件实验原理:插值是利用已知数据点之间的关系,使用某种函数表达式来逼近未知点的值。
插值方法可以分为多种,如拉格朗日插值、牛顿插值等。
本次实验主要涉及的是拉格朗日插值和牛顿插值。
实验步骤:1. 采集实验数据,得到需要进行插值运算的离散数据。
2. 根据所给的离散数据,选择合适的插值方法,如拉格朗日插值或牛顿插值。
3. 利用Matlab软件进行编程,实现所选择的插值方法。
4. 运行程序,得到插值结果。
5. 根据插值结果,可以确定对未知数据点的函数值,也可以进行曲线拟合和逼近。
实验结果:经过对实验数据的处理和插值运算,得到了以下结果:1. 插值函数的形式,可以通过该函数计算未知数据点的函数值。
2. 插值曲线的图像,可以通过该曲线来拟合和逼近实验数据。
实验分析:通过实验结果的分析,可以得出以下结论:1. 插值方法的选择对结果有重要影响,不同的插值方法适用于不同的数据类型。
2. 插值运算可以有效地处理离散数据,得到连续函数的逼近值。
3. 插值运算的精度也会受到数据点分布和插值方法的影响。
实验总结:通过本次实验,我对插值运算的原理和方法有了更深入的了解。
插值运算是一种常用的数值计算方法,可以在一定程度上解决离散数据的处理问题。
插值运算不仅可以用于求解未知数据点的函数值,还可以用于曲线拟合和逼近。
不同的插值方法适用于不同类型的数据,需要根据实际情况进行选择。
插值运算的精度也会受到数据点分布和插值方法的影响,需要注意选择合适的插值方法以及优化离散数据的分布。
插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
拉格朗日插值法与牛顿插值法

printf("请输入y\n");
for(i=0;i<N;i++)
{
scanf("%f",&y[i]);
}
printf("请输入要计算的点\n");
scanf("%f",&n);
s=y[0];
p=1;
for(i=1;i<N;i++)
{
for(j=1;j<N-i;j++)
{
y[j-1]=(y[j]-y[j-1])/(x[j+i-1]-x[j-1]);
}
p=p*(n-x[i-1]);
s=s+y[0]*p;
}
printf("%f\n",s);
}
变成中关键是要计算出插商,才能使计算结果准确无误。
程序代码
#include <stdio.h>
#define N 3
void main()
{
float x[N],y[N],s,p,n;
int i,j;
printf("请输入x\n");
for(i=0;i<N;i++)
{
scanf("%f",&x[i]);
程序代码:
#include <stdio.h>
#define N 3
void main()
{
float x[N],y[N],l[N],m,s,t,n;
int i,j,k;
printf("请输入x\n");
for(i=0;i<N;i++)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学与计算机学院上机实践报告
课程名称:计算方法A年级:上机实践成绩:
指导教师:姓名:
上机实践名称:拉格朗日插值和牛顿插值法学号:上机实践日期:
上机实践编号:1上机实践时间:
一、目的
1.通过本实验加深对拉格朗日插值和牛顿插值法构造过程的理解;
2.能对上述两种插值法提出正确的算法描述编程实现。
二、内容与设计思想
自选插值问题,编制一个程序,分别用拉格朗日插值法和牛顿插值法求解某点的函数近似值。
(从课件或教材习题中选题)
已知y=f(
三、使用环境
操作系统:windows XP
软件环境:Microsoft Visual C++6.0
四、核心代码及调试过程
(一) 拉格朗日插值法:
lude<stdio.h>
double product(double *p,double newx,int k,int n);
main()
{
/*divisor,dividend
double x[10]={0.10,0.15,0.25,0.40,0.50,0.57,0.70,0.85,0.93,1.00};
double newx[3]={0.45,0.6,0.80},divisor,dividend,quotient,result;
double
y[10]={0.904837,0.860708,0.778801,0.670320,0.606531,0.565525,0.496585,0.427415,0.394554;
int i,th;
for(th=0;th<3;th++)
{
result=0;
for(i=0;i<10;i++)
{
dividend=product(x,newx[th],i,9);
divisor=product(x,x[i],i,9);
quotient=dividend/divisor;
result+=quotient*y[i];
}
printf("%lf处的近似值为%lf\n",newx[th],result);
}
}
double product(double *p,double newx,int k,int n)
{
int cycle_times;
double result=1;
for(cycle_times=0;cycle_times<=n;cycle_times++)
if(cycle_times!=k)
result=result*(newx-p[cycle_times]);
return result;
}
(二)牛顿插值法:
#include<stdio.h>
#define total_points 10
void fill_in_the_blank(double *p,int x,int y);
double newton(double (*p)[total_points+1],double newx);
main()
{
double table[total_points][total_points+1], newx;
int x,y;
printf("Please notice (x,y) is from (x1,y1) to (x%d,y%d)!\n",total_points,total_points); for(x=0;x<total_points;x++)
{
printf("input (x%d,y%d):",x+1,x+1);
scanf("%lf%lf",&table[x][0],&table[x][1]);
}
for(y=2;y<=total_points+1;y++)
{
for(x=1;x<=total_points;x++)
if(x+2>y)
fill_in_the_blank(table,x,y);
}
printf("input a number you want to calculate:");
scanf("%lf",&newx);
printf(" the result is:%lf\n",newton(table,newx));
}
void fill_in_the_blank(double (*p)[total_points+1],int x,int y)
{
double diff_up,diff_down;
diff_up=*(*(p+x)+y-1)-*(*(p+x-1)+y-1);
diff_down=*(*(p+x))-*(*(p+x-y+1));
*(*(p+x)+y)=diff_up/diff_down;
}
double newton(double (*p)[total_points+1],double newx)
{
double result=*(*p+1),mid;
int k,i;
for(k=1;k<=total_points;k++)
{
mid=1;
for(i=0;i<=k-1;i++)
mid*=(newx-*(*(p+i)));
mid*=*(*(p+k)+k+1);
result+=mid;
}
return result;
}
五、总结
本次实验利用两种插值方法进行计算,计算结果均正确,通过本次实验加深了对拉格朗日插值和牛顿插值法构造过程的理解,掌握了利用C语言实现两种算法的方法,为深入学习打下坚实基础。
实验结果如下图所示:
图①拉格朗日插值法运算结果
图②牛顿插值法运算结果六、附录。