江苏省启东中学2019级高一实验班自主招生数学试题及答案【PDF版高清打印】
江苏省南通市启东中学2019_2020学年高一数学下学期期初考试试题普通班含解析.doc

江苏省南通市启东中学2019-2020学年高一数学下学期期初考试试题(普通班,含解析)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某企业一种商品的产量与单位成本数据如表:现根据表中所提供的数据,求得y 关于x 的线性回归方程为ˆ21yx =-,则a 值等于( ) A. 4.5 B. 5C. 5.5D. 6【答案】B 【解析】 【分析】由已知表格中的数据求得x 与y 的值,代入线性回归方程求解a 值. 【详解】由所给数据可求得∴ 23433x ++==, 103ay +=, 代入线性回归方程为ˆ21yx =-, 得102313a+=⨯-, 解得5a = 故选:B.【点睛】本题考查线性回归方程的求法,明确线性回归方程恒过样本点的中心是关键,是基础题.2.直线cos 20x α++=的倾斜角的范围是( )A. 5,,6226ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦B. 50,,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C. 50,6π⎡⎤⎢⎥⎣⎦D. 5,66ππ⎡⎤⎢⎥⎣⎦ 【答案】B 【解析】 【分析】将直线方程化为斜截式,得到斜率k ,从而可以求出k 的取值范围,进而得到倾斜角的范围.【详解】将直线方程cos 20x α++=化为斜截式:y x α=⋅-,故直线的斜率k α=, []cos 1,1α∈-,[k ∴∈, 所以直线的倾斜角范围为50,,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭, 故选:B.【点睛】本题考查直线的倾斜角,由斜率范围确定倾斜角范围时容易求反,答题时要仔细. 3.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上”;事件N :“至少一次正面朝上”,则下列结果正确的是( )A. 11(),()32P M P N == B. 11(),()22P M P N == C. 13(),()34P M P N ==D. 13(),()24P M P N ==【答案】D 【解析】 试题分析:2113(),()1,4244P M P N ===-=∴选D. 考点:古典概型.4.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( ) A. (-2,4) B. (-2,-4)C. (2,4)D. (2,-4)【答案】C 【解析】 【分析】求出A (-4,2)关于直线y =2x 的对称点为(x ,y ),可写出BC 所在直线方程,与直线y =2x 联立,即可求出C 点坐标.【详解】设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则221424222y x y x -⎧⨯=-⎪⎪+⎨+-+⎪=⨯⎪⎩,解得42x y =⎧⎨=-⎩∴BC 所在直线方程为y -1=2143---(x -3),即3x +y -10=0. 联立直线y=2x ,解得24x y =⎧⎨=⎩,则C (2,4).故选C.【点睛】本题主要考查了点关于直线的对称点,属于中档题. 5.在ABC中,2,60AC BC B ===,则BC 边上的中线AD 的长为( )A. 1C. 2【答案】D 【解析】 【分析】由余弦定理可得:2222cos 3AC AB BC AB BC B AB =+-⋅⇒=,在ABD 中,由余弦定理可得:2222cos 7AD AB BD AB BD B =+-⋅=,即可.【详解】由余弦定理可得:22222cos 230AC AB BC AB BC B AB AB =+-⋅⇒--=.3AB ∴=在ABD 中,由余弦定理可得:2222cos 7AD AB BD AB BD B =+-⋅=,AD ∴=故选D .【点睛】本题主要考查了余弦定理,考查了计算能力和转化思想,属于基础题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.6.已知圆C :x 2+(y -3)2=4,过A(-1,0)的直线l 与圆C 相交于P ,Q 两点,若|PQ|=3则直线l 的方程为( ) A. x =-1或4x +3y -4=0 B. x =-1或4x -3y +4=0 C. x =1或4x -3y +4=0 D. x =1或4x +3y -4=0 【答案】B 【解析】当直线l 与x 轴垂直时,易知x =-1符合题意;当直线l 与x 轴不垂直时,设直线l 的方程为y =k(x +1),过圆C 作CM⊥PQ,垂足为M ,由于|PQ|=3|CM|=1.由|CM|=231k k -++=1,解得k =43,此时直线l 的方程为y =43(x +1).故所求直线l 的方程为x =-1或4x -3y +4=0.故选B.7.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( ) A. 50 m B. 100 m C. 120 mD. 150 m【答案】A 【解析】 【分析】如图所示,设水柱CD 的高度为h .在Rt△ACD 中,由∠DAC=45°,可得AC=h .由∠BAE=30°,可得∠CAB=60°.在Rt△BCD 中,∠CBD=30°,可得BC=3h .在△ABC 中,由余弦定理可得:BC 2=AC 2+AB 2﹣2AC•ABcos60°.代入即可得出. 【详解】如图所示, 设水柱CD 的高度为h .在Rt△ACD 中,∵∠DAC=45°,∴AC=h. ∵∠BAE=30°,∴∠CAB=60°.又∵B,A ,C 在同一水平面上,∴△BCD 是以C 为直角顶点的直角三角形, 在Rt△BCD 中,∠CBD=30°,∴BC=3h .在△ABC 中,由余弦定理可得:BC 2=AC 2+AB 2﹣2AC•ABcos60°. ∴(3h )2=h 2+1002﹣121002h ⨯⨯, 化为h 2+50h ﹣5000=0,解得h=50. 故选A .【点睛】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 8.已知直线l 方程为(),0f x y =,()111,P x y 和()222,P x y 分别为直线l 上和l 外的点,则方程()()()1122,,,0f x y f x y f x y --=表示( )A. 过点1P 且与l 垂直的直线B. 与l 重合的直线C. 过点2P 且与l 平行的直线D. 不过点2P ,但与l 平行的直线【答案】C 【解析】 【分析】先判断直线与l 平行,再判断直线过点2P ,得到答案.【详解】由题意直线l 方程为(),0f x y =,则方程()()()1122,,,0f x y f x y f x y --= 两条直线平行,()111,P x y 为直线l 上的点,()11,0f x y =,()()()1122,,,0f x y f x y f x y --=,化为()()22,,0f x y f x y -=,显然()222,P x y 满足方程()()()1122,,,0f x y f x y f x y --=,所以()()()1122,,,0f x y f x y f x y --=表示过点2P 且与l 平行的直线. 故答案选C .【点睛】本题考查了直线的位置关系,意在考查学生对于直线方程的理解情况.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分9.为了了解参加运动会的2000名运动员的年龄情况,从中抽取了20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有( ) A. 2000名运动员是总体; B. 所抽取的20名运动员是一个样本; C. 样本容量为20; D. 每个运动员被抽到的机会相等.【答案】CD 【解析】 【分析】根据总体、样本、总体容量、样本容量等概念及在整个抽样过程中每个个体被抽到的机会均等即可求解.【详解】由已知可得,2000名运动员的年龄是总体,20名运动员的年龄是样本,总体容量为2000,样本容量为20,在整个抽样过程中每个运动员被抽到的机会均为1100,所以A 、 B 错误,C 、D 正确. 故选:CD.【点睛】本题主要考查总体、样本、总体容量、样本容量等概念及抽样的公平性问题,属基础题.10.已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,下列四个命题中正确的命题是( ) A. 若cos cos cos a b cA B C==,则ABC ∆一定是等边三角形 B. 若cos cos a A b B =,则ABC ∆一定是等腰三角形 C. 若cos cos b C c B b +=,则ABC ∆一定是等腰三角形 D. 若2220a b c +->,则ABC ∆一定是锐角三角形 【答案】AC 【解析】 【分析】利用正弦定理可得tan tan tan ,A B C A B C ====,可判断A ;由正弦定理可得22sin A sin B =,可判断B ;由正弦定理与诱导公式可得()sin sin ,sin sin B C B A B +==,可判断C ;由余弦定理可得角C 为锐角,角,A B 不一定是锐角,可判断D . 【详解】由cos cos cos a b c A B C ==,利用正弦定理可得sin sin sin cos cos cos A B CA B C==,即tan tan tan ,A B C A B C ====,ABC ∆是等边三角形,A 正确;由正弦定理可得sin cos sin cos sin 2sin 2A A B B A B =⇒=,22A B =或22A B π+=,ABC ∆是等腰或直角三角形,B 不正确;由正弦定理可得sin cos sin cos sin B C C B B +=,即()sin sin ,sin sin B C B A B +==, 则,A B ABC =∆等腰三角形,C 正确;由正弦定理可得222cos 02a b c C ab+-=>,角C 为锐角,角,A B 不一定是锐角,D 不正确,故选AC.【点睛】本题主要考查正弦定理与余弦定理的应用,以及三角形形状的判断,属于中档题. 判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.11.(多选题)下列说法正确的是( )A. 直线20x y --=与两坐标轴围成的三角形的面积是2B. 点(0,2)关于直线1y x =+的对称点为(1,1)C. 过11(,)x y ,22(,)x y 两点的直线方程为112121y y x x y y x x --=-- D. 经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为20x y +-= 【答案】AB 【解析】 【分析】根据直线的方程及性质,逐项分析,A 中直线在坐标轴上的截距分别为2,2-,所以围成三角形的面积是2正确,B 中0+121(,)22+在直线1y x =+上,且(0,2),(1,1)连线的斜率为1-,所以B 正确,C 选项需要条件2121,y y x x ≠≠,故错误,D 选项错误,还有一条截距都为0的直线y x =.【详解】A 中直线在坐标轴上的截距分别为2,2-,所以围成三角形的面积是2正确,B 中0+121(,)22+在直线1y x =+上,且(0,2),(1,1)连线的斜率为1-,所以B 正确,C 选项需要条件2121,y y x x ≠≠,故错误,D 选项错误,还有一条截距都为0的直线y x =.【点睛】本题主要考查了直线的截距,点关于直线的对称点,直线的两点式方程,属于中档题.12.设有一组圆224*:(1)()()k C x y k k k N -+-=∈.下列四个命题正确的是( )A. 存在k ,使圆与x 轴相切B. 存在一条直线与所有的圆均相交C. 存在一条直线与所有的圆均不相交D. 所有的圆均不经过原点 【答案】ABD【解析】 【分析】根据圆的方程写出圆心坐标,半径,判断两个圆的位置关系,然后对各选项进行分析检验,从而得到答案.【详解】根据题意得圆的圆心为(1,k ),半径为2k ,选项A,当k=2k ,即k=1时,圆的方程为()()22111x y -+-=,圆与x 轴相切,故正确; 选项B ,直线x=1过圆的圆心(1,k ),x =1与所有圆都相交,故正确;选项C,圆k :圆心(1,k ),半径为k 2,圆k +1:圆心(1,k +1),半径为(k +1)2, 两圆的圆心距d =1,两圆的半径之差R ﹣r =2k +1,(R ﹣r >d ),∁k 含于C k +1之中, 若k 取无穷大,则可以认为所有直线都与圆相交,故错误;选项D,将(0,0)带入圆的方程,则有1+k 2=k 4,不存在 k ∈N *使上式成立, 即所有圆不过原点,正确. 故选ABD【点睛】本题考查圆的方程,考查两圆的位置关系,会利用反证法进行分析证明,会利用数形结合解决实际问题.三、填空题:本题共4小题,每小题5分,共20分.请把答案直接填写在答题卡相应位置上. 13.直线3450x y -+=关于点(2,3)M -对称的直线的方程为_________. 【答案】34410x y --= 【解析】 【分析】设所求直线上任一点坐标为(,)P x y ,点P 关于点(2,3)M -对称的点()00,x y ,根据中点坐标公式00462x x y y=-⎧⎨=--⎩,点()00,x y 在直线3450x y -+=,可得所求直线方程,即可求得答案.【详解】设所求直线上任一点坐标为(,)P x y ,P 点关于点(2,3)M -对称的点为()00,x y根据坐标中点公式可得:002232x x y y +⎧=⎪⎪⎨+⎪-=⎪⎩解得:046x xy y=-⎧⎨=--⎩——①点()00,x y在直线3450x y-+=∴003450x y-+=——②将①代入②可得:3(4)4(6)50x y----+=整理可得:34410x y--=.故答案为:34410x y--=.【点睛】本题主要考查直线关于点对称的直线方程,设出所求直线上任一点的坐标,求出其关于定点对称的点的坐标,代入已知直线即可求出结果,属于基础题型.14.已知圆221:9C x y+=,圆222:4C x y+=,定点(1,0)M,动点A,B分别在圆2C和圆1C 上,满足90AMB︒∠=,则线段AB的取值范围_______.【答案】[231,231]【解析】【分析】因为90AMB︒∠=,可得MA MB⊥,根据向量和可得AB MA MB=+,即2222||||||2||MA MB MA MB MA MB AB+=++⋅=,由A,B分别在圆2C和圆1C上点设()11,A x y,()22,B x y,求得()21212||132AB x x y y-+=,由MA MB⊥,可得1212121x x y y x x+=+-,即可得到()212||152AB x x=-+,设AB中点为()00,N x y,求得x的取值范围,即可求得答案. 【详解】90AMB ︒∠=MA MB ∴⊥,2222||||||2||MA MB MA MB MA MB AB ∴+=++⋅=,A ,B 分别在圆2C 和圆1C 上点设()11,A x y ,()22,B x y ,∴2211222294x y x y ⎧+=⎨+=⎩ 则()()()22221211212||132AB x x y y x x y y =-+-=-+, 由MA MB ⊥,可()()11221,1,0x y x y -⋅-=, 即()()1212110x x y y --+=, 整理可得:1212121x x y y x x +=+-,()()21212||1321152AB x x x x ∴=-+-=-+,设AB 中点为()00,N x y ,则20||154AB x =-,∴01201222x x x y y y =+⎧⎨=+⎩,()()()2200121212041321321114x y x x y y x x x ∴+=++=++-=+即2200132x y ⎛⎫-+= ⎪⎝⎭,点()00,N x y 的轨迹是以1,02⎛⎫ ⎪⎝⎭的圆,0x ∴的取值范围是1122⎡-+⎢⎣,20||154AB x ∴=-的范围为13⎡-+⎣,故:||AB的范围为1,1]故答案为:1,1]-.【点睛】本题主要考查了求同心圆上两点间距离的范围问题,解题关键是掌握向量加法原理和将两点间距离问题转化为中点轨迹问题,考查了分析能力和计算能力,属于中档题. 15.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若()2cos cos cos A b C c B a +=,ABC ∆的面积为, 则A =_______ ,b c +=_______. 【答案】 (1). 3π(2). 7 【解析】 【分析】()1由已知及正弦定理,三角函数恒等变换的应用可得2cos sin sin A A A =,从而求得1cos 2A =,结合范围()0A π∈,,即可得到答案 ()2运用余弦定理和三角形面积公式,结合完全平方公式,即可得到答案【详解】()1由已知及正弦定理可得()2cos sin cos sin cos sin A B C C B A +=,可得:()2cos sin sin A B C A +=解得2cos sin sin A A A =,即1cos 2A =()0A ,π∈,3A π∴=()2由面积公式可得:1sin 2bc A ==,即12bc = 由余弦定理可得:22132cos b c bc A =+- 即有()()2213336b c bc b c =+-=+- 解得7b c +=【点睛】本题主要考查了运用正弦定理、余弦定理和面积公式解三角形,题目较为基础,只要按照题意运用公式即可求出答案16.在平面直角坐标系xOy 中,已知点A (1,1),B (1,-1),点P 为圆(x -4)2+y 2=4上任意一点,记△OAP 和△OBP 的面积分别为S 1和S 2,则12S S 的最小值是________. 【答案】23- 【解析】 【分析】设∠AOP =α,利用面积公式得21tan S S α=,求出α的最小值即可. 【详解】设∠AOP =α,易知OA =2,OB =2,∠AOB =2π,则∠BOP =2πα-,112sin 2S OP α=⨯⨯⨯,1122sin()cos 222S OP OP παα=⨯⨯⨯-=,故21tan S S α=,直线:,:OA y x OB y x ==-,圆(x -4)2+y 2=4圆心(4,0)C 到两条直线的距离均为4222=由图易知,圆在AOB ∠内部, 设:OP y kx =2421k k ≤+,即231k ≤,解得33[k ∈,所以POC ∠最大为6π,即直线OP 与圆相切时,当切点在第一象限的点的时候,4612πππα=-=,21tan S S α=取得最小值23. 故答案为:23【点睛】此题考查三角形面积公式的应用,结合直线与圆的位置关系解决问题.四、解答题:本题共6小题,共70分.17.为了了解高中新生的体能情况,某学校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12﹒(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.【答案】(1)0.08,150;(2)88%;(3)第四小组,理由见解析【解析】试题分析:(1)由频率分布直方图中各小矩形面积之和为1结合面积之比得到第二小组的频率,从而求得样本容量;(2)由频率分布直方图中各小矩形的面积和为1与面积之比可求出达标的频率即达标率;(3)求出前四组的频数即可得到中位数所在的区间.试题解析:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:又因为频率=所以(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内. 考点:频率分布直方图18.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin cos b C a C =cos c A +,23B π=,3c =(1)求角C ;(2)若点E 满足2AE EC =,求BE 的长. 【答案】(1)6C π=;(2)1BE =【解析】 【分析】(1)解法一:对条件中的式子利用正弦定理进行边化角,得到sin C 的值,从而得到角C 的大小;解法二:对对条件中的式子利用余弦定理进行角化边,得到sin C 的值,从而得到角C 的大小;解法三:利用射影定理相关内容进行求解.(2)解法一:在ABC 中把边和角都解出来,然后在ABE △中利用余弦定理求解;解法二:在ABC 中把边和角都解出来,然后在BCE 中利用余弦定理求解;解法三:将BE 用,BA BC 表示,平方后求出BE 的模长.【详解】(1)【解法一】由题设及正弦定理得2sin sin sin cos sin cos B C A C C A =+, 又()()sin cos sin cos sin sin sin A C C A A C B B π+=+=-=, 所以2sin sin sin B C B =. 由于3sin 0B =≠,则1sin 2C =.又因为03C π<<,所以6C π=.【解法二】由题设及余弦定理可得2222222sin 22a b c b c a b C a cab bc+-+-=+, 化简得2sin b C b =.因为0b >,所以1sin 2C =. 又因03C π<<,所以6C π=.【解法三】由题设2sin cos cos b C a C c A =+, 结合射影定理cos cos b a C c A =+, 化简可得2sin b C b =. 因为0b >.所以1sin 2C =. 又因为03C π<<,所以6C π=.(2)【解法1】由正弦定理易知sin sin b c B C ==3b =. 又因为2AE EC =,所以2233AE AC b ==,即2AE =.在ABC ∆中,因为23B π=,6C π=,所以6A π=,所以在ABE ∆中,6A π=,AB =2AE =由余弦定理得1BE ===, 所以1BE =.【解法2】在ABC ∆中,因为23B π=,6C π=,所以6A π=,a c ==由余弦定理得3b ==.因为2AE EC =,所以113EC AC ==.在BCE ∆中,6C π=,BC =,1CE =由余弦定理得1BE === 所以1BE =.【解法3】在ABC ∆中,因为23B π=,6C π=,所以6A π=,a c ==因为2AE EC =,所以1233BE BA BC =+. 则()()22221111||2|44|344319992BE BA BCBA BA BC BC ⎛⎫=+=+⋅+=-+⨯= ⎪⎝⎭所以1BE =.【点睛】本题主要考察利用正余弦定理解三角形问题,方法较多,难度不大,属于简单题. 19.已知直线()():20++++-=l a b x a b y a b 及点()3,4P .()1证明直线l 过某定点,并求该定点的坐标. ()2当点P 到直线l 的距离最大时,求直线l 的方程.【答案】(1)证明见解析,定点坐标为()2,3-(2)570x y ++= 【解析】 【分析】()1直线l 方程化成()()2110a x y b x y ++++-=,再联解关于x 、y 的方程组21010x y x y ++=⎧⎨+-=⎩,即可得到直线l 经过的定点坐标; ()2设直线l 经过的定点为A ,由平面几何知识,得到当PA l ⊥时,点P 到直线l 的距离最大.因此算出直线PA 的斜率,再利用垂直直线斜率的关系算出直线l 的斜率,即可求出此时直线l 的方程.【详解】() 1直线l 方程可化为:()()2110a x y b x y ++++-=由21010x y x y ++=⎧⎨+-=⎩,解得2x =-且3y =, ∴直线恒l 过定点A ,其坐标为()2,3-.()2直线恒l 过定点()2,3A -∴当点P 在直线l 上的射影点恰好是A 时,即PA l ⊥时,点P 到直线l 的距离最大PA 的斜率431325PA k -==+∴直线l 的斜率15PAk k -==- 由此可得点P 到直线l 的距离最大时,直线l 的方程为()352y x -=-+,即570x y ++=.【点睛】本题主要考查直线过定点的问题,以及求直线外一点P 到直线的距离最大时直线的方程;熟记两直线交点的求法、点到直线的距离公式,以及直线的一般式方程即可,属于基础题.20.树林的边界是直线l (如图CD 所在的直线),一只兔子在河边喝水时发现了一只狼,兔子和狼分别位于l 的垂线AC 上的点A 点和B 点处,AB BC a ==(a 为正常数),若兔子沿AD 方向以速度2μ向树林逃跑,同时狼沿线段()BM M AD ∈方向以速度μ进行追击(μ为正常数),若狼到达M 处的时间不多于兔子到达M 处的时间,狼就会吃掉兔子.(1)求兔子的所有不幸点(即可能被狼吃掉的点)的区域面积()S a ; (2)若兔子要想不被狼吃掉,求()DAC θθ=∠的取值范围.【答案】(1)249a π,(2),62ππ⎛⎫ ⎪⎝⎭ 【解析】 【分析】(1)建立坐标系xOy ,设(0,2),(0,),(,)A a B a M x y ,兔子的所有不幸点满足:2BMAMμμ≤,可得2222439a a x y ⎛⎫+-≤ ⎪⎝⎭,即可求得()S a ,即可求得答案;(2)设():20ADl y kx a k=+≠,由兔子要想不被狼吃掉:可得2222331aaak->+,求得k的范围,即可求得()DACθθ=∠的取值范围,即可求得答案.【详解】(1)如图建立坐标系xOy,设(0,2),(0,),(,)A aB a M x y由2BM AMμμ≤得2222439a ax y⎛⎫+-≤⎪⎝⎭∴M在以20,3a⎛⎫⎪⎝⎭为圆心,半径为23a的圆及其内部所以24()9aS aπ=(2)设():20ADl y kx a k=+≠由兔子要想不被狼吃掉:2222331aaak->+解得:(3,0)3)k∈⋃可得03ADBπ<∠<,∴,62ππθ⎛⎫∈ ⎪⎝⎭【点睛】本题解题关键是掌握圆的基础知识和点到直线距离公式,及其圆在实际问题的中的应用,考查了分析能力和计算能力,属于中档题.21.在平面直角坐标系xOy 中,圆22:64O x y +=,以1(9,0)O 为圆心的圆记为圆1O ,已知圆1O 上的点与圆O 上的点之间距离的最大值为21. (1)求圆1O 的标准方程;(2)求过点(5,5)M 且与圆1O 相切的直线的方程;(3)已知直线l 与x 轴不垂直,且与圆O ,圆1O 都相交,记直线l 被圆O ,圆1O 截得的弦长分别为d ,1d .若12dd =,求证:直线l 过定点. 【答案】(1)22(9)16x y -+=;(2)949408y x =-+或5x =;(3)证明见解析. 【解析】 【分析】(1)因为22:64O x y +=,可得圆(0,0)O 为圆心,半径为8,设1(9,0)O 为圆心的圆记为圆1O ,设1O 半径为R ,由圆1O 上的点与圆O 上的点之间距离的最大值为21,可得8921R ++=,即可求得圆1O 方程,即可求得答案;(2)分别讨论切线的斜率不存在和切线的斜率存在两种情况,当切线的斜率存在时,设直线方程为5(5)y k x -=-,设直线到圆的距离为d ,由直线和圆相切,可得4d ==,求得k ,即可求得答案;(3)设直线l 的方程为y kx m =+,求得圆心O ,圆心1O 到直线l 的距离分别为h =,1h =d =,1d =12dd =,即可求得k 和m 关系式,即可求得l 方程,进而求得直线l 过定点. 【详解】(1)22:64O x y +=∴圆(0,0)O 为圆心,半径为8设1(9,0)O 为圆心的圆记为圆1O ,设1O 半径为R 由圆1O 上的点与圆O 上的点之间距离的最大值为21.可得8921R ++=解得4R =∴圆1O 的标准方程为22(9)16x y -+=.(2)①当切线的斜率不存在时,直线方程为5x =符合题意;②当切线的斜率存在时,设直线方程为5(5)y k x -=-,即(55)0kx y k -+-=,直线和圆相切,设直线到圆的距离为d∴4d ==, 解得940k =-,从而切线方程为949408y x =-+. 故切线方程为949408y x =-+或5x = (3)设直线l 的方程为y kx m =+,则圆心O ,圆心1O 到直线l的距离分别为h =,1h =,几何关系可得:d =,1d =∴d =1d =. 由12d d =,得22222126414(9)161m d k k m d k -+==+-+, 整理得224(9)m k m =+,故2(9)m k m =±+,即180k m +=或60k m +=, ∴直线l 为18y kx k =-或6y kx k =-,∴直线l 过点定点(18,0)或直线l 过定点(6,0).【点睛】本题主要考查了求圆标准方程和求圆的切线方程,及其求直线过定点问题,解题关键是掌握圆的基础知识和求圆的切线方程的方法,考查了分析能力和计算能力,属于中档题.22.如图,在平面直角坐标系xOy中,已知点()2,4P,圆O:224x y+=与x轴的正半轴的交点是Q,过点P的直线l与圆O交于不同的两点,A B.(1)若直线l与y轴交于D,且16DP DQ⋅=,求直线l的方程;(2)设直线QA,QB的斜率分别是1k,2k,求12k k+的值;(3)设AB的中点为M,点4,03N⎛⎫⎪⎝⎭,若13MN=,求QAB∆的面积.【答案】(1)320x y--=(2)-1(3)125【解析】【分析】(1)可设点()0,D m,表示出,DP DQ,可求出参数2m=-或6,结合题意可舍去6m=,再由,D P两点已知求出直线l的方程;(2)可设()()1122,,,A x yB x y,设直线方程为()24y k x=-+,联立直线和圆的方程求出关于x的一元二次方程,表示出韦达定理,再分别求出,QA QBk k,结合前式即可求解;(3)设()00,M x y,由133MN OM=建立方程,化简可得22000640x y x++-=,由(2)可得()()()1202002222122241k kx xxkky k xk-⎧+==⎪⎪+⎨--⎪=-+=⎪+⎩,联立求解得3k=,再结合圆的几何性质和点到直线距离公式及三角形面积公式即可求解;【详解】(1)设()0,D m ,求出()2,0Q ,()()2,4,2,DP m DQ m =-=-,则244162DP DQ m m m ⋅=+-=⇒=-或6,结合直线圆的位置关系可知,2m =-一定满足,()0,2D -,()2,4P 此时直线l 的方程为:320x y --=;当6m =时,()0,6D ,()2,4P ,直线l 的方程为:60x y +-=,圆心到直线距离2d ==>(舍去); (2)设直线l 的方程为:()24y k x =-+,联立()22424y k x y x ⎧=-++=⎨⎩ 可得:()()()2221422440k x k k x k +--+--=, 设()()1122,,,A x y B x y ,则()()12221224212441k k x x k k x x k -⎧+=⎪+⎪⎨--⎪⋅=⎪+⎩,① 1212,22QA QB y y k k x x ==--, 则()()1212121221212424442222222k y k k x k x y k x x x x x x -+-+=+=+=++----+--,② 将①代入②化简可得()124842221116k k k k k k +=---+==-, 即121k k +=-;(3)设点()00,M x y ,由点4,03N ⎛⎫⎪⎝⎭,MN =, 可得()2222000041339x y x y ⎛⎫-+=+ ⎪⎝⎭,化简得22000640x y x ++-=,③ 又()()()1202002222122241k k x x x k k y k x k -⎧+==⎪⎪+⎨--⎪=-+=⎪+⎩,④④式代入③式解得3k =或13k =,由圆心到直线的距离2244231k d k k -+=<⇒>+,故3k =,此时31,55M ⎛⎫- ⎪⎝⎭,圆心到直线距离2241051k d k -+==+, 则210610245AB ⎛⎫=-= ⎪ ⎪⎝⎭,直线方程为:320x y --=,()2,0Q ,Q 到直线的距离2105h =,则116102*********QAB S AB h ∆=⋅=⨯⨯=【点睛】本题考查圆中,由向量关系反求直线方程,由韦达定理求解圆锥曲线中的定值问题,由弦的中点问题求三角形面积,圆的几何性质,点到直线距离公式等,计算能力,综合性强,属于难题。
江苏省启东中学2019-2020学年高一数学下学期期初考试试题创新班[含答案]
![江苏省启东中学2019-2020学年高一数学下学期期初考试试题创新班[含答案]](https://img.taocdn.com/s3/m/885c1a820b4e767f5acfcea0.png)
江苏省启东中学2019-2020学年高一数学下学期期初考试试题(创新班)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在ABC ∆中,7AC =,2BC =,60B =o ,则BC 边上的中线AD 的长为( )A .1B .3C .2D .72.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中 “努”在正方体的后面,那么这个正方体的前面是( ) A .定B .有C .收D .获3.直线cos 320x y α++=的倾斜角的范围是( )A .π[6,π5π][26U ,π)B .[0,π5π][66U ,π)C .[0,5π]6D .π[6,5π]64.正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,M 为棱1BB 的中点,则下列结论中错误的是( ) A .1D O ∥平面11A BCB .1D O ⊥平面AMC C .异面直线1BC 与AC 所成角为60︒D .点B 到平面AMC 的距离为25.已知直线2y x =是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)6.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水 柱正西方向的点A 测得水柱顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在 B 点测得水柱顶端的仰角为30︒,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m7.已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( ) A .过点P 1且与l 垂直的直线 B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线8.如图,2π3BAC ∠=,圆M 与AB 、AC 分别相切于点D 、E ,1AD =,点P 是圆M 及其内部任意一点,且()AP xAD y AE x y =+∈R u u u r u u u r u u u r、,则x y +的取值范围是( ) A .[1,423]+ B .[423-,423]+ C .[1,23]+D .[23-,23]+二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知直线a ,两个不重合的平面α,β.若αβ∥,a α⊂,则下列四个结论中正确的是( )A .α与β内所有直线平行B .α与β内的无数条直线平行C .α与β内的任意直线都不垂直D .α与β没有公共点10.已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,下列四个命题中正确的命题是( ) A .若cos cos cos a b cA B C==,则ABC ∆一定是等边三角形 B .若cos cos a A b B =,则ABC ∆一定是等腰三角形 C .若cos cos b C c B b +=,则ABC ∆一定是等腰三角形D .若222+a b c >,则ABC ∆一定是锐角三角形11.下列说法正确的是( ) A .直线20x y --=与两坐标轴围成的三角形的面积是2 B .点(0, 2)关于直线1y x =+的对称点为(1,1) C .过1(x ,1)y 、2(x ,2)y 两点的直线方程为112121y y x x y y x x --=--D .经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为20x y +-=12.设有一组圆224*:(1)()()k C x y k k k -+-=∈N .下列四个命题正确的是( ) A .存在k ,使圆与x 轴相切B .存在一条直线与所有的圆均相交C .存在一条直线与所有的圆均不相交D .所有的圆均不经过原点三、填空题:本题共4小题,每小题5分,共20分.请把答案直接填写在答题卡相应位置上. 13.直线3x -4y +5=0关于点M (2,-3)对称的直线的方程为 . 14.已知圆1C :229x y +=,圆2C :224x y +=,定点(1M ,0),动点A 、B 分别在圆2C 和圆1C 上,满足90AMB ︒∠=,则线段AB 的取值范围 .15.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若2cos A (b cos C +c cos B )=a =13,△ABC 的面积为33,则A =________,b +c =________. (本题第一空2分,第二空3分)16.在平面直角坐标系xOy 中,已知点A (1,1),B (1,-1),点P 为圆(x -4)2+y 2=4上任意一点,记△OAP 和△OBP 的面积分别为S 1和S 2,则12S S 的最小值是________. 四、解答题:本题共6小题,共70分. 17.(本小题满分10分)已知ABC △的内角A ,B ,C 的对边分别是a ,b ,c ,已知2sin cos cos b C a C c A =+,2π3B =,3c =. ⑴求角C ;⑵若点E 满足2AE EC =u u u r u u u r,求BE 的长.18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,点M ,N 分别为线段A 1B ,AC 1的中点. ⑴求证:MN ∥平面BB 1C 1C ;⑵若D 在边BC 上,AD ⊥DC 1,求证:MN ⊥AD .19. (本小题满分12分)已知直线l:(2a+b)x+(a+b)y+a-b=0及点P(3,4).⑴证明直线l过某定点,并求该定点的坐标;⑵当点P到直线l的距离最大时,求直线l的方程.20.(本小题满分12分)树林的边界是直线l(如图CD所在的直线),一只兔子在河边喝水时发现了一只狼,兔子和狼分别位于l的垂线AC上的点A点和B点处,AB BC a==(a为正常数),若兔子沿AD方向以速度2μ向树林逃跑,同时狼沿线段BM(M CD∈)方向以速度μ进行追击(μ为正常数),若狼到达M处的时间不多于兔子到达M处的时间,狼就会吃掉兔子.⑴求兔子的所有不幸点(即可能被狼吃掉的点)的区域面积()S a;⑵若兔子要想不被狼吃掉,求θ(DACθ=∠的取值范围.21.(本小题满分12分)在平面直角坐标系xOy中,圆O:x2+y2=64,以O1(9,0)为圆心的圆记为圆O1,已知圆O1上的点与圆O上的点之间距离的最大值为21.⑴求圆O1的标准方程;⑵求过点M(5,5)且与圆O1相切的直线的方程;⑶已知直线l与x轴不垂直,且与圆O,圆O1都相交,记直线l被圆O,圆O1截得的弦长分别为d,d1.若dd1=2,求证:直线l过定点.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,已知点P (2,4),圆O :x 2+y 2=4与x 轴的正半轴的交点是Q ,过点P 的直线l 与圆O 交于不同的两点A ,B . ⑴若直线l 与y 轴交于D ,且DP →·DQ →=16,求直线l 的方程; ⑵设直线QA ,QB 的斜率分别是k 1,k 2,求k 1+k 2的值;⑶设AB 的中点为M ,点N (43,0),若MN =133OM ,求△QAB 的面积.江苏省启东中学高一创新班数学答案(2020.4.8)一:单项选择题:1:D ,2:B .,3:B.,4:D , 5:C ,6:A ,7:C.,8:B . 二:多项选择题:9: BD.10: AC.11:AB12: ABD 三:填空题:13:3x -4y -41=0.14:[132,132+-]15: (1)π3 (2) 716:2-3 四:解答题:本题共6小题,共70分。
【冲刺实验班】江苏启东中学19中考提前自主招生数学模拟试卷(3

【冲刺实验班】江苏启东中学2019中考提前自主招生数学模拟试卷(3绝密★启用前重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题1.等边△ABC的各边与它的内切圆相切于A1,B1,C1,△A1B1C1的各边与它的内切圆相切于A2,B2,C2,…,以此类推.若△ABC的面积为1,则△A5B5C5的面积为A.B.C.D.2.如图,已知等腰梯形ABCD的腰AB=CD=m,对角线AC⊥BD,锐角∠ABC=α,则该梯形的面积是A.2msinα B.m22 C.2mcosα D.m22 3.正五边形广场ABCDE的周长为400米,甲,乙两个同学做游戏,甲从A处,乙从C处同时出发,沿A﹣B﹣C﹣D﹣E﹣A的方向绕广场行走,甲的速度为每分钟50米,乙的速度为每分钟46米.在两人第一次刚走到同一条边上的那一时刻A.甲不在顶点处,乙在顶点处B.甲在顶点处,乙不在顶点处C.甲乙都在顶点处D.甲乙都不在顶点处4.如果甲的身高或体重数至少有一项比乙大,则称甲不亚于乙.在100个小伙子中,若某人不亚于其他99人,我们就称他为棒小伙子,那么100个小伙子中,棒小伙子最多可能有A.1个B.2个C.50个D.100个5.已知反比例函数y=的图象上有两点A,B,且x1<x2,则y1﹣y2的值是A.正数B.负数C.非正数D.不能确定第1页6.把方程化为整式方程,得A.x2+3y2+6x﹣9=0 B.x2+3y2﹣6x﹣9=0 C.x2+y2﹣2x﹣3=0 D.x2+y2+2x﹣3=0 7.已知两圆的半径恰为方程2x2﹣5x+2=0的两根,圆心距为条.A.0 B.1 C.2 D.3 ,则这两个圆的外公切线有8.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为A.1::B.::1 C.3:2:1 D.1:2:3 9.已a、b、c分别为△ABC中∠A、∠B、∠C的对边,若关于x的方程x2﹣2ax+c﹣b=0有两个相等的实根且sinB?cosA﹣cosB?sinA=0,则△ABC的形状为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形10.已知甲乙两组数据的平均数都是5,甲组数据的方差S2甲=则A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲乙两组数据的波动大小不能比较二.填空题11.如图,半圆的直径AB长为2,C,D是半圆上的两点,若动点P在直径AB 上,则CP+PD的最小值为.的度数为96°,的度数为36°,,乙组数据的方差S2乙=,12.已知正数a和b,有下列结论:若a=1,b=1,则≤1;若a=,b=,则;第2页若a=2,b=3,则≤;若a=1,b=5,则.根据以上几个命题所提供的信息,请猜想:若a=6,b=7,则ab≤.13.如果满足||x2﹣6x ﹣16|﹣10|=a的实数x恰有6个,那么实数a的值等于.14.如图,在矩形ABCD中,AB=5,BC=12,将矩形ABCD 沿对角线对折,然后放在桌面上,折叠后所成的图形覆盖桌面的面积是.15.5只猴子一起摘了1堆桃子,因太累了,它们决定,先睡一觉再分.过了不知多久,来了第一只猴子,它见别的猴子没来,便将这堆桃子平均分为5堆,结果还多1个,就把多余的这个吃了,取走自己应得的1份.又过了不知多久,来了第2只猴子,它不知道有1个同伴已经来过了,还以为自己是第1个到的,也将地上的桃子平均分为5堆,结果也多1个,就把多余的这个吃了,取走自己应得的1份.第3只,第4只,第5只猴子都是这样….则这5只猴子至少摘了个桃子.16.设二次函数y=ax2+bx+c 的图象经过、和三点,且满足y12=y22=y32=1,则这个二次函数的解析式是.17.方程x2﹣x+m2=0的两实根之和与积相等,则实数m的值是.18.一组数据35,35,36,36,37,38,38,38,39,40的极差是.19.如图所示,△ABC是⊙O 的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=⊙O的直径等于.,则20.如图所示,一个大长方形被两条线段AB、CD 分成四个小长方形,其中长方形Ⅰ、Ⅱ、Ⅲ的面积分别是8、6、5,那么阴影部分的面积是:.第3页三.解答题21.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.求证:BF=2FP;设△ABC的面积为S,求△NEF的面积.22.已知如图,A是⊙O的直径CB延长线上一点,BC=2AB,割线AF交⊙O于E、F,D 是OB的中点,且DE⊥AF,连接BE、DF.试判断BE与DF是否平行?请说明理;求AE:EC的值.23.如图所示,在△ABC中,∠A=90°,AD⊥BC于D.∠B的平分线分别与AD、AC交于E,F,H为EF的中点.求证:AH⊥EF;设△AHF、△BDE、△BAF的周长为cl、c2、c3.试证明:,并指出等号成立时第4页的值.24.小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D 棋4只.“字母棋”的游戏规则为:①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A棋胜B棋、C棋;B棋胜C棋、D棋;C棋胜D棋;D棋胜A棋;③相同棋子不分胜负.若小玲先摸,问小玲摸到C棋的概率是多少?已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?25.初三班尚剩班费m元,拟为每位同学买1本相册.某批发兼零售文具店规定:购相册50本起可按批发价出售,少于50本则按零售价出售,批发价比零售价每本便宜2元,班长若为每位同学买1本,刚好用完m元;但若多买12本给任课教师,可按批发价结算,也恰好只要m元.单价为整数,问该班有多少名同学?每本相册的零售价是多少元?26.△ABC 中,AB=AC=2,∠BAC=90°,O是BC 的中点,小敏拿着含45°角的透明三角板,使45°角的顶点落在点O,三角板绕O点旋转.如图,当三角板的两边分别交AB、AC于点E、F时,求证:△BOE ∽△CFO;操作:将三角板绕点O旋转到图情形时,三角板的两边分别交BA 的延长线、边AC于E、F.①探索:△BOE 与△CFO还相似吗?:连接EF,△BOE 与△OFE是否相似?请说明理.②设EF=x,△EOF的面积是S,写出S与x 的函数关系式.第5页第6页。
江苏省启东中学2019-2020学年高一下学期期初考试数学试题(普通班)(含答案)

江苏省启东中学2019-2020第二学期期初考试高一数学试卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 某企业一种商品的产量与单位成本数据如表:产量(万件)x 234单位成本(元件)y /3a 7现根据表中所提供的数据,求得关于的线性回归方程为,则值等于( )y x ˆ21y x =-a A .B .C .D .4.55 5.562. 直线x cos α+y +2=0的倾斜角的范围是( )3A.∪ B.∪ C. D.[π6,π2][π2,5π6][0,π6][5π6,π)[0,5π6][π6,5π6]3. 掷一枚质地均匀的硬币两次,事件M ={一次正面向上,一次反面向上},事件N ={至少一次正面向上}.则下列结果正确的是( )A .P (M )=,P (N )=B .P (M )=,P (N )=13121334C .P (M )=,P (N )=D .P (M )=,P (N )=123412124. 已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)5. 在中,,则BC 边上的中线AD 的长为 ABC ∆2,60AC BC B === ()A .1BC .2D 6. 已知圆C :x 2+(y -3)2=4,过A (-1,0)的直线l 与圆C 相交于P ,Q 两点.若|PQ |=2,3则直线l 的方程为( )A .x =-1或4x +3y -4=0B .x =-1或4x -3y +4=0C .x =1或4x -3y +4=0D .x =1或4x +3y -4=07. 一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m8. 已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程 f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线二、多项选择题:本题共4小题,每小题5分,共20分。
江苏省启东中学2019届高三高考数学全真模拟卷4(PDF版含解析)

的前∰ 项和为 ∰, 若 2, 6, 4 成等差数列, 则 2+ 4+ 6 的值为 0 . 9.已知等比数列{∰} 的首项为 1, 公比为ˈ, 则 1 ≠0. 因为 2, 6, 4 成等差数 解 析 设等比数列{∰} 6 2 1( 1-ˈ ) 列, 所以2 6= 2+ 4. 当ˈ=1时, 舍去) 当ˈ≠1时, ; 1 2 1=6 1,解得 1=0( 1-ˈ 2 4 ( ) ( ) ˈ ˈ 1 1- 1 1- 4 2 2 整理 解得 负值舍去 故 , , ( ) , , 2 1 0 1 0 = 1-ˈ + 1-ˈ ˈ -ˈ - = ˈ= 2= 4= 0, 6 = 0. 3 1 0 槡 若c 5 ʎ, 是 的中点. 0 ʎ,∠≏ >4 o s∠ ≏ = 1 i n∠ ≏ 1 0.在 △≏ 中,∠ =9 0 ,则s 25 槡 的值为 5 . 1 0,所以 槡 在△ ≏ 中, 因为c 解 析 如图, o s∠ ≏ = 31 0 不妨设 则 所以 , , , t a n∠ ≏ = 1 . ≏ 1 1 2 = = = > 3 因为t a n( t a n∠ ≏ = 2 , t a n∠ ≏ = . a n∠ ≏ = t ∠≏ - 1 2 - 2 即3 = 1+2 2 = 1+2 2,所以2 -3 +1= 0,解得 , ∠≏ ) ( 第1 0题答图) 25 槡. 舍去 或 当 时 所以 ( ) , , , 1 . 1 1 2 ≏ s i n ≏ =1 = = = = = ∠ 5 2 2 2 若过点∢( 的直线∯与圆 : +æ +2 -8=0交于点≏, 1 1.在平面直角坐标系 ⦠ 1, 2) æ 中, 则⦠Ω 的取值范围是 [ , Ω 是线段≏ 的中点, 2-1,槡 2+1] . 槡 所以 Ω ⊥≏ . 因为点 Ω,∢ 在线段≏ 上, 所以 解 析 因为 Ω 是线段≏ 的中点, 2=2 所以点 Ω 的轨迹是以 ∢ 为直径的圆, 故点Ω 的轨迹方程为 2+( ,因 Ω⊥Ω∢, æ-1) 此⦠Ω 的取值范围是 [ 2-1,槡 2+1] . 槡 2 + 1 2.已知 >0, 槡 . æ >0,且 +æ= 1,则 æ 的最小值为 5+26 ( ) æ æ 2 2 2 3 2 3 + + + + ,所以 æ = 解 析 因为 +æ = 1 = = + = æ æ æ æ 3 2 烄 , = æ 2 + 3 ( +æ) 2 3 6-2, 槡 ,当且仅当烅 æ 即 = 槡 = +æ +5≥5+26 æ=3- æ 烆 +æ= 1, 6 时取“ =” . 槡 → → → → → → π 若2≏ ·≏ + · ≏ = ≏· ,则角 的最大值为 4 . 1 3.在△≏ 中, 3 7
江苏省南通市启东中学2019-2020学年高一下学期期中数学试题(解析版)

江苏省启东中学2019-2020学年度第二学期期中考试高一数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A. 45B. 50C. 55D.【答案】B【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率P=(0.005+0.010)×20=0.3.又因为低于60分的人数是15人,所以该班的学生人数是15÷0.3=50.本题选择B选项.2.若以连续掷两颗骰子分别得到的点数m,n作为点P的横、纵坐标,则点P落在圆229x y+=内的概率为()A. 536B. 29C.16D.19【答案】D【解析】掷骰子共有36个结果,而落在圆x2+y2=9内的情况有(1,1),(1,2),(2,1),(2,2)这4种,∴P=41369=. 故选D3.已知ABC V 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a==,则该三角形的形状是( ) A. 等腰三角形 B. 直角三角形 C. 等腰或直角三角形 D. 钝角三角形【答案】B 【解析】 【分析】利用正弦定理对cos cos A bB a =化简得到A B =或2A B π+=,再结合已知分析判定三角形的形状得解. 【详解】由题得cos sin ,sin cos sin cos ,sin 2sin 2cos sin A b BA AB B A B B a A==∴=∴=, 因为022,0220A B A B πππ<<<<<+<,, 所以22A B =或22A B π+=, 所以A B =或2A B π+=.因为,b A B ∴=舍去.所以,22A B C ππ+==,c =.所以三角形是直角三角形. 故选:B【点睛】本题主要考查正弦定理判断三角形的形状,意在考查学生对这些知识的理解掌握水平,属于基础题. 4.,ABC 中,AB=2,AC=3,1AB BC ⋅=u u u r u u u r则BC=______A.B.C.D.【答案】A 【解析】【详解】2222149||||cos ()122BC AB BC AB BC B AB BC AC +-⋅=-⋅=-+-=-=u u u r u u u r Q|BC ∴故选:A【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.5.过点(0,2)-的直线l 与圆222x y x +=有两个交点,则直线l 的斜率k 的取值范围是( )A. 3,4⎛⎫-∞ ⎪⎝⎭B. 44⎛⎫- ⎪ ⎪⎝⎭C. 3,4⎛⎫+∞⎪⎝⎭D. 11,88⎛⎫- ⎪⎝⎭【答案】C 【解析】 【分析】先求出圆心坐标为(1,0),半径为1.再设出直线方程为2,y kx =-1<即得解.【详解】由题得圆的方程为22(1)1x y -+=,所以圆心坐标为(1,0),半径为1. 设直线方程为2,y kx =-即20kx y --=.31,4k <∴>. 故选:C【点睛】本题主要考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平,属于基础题. 6.恩格尔系数是食品支出总额占个人消费支出总额的比重.恩格尔系数越小,即家庭的消费支出中用于购买食物的支出所占比例越小,更多的消费用于精神追求,标志着家庭越富裕.恩格尔系数达59%以上为贫困,50~59%为温饱,40~50%为小康,30~40%为富裕,低于30%为最富裕.下图给出了1980—2017年我国城镇居民和农村居民家庭恩格尔系数的变化统计图,对所列年份进行分析,则下列结论正确的是( )A. 农村和城镇居民家庭消费支出呈下降趋势B. 农村居民家庭比城镇居民家庭用于购买食品的支出更多C. 1995年我国农村居民初步达到小康标准D. 2015年城镇和农村居民食品支出占个人消费支出总额之比大于30.6%【答案】D【解析】【分析】利用统计图对每一个选项逐一分析判断得解.【详解】A. 从图中看出农村和城镇居民家庭消费支出中用于购买食物的支出所占比例呈下降趋势,但看不出农村和城镇居民家庭消费支出的趋势,故错误.B. 农村居民家庭比城镇居民家庭用于购买食品的支出更多,是错误的.只能说农村居民家庭比城镇居民家庭用于购买食品的支出比例更大,并不代表支出的数量更大.C. 1995年我国农村居民初步达到小康标准,是错误的.因为1995年农村居民恩格尔系数是58.6,而恩格尔系数达到40~50%为小康,所以农村居民没有达到小康水平.D. 2015年城镇和农村居民食品支出占个人消费支出总额之比大于30.6%是正确的.因为2015年城镇居民和农村居民的恩格尔系数都大于30.6%.故选:D【点睛】本题主要考查统计图,意在考查学生对这些知识的理解掌握水平,属于基础题.7.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为()A. 14米B. 15米C.D.【答案】D【解析】【详解】以圆拱拱顶为坐标原点,以过拱顶顶点的竖直直线为y轴,建立直角坐标系,设圆心为C,水面所在弦的端点为A,B,则由已知可得:A(6,﹣2),设圆的半径为r,则C(0,﹣r),即圆的方程为x2+(y+r)2=r2,将A的坐标代入圆的方程可得r=10,所以圆的方程是:x2+(y+10)2=100则当水面下降1米后可设A′的坐标为(x0,﹣3)(x0>0)代入圆的方程可得x 0=所以当水面下降1米后,水面宽为米. 故选:D .8.已知锐角三角形ABC 的三个内角A ,B ,C 所对的边分别是a ,b ,c ,若1a =,3b =,则c 的取值范围是( )A. (2,4)B.C.D.【答案】D 【解析】 【分析】由题得24c <<,再由余弦定理得29+10c ->,且2190c +->,且21+90c ->,解不等式即得解. 【详解】由题得24c <<.由题得0cos 1,A <<且0cosB 1<<,且0cos 1C <<, 所以29+10c ->,且2190c +->,且21+90c ->,所以c <<因为24c <<,所以c << 故选:D【点睛】本题主要考查余弦定理判断三角形的形状,意在考查学生对这些知识的理解掌握水平,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某同学参加社会实践活动,随机调查了某小区5个家庭的年可支配收入x (单位:万元)与年家庭消费y (单位:万元)的数据,制作了对照表:由表中数据得回归直线方程为0.5ˆyx a =+,得到下列结论,其中正确的是( ) A. 若某户年可支配收入为4万元时,则年家庭消费约为2.3万元 B. 若某户年可支配收入为4万元时,则年家庭消费约为2.1万元 C. 若年可支配收入每增加1万元,则年家庭消费相应平均增加0.5万元 D. 若年可支配收入每增加1万元,则年家庭消费相应平均增加0.1万元 【答案】BC 【解析】 【分析】先求出样本中心点的坐标,再求出0.5.1ˆ0yx =+,即可判断得解. 【详解】由题得1(2.7 2.8 3.1 3.5 3.9) 3.25x =++++=,1(1.4 1.5 1.6 1.8 2.2) 1.75y =++++=,所以1.70.5 3.20.1a a =⨯+∴=,.所以0.5.1ˆ0yx =+. 当4x =时,0.540 2.1ˆ.1y =⨯+=,所以选项B 正确,选项A 错误; 因为0.5.1ˆ0yx =+, 所以若年可支配收入每增加1万元,则年家庭消费相应平均增加0.5万元, 所以选项C 正确,选项D 错误. 故选:BC【点睛】本题主要考查线性回归方程的求法和应用,意在考查学生对这些知识的理解掌握水平,属于基础题. 10.已知(),3A m ,2,()4B m m +,,(2)1C m +,()1,0D ,且直线AB 与CD 平行,则m 的值为( )A. 1-B. 0C. 1D. 2【分析】对m 分两种情况讨论,结合直线的斜率公式和平行直线的斜率关系得到关于m 的方程,解方程即得解. 【详解】当0m =时,()0,3A ,(0,4)B ,(1,2)C ,()1,0D ,直线AB ⊥x 轴,直线CD ⊥x 轴,所以直线AB 与CD 平行. 当0m ≠时,1212,,,1AB CD m m k k m m m m m++==∴=∴=. 故选:BC【点睛】本题主要考查平行直线的斜率关系,考查斜率的计算,意在考查学生对这些知识的理解掌握水平. 11.在ABC V 中,角、、A B C 的对边分别为a b c 、、,若()222tan a c bB +-=,则角B 的值为( ) A.6πB.3π C.56π D.23π 【答案】BD 【解析】 【分析】根据余弦定理,代入即可求得角B.【详解】根据余弦定理可知2222cos a c b ac B =+-,代入化简可得sin 2cos cos Bac B B⋅=, 即sin B =, 因为0B π<<, 所以3B π=或23B π=, 故选:BD【点睛】本题考查了余弦定理在解三角形中的应用,属于基础题.12.已知圆221:(3)(4)25C x y -+-=与圆2222:(1)(2)(0)C x y r r -+-=>相内切,则r 等于( )A.B. 5-+C. 5-D. 5--.【分析】|5|,r =-解方程即得解. 【详解】由题得圆221:(3)(4)25C x y -+-=的圆心为(3,4),半径为5;圆2222:(1)(2)(0)C x y r r -+-=>的圆心为(1,2),半径为r ;|5|,|5|,r r r -∴=-=5±. 故选:AC【点睛】本题主要考查圆与圆的位置关系,意在考查学生对这些知识的理解掌握水平,属于基础题.三、填空题:本题共4小题,每小题5分,共20分.请把答案直接填写在答题卡相应的位置上.13.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据132x -,232x -,332x -,432x -,532x -的平均数为__________,方差为__________.【答案】 (1). 4 (2). 3; 【解析】 【分析】设原数据的平均数为x ,方差为2S ,根据新数据为32(1,2,3,4,5)n x n -=,利用公式求出新数据的平均数和方差.【详解】设原数据的平均数为x ,方差为2S , 由于新数据为32(1,2,3,4,5)n x n -=, 所以新数据的平均数为323224x -=⨯-=, 新数据的方差为2213933S ⨯=⨯=. 故答案为:4;3.【点睛】本题主要考查数据的平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.14.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球概率为14,得到黑球或黄球概率是512,得到黄球或绿球概率是12,则任取一球得到黄球的概率为__________.【答案】16; 【解析】 【分析】设红球、黑球、黄球、绿球的个数分别为a b c d ,,,,再根据已知求出它们的值,再利用古典概型的概率公式得解.【详解】设红球、黑球、黄球、绿球的个数分别为a b c d ,,,由题得11234a =⨯=,所以9b c d ++=, 由题得512512b c +=⨯=,所以4d =,由题得11262c d +=⨯=,所以2c =.由古典概型的概率公式得任取一球得到黄球的概率为21=126. 故答案为:16【点睛】本题主要考查古典概型的概率的计算,意在考查学生对该知识的理解掌握水平,属于基础题. 15.在ABC V 中,60C =︒,16a b +=,则ABC V 的周长l 的最小值是________. 【答案】24; 【解析】 【分析】利用余弦定理表示第三边,通过基本不等式求解ABC ∆的周长l 的最小值. 【详解】在ABC ∆中,60C =︒,由余弦定理可得:2222222cos ()32563c a b ab C a b ab a b ab ab =+-=+-=+-=-,ABC ∆的周长16161616824l c =+==+=. 当且仅当8a b ==时,取等号. 故答案为:24【点睛】本题主要考查余弦定理解三角形和基本不等式求最值,意在考查学生对这些知识的理解掌握分析推理水平.16.设集合()(){}22,41A x y x y =-+=,()()(){}22,21B x y x t y at =-+-+=,若存在实数t ,使A B φ⋂≠,则实数a 的取值范围是_______.【答案】4[0,]3【解析】 【分析】根据两圆有交点建立不等式,再根据不等式有解确定实数a 的取值范围.详解】由题意得两圆有交点,所以1111-≤≤+, 即22(1)4(2)160a t a t +-++≤有解,因此22416(2)64(1)003a a a +-+≥∴≤≤. 【点睛】一般利用圆心距与两半径和与差的关系,判断圆与圆的位置关系.四、解答题:本题共6小题,共70分.请在答题卡制定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值; 【答案】(1)0.9(2)0.085,0.125a b ==【解析】试题分析:(Ⅰ)先频数分布表求出课外阅读时间不少于12小时的人数,再由对立事件的频率公式求出一名学生该周课外阅读时间少于12小时的频率;(Ⅱ)结合频数分布表、直方图确定课外阅读时间落在[4,6)、[8,10)的人数为17,求出对应的频率,分别由频率/组距求出a 、b 的值 试题解析:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时学生共有【6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计这名学生该周课外阅读时间少于12小时的概率为0.9(2)课外阅读时间落在组[4,6)的有17人,频率为0.17, 所以0.170.0852a ===频率组距, 课外阅读时间落在组[8,10)的有25人,频率为0.25, 所以0.250.1252b ===频率组距 考点:频率分布直方图18.在ABC V 中,BC a =,AC b =,已知a,b 是方程220x -+=的两个根,且2cos()1A B +=, ,1,求角C 的大小,(2)求AB 的长.【答案】120o C =,c =【解析】试题分析:解:(1)()()1cos cos cos 2C A B A B π⎡⎤=-+=-+=-⎣⎦,所以120C =o(2)由题意得{2a b ab +==∴222222cos 2cos120AB AC BC AC BC C a b ab =+-⋅⋅=+-o=()(2222210a b ab a b ab ++=+-=-=∴AB =考点:本题考查余弦定理,三角函数的诱导公式的应用点评:解决本题的关键是用一元二次方程根与系数之间关系结合余弦定理来解决问题19.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上.(1)求AD 边所在直线的方程;(2)求矩形ABCD 外接圆的方程.【答案】(1)3x +y +2=0;(2)(x -2)2+y 2=8.【解析】【分析】(1) 直线AB 斜率确定,由垂直关系可求得直线AD 斜率,又T 在AD 上,利用点斜式求直线AD 方程;(2)由AD 和AB 的直线方程求得A 点坐标,以M 为圆心,以AM 为半径的圆的方程即为所求.【详解】(1)∵AB 所在直线的方程为x -3y -6=0,且AD 与AB 垂直,∴直线AD 的斜率为-3. 又∵点T (-1,1)在直线AD 上,∴AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0.(2)由360320x y x y --=⎧⎨++=⎩,得02x y =⎧⎨=-⎩, ∴点A 的坐标为(0,-2),∵矩形ABCD 两条对角线的交点为M (2,0),∴M 为矩形ABCD 外接圆的圆心,又|AM |=∴矩形ABCD 外接圆的方程为(x -2)2+y 2=8.【点睛】,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.20.如图所示的四边形ABCD 中,已知AB AD ⊥,120ABC ∠=︒,60ACD ∠=︒,27AD =,设ACB θ∠=,C 点到AD 的距离为h .(1)用θ表示h 的解析式;(2)求AB BC +的最大值.【答案】(1)()()sin 30060h θθθ=︒+︒<<︒(2)【解析】 【分析】(1)由正弦定理得AC θ=,再根据sin h AC CAD =∠得解;(2)由正弦定理得18sin 2AB θ=,29sin 2BC θθ=-,得AB BC +=2θ+9sin 2θ+,再利用三角函数求最大值得解.【详解】(1)由已知,得()360901206090ADC θθ∠=︒-︒+︒+︒+=︒-.在ACD V 中,由sin sin AD AC ACD ADC=∠∠,得27cos sin 60AC θθ==︒. 又18030CAD ADC ACD θ∠=︒-∠-∠=︒+,且060θ︒<<︒,所以()()sin sin 30060h AC CAD θθθ=∠=︒+︒<<︒.(2)在ABC V 中,由正弦定理得sin 18sin 2sin120AC AB θθ==︒, ()()sin 6036cos sin 60sin120AC BC θθθ︒︒-==︒-9sin 2θθ=+-,于是9sin 2AB BC θθ+=+()18sin 260θ=+︒.因为060θ︒<<︒,所以当15θ=︒时,AB BC +取得最大值.【点睛】本题主要考查正弦定理解三角形,考查三角恒等变换和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.21.在流行病学调查中,潜伏期指自病原体侵入机体至最早临床症状出现之间的一段时间.某地区一研究团队从该地区500名A 病毒患者中,按照年龄是否超过60岁进行分层抽样,抽取50人的相关数据,得到如下表格:(1)估计该地区500名患者中60岁以下的人数;(2)以各组的区间中点值为代表,计算50名患者的平均潜伏期(精确到0.1);(3)从样本潜伏期超过10天的患者中随机抽取两人,求这两人中恰好一人潜伏期超过12天的概率.【答案】(1)200(2)10.4(天)(3)815 【解析】【分析】(1)求出调查的50名A 病毒患者中,年龄在60岁以下的有20人,即得解;(2)利用平均数公式计算即得解;(3)利用古典概型的概率公式求解即可.【详解】(1)调查的50名A 病毒患者中,年龄在60岁以下的有20人,因此该地区A 病毒患者中,60岁以下的人数估计有2050020050⨯=人. (2)()11123751071191411413251810.45050x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=(天) (3)样本潜伏期超过10天的患者共六人,其中潜伏期在10~12天的四人编号为:1,2,3,4,潜伏期超过12天的两人编号为:5,6,从六人中抽取两人包括15个基本事件:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.记事件“恰好一人潜伏期超过12天”为事件A ,则事件A 包括8个, 所以8()15P A =. 【点睛】本题主要考查古典概型的概率公式,考查平均数的计算,意在考查学生对这些知识的理解掌握水平.22.已知圆M 的圆心M 在x 轴上,半径为2,直线:3410l x y +-=被圆M 截得的弦长为M 在直线l 的上方.(1)求圆M 的方程;(2)设(0,)A t ,(0,6)B t -()24t ≤≤,若圆M 是ABC V 的内切圆,求AC ,BC 边所在直线的斜率(用t 表示);(3)在(2)的条件下求ABC V 的面积S 的最大值及对应的t 值.【答案】(1)22(2)4x y -+=(2)244ACt k t-=;24(6)4(6)BC t k t --=-(3)ABC V 的面积S 的最大值为24,此时2t =或4t =【解析】【分析】 (1)设圆心(,0)M a ,求出点M 到:3410l x y +-=的距离为1,解方程3115a -=即得解;(2)设AC 斜率1k ,BC 斜率为2k ,再根据直线和圆相切得到方程,解方程即得解;(3)求出2118S k k =-,再把21236=26k k t t-+-代入,结合t 的范围求出面积的最大值和此时t 的值. 【详解】(1)设圆心(,0)M a ,由已知得M 到:3410l x y +-=1=,3115a -∴=. 又M Q 在l 的上方,310a ∴->,315a ∴-=,2a ∴=,故圆的方程为22(2)4x y -+=.(2)设AC 斜率为1k ,BC 斜率为2k ,则直线AC 的方程为1y k x t =+,直线BC 的方程为26y k x t =+-.由于圆M 与AC2=,244t k t-∴=;同理,224(6)4(6)t k t --=-. (3)联立两条直线方程得C 点的横坐标为216k k - (6)6AB t t =--=Q ,2121161862S k k k k ∴=⨯=-- 由(2)得:21236=26k k t t -+-, 24t ≤≤Q ,2968t t ∴-≤-≤-2362463t t ∴-≤≤--,213546k k ∴≤-≤,2161453k k ∴≤≤- max 24S ∴=,此时268t t -=-,2t =或4t =.综上:ABC V 的面积S 的最大值为24,此时2t =或4t =.【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系,考查函数最值的求法,意在考查学生对这些知识的理解掌握水平.。
江苏省启东中学2018-2019学年高一上学期期初考试数学试题

启东中学2018-2019学年度第二学期期中考试高二化学试卷注意事项:1.本试卷分为选择题和非选择题两部分,共120分。
考试时间100分钟。
2.将选择题的答案填涂在答题卡的对应位置上,非选择题的答案写在答题卡的指定栏目内。
可能用到的相对原子质量:H—1 C—12 O—16 Mg—24 Al—27选择题 (50分)单项选择题:本题包括10小题,每小题2分,共计20分。
每小题只有一个选项符合题意。
1.下列说法中正确的是( )A.在气体单质分子中,一定含有σ键,可能含有π键B.烯烃比烷烃的化学性质活泼是由于烷烃中只含σ键,而烯烃含有π键C.等电子体结构相似,化学性质相同D.共价键的方向性决定了苯分子空间构型和分子组成C6H62.下列有机物命名正确的是( )3.下列现象与氢键有关的是( )①NH3的熔、沸点比第ⅤA族其他元素氢化物的熔、沸点高②碳原子数较少的醇、羧酸可以和水以任意比互溶③常温下H2O为液态,而H2S为气态④水分子高温下也很稳定A.①②③④ B.①②③ C.②③④ D.①4.下列关于A Z X和A+1Z X+两种粒子的叙述正确的是( )A.质子数一定相同,质量数、中子数一定不同B.因为是同一种元素的粒子,化学性质一定相同C.一定都由质子、中子和电子构成D.核电荷数和核外电子数一定相同5.为了提纯下表所列物质(括号内为杂质),有关除杂试剂和分离方法的选择均正确的是( )6①晶体中原子呈周期性有序排列,有自范性;而非晶体中原子排列相对无序,无自范性②含有金属阳离子的晶体一定是离子晶体③共价键可决定分子晶体的熔、沸点④MgO的晶格能远比NaCl大,这是因为前者离子所带的电荷数多,离子半径小⑤晶胞是晶体结构的基本单元,晶体内部的微粒按一定规律作周期性重复排列⑥晶体尽可能采取紧密堆积方式,以使其变得比较稳定⑦干冰晶体中,一个CO2分子周围有8个CO2分子紧邻A.①②③ B.②③④ C.④⑤⑥ D.②③⑦7.下列说法正确的是( )A.分子式为C4H10O的醇,能在铜催化和加热条件下被氧气氧化为醛的同分异构体共有4种B.2氯丁烷与NaOH乙醇溶液共热的反应产物中一定不存在同分异构体C.3甲基3乙基戊烷的一氯代物有5种D.分子式为C7H8O的有机物,能与氯化铁溶液发生显色反应的同分异构体共有3种8.某有机物的结构简式为。
江苏省启东市2019-2020学年高一下学期期末调研测试数学试题 扫描版含答案

数学参考答案与评分建议一、单项选择题:本题共8小题,每小题5分,共40分。
1~4 C C D B 5~8 B A C B二、多项选择题:本题共4小题,每小题5分,共20分。
9. AD 10. ABD 11. AC 12. ABC三、填空题:本题共4小题,每小题5分,共20分。
13. 式子1239log 27+的值是 ▲ . 【答案】6 14.已知3sin 5α=,α为锐角,则cos (π)α-= ▲ .【答案】45-15.已知直线10x y -+=与圆2220x y x a +--=相切,则a 的值是 ▲ .【答案】116.“辛普森(Simpson )公式”给出了求几何体体积的一种估算方法:几何体的体积V 等于其上底的面积S 、中截面(过几何体高的中点平行于底面的截面)的面积S 0的4倍、下底的面积S '之和乘以高h 的六分之一,即()0146V h S S S '=++.已知函数(0)k y m x x =+>的图象过点()122A ,,()11B ,,且与直线0x =,y =1及y =2围成的封闭图形绕y 轴旋转一周得到一个几何体,则k m -= ▲ ,利用“辛普森(Simpson )公式”可估算该几何体的体积V = ▲ .(第一空2分,其次空3分)【答案】1, 109π216四、解答题:本大题共6小题,共计70分.17. (本小题满分10分)已知3=a ,1=b ,a 与b 的夹角为6π.求:(1)()⋅+a a b ;(2)2a b -.解:(1)()2⋅+=+⋅a a b a a b ……2分()2π3+31cos 6=⨯⨯ 92=. ……5分 (2)()22=2a b a b -- 2244=⋅+a a b b - ……7分 ()2π3431cos +46=⨯⨯⨯- 1=. ……10分 18. (本小题满分12分) 眼睛是心灵的窗户,爱护好视力格外重要.某校高一、高二、高三班级分别有同学1 200名、 1 080名、720名.为了解全校同学的视力状况,学校在6月6日“全国爱眼日”接受分层抽样的方法,抽取50人测试视力,并依据测试数据绘制了如图所示的频率分布直方图. (1)求从高一班级抽取的同学人数; (2)试估量该学校同学视力不低于4.8的概率; (3)从视力在[)4.0 4.4,内的受测者中随机抽取 2人,求2人视力都在[)4.2 4.4,内的概率. 解:(1)高一班级抽取的同学人数为: 1200502012001080720⨯=++. 答:从高一班级抽取的同学人数为20. ……2分 (2)由频率分布直方图,得()0.20.3 1.0 1.5 1.20.21a +++++⨯=, 所以0.8a =. ……4分 所以抽取50名同学中,视力不低于4.8的频率为()1.20.80.20.4+⨯=, 所以该校同学视力不低于4.8的概率的估量值为0.4. ……6分 (3)由频率分布直方图,得 视力在[)4.0 4.2,内的受测者人数为0.20.2502⨯⨯=,记这2人为12a a ,, 视力在[)4.2 4.4,内的受测者人数为0.30.2503⨯⨯=,记这3人为123b b b ,,.……8分 记“抽取2人视力都在[)4.2 4.4,内”为大事A , 从视力在[)4.0 4.4,内的受测者中随机抽取2人,全部的等可能基本大事共有10个, (第18题)分别为()()()()()()()()1211121321222312a a a b a b a b a b a b a b b b ,,,,,,,,,,,,,,,, ()()1323b b b b ,,,, 则大事A 包含其中3个基本大事:()()()121323b b b b b b ,,,,,, ……10分 依据古典概型的概率公式,得310P A =(). 答:2人视力都在[)4.2 4.4,内的概率为310. ……12分19.(本小题满分12分)如图,在长方体1111ABCD A B C D -中,已知1AB AD ==,12AA =.(1)求证:BD ⊥平面11A ACC ; (2)求二面角1A BD A --的正切值.解:(1)由于1111ABCD A B C D -为长方体,所以1A A ⊥平面ABCD . 由于BD ⊂平面ABCD ,所以BD 1A A ⊥.……2分 由于AB AD =,所以ABCD 为正方形. 所以BD AC ⊥. ……4分又由于1A A AC A =,1A A AC ⊂,平面11A ACC ,所以BD ⊥平面11A ACC . ……6分(2)设AC BD O =,连接1A O . 由(1)知,BD ⊥平面11A ACC .由于1A O ⊂平面11A ACC ,所以BD ⊥1A O . ……8分 又由(1)知,BD AO ⊥, 所以1AOA ∠为二面角1A BD A --的平面角. ……10分在1Rt A AO △中,12AA =,12AO AC ==, 所以11tan A A A OA AO ∠=== 所以二面角1A BD A --的正切值为 ……12分20.(本小题满分12分)在锐角△ABC 中,设角A ,B ,C 所对的边长分别为a ,b ,c ,且sin b A =.(1)求B 的大小; (2)若AB =2,BC 32=,点D 在边AC 上, ,求BD 的长. 请在①AD =DC ;②∠DBC =∠DBA ;③BD ⊥AC 这三个条件中选择一个,补充在上面 的横线上,并完成解答. (注:假如选择多个条件分别解答,则按第一个解答计分). 解:(1)在△ABC 中,由正弦定理sin a A =sin b B ,及sin b A =得, sin sin B A A =. ……2分 由于△ABC 为锐角三角形,所以()π02A ∈,,所以sin 0A >. 所以sin B . ……4分 又由于()π02B ∈,,所以π3B =. ……6分 (2)若选①. 法一:在△ABC 中,由于AD =DC ,所以BD =()12BA BC +. ……8分 所以BD 2()221+24BA BC BA BC =+⋅ ……10分 ()2233π2+22cos 2234+⨯⨯⨯= 3716= 所以BD . ……12分法二:在△ABC 中,由余弦定理,得2222cos AC AB BC AB BC B =+-⋅⋅ A A 1 D 1 B 1 C 1CB D (第19题)A A 1D 1 B 1C 1 CB D (第19题)O()2233π222cos 223=+-⨯⨯⨯ 134=,所以AC =,所以AD DC ==. ……8分 在△ABD 中,由余弦定理,得2222cos AB BD DA BD DA ADB =+-⋅⋅∠即2134cos 16BD ADB =+∠,在△BDC 中,由余弦定理,得2222cos BC BD DC BD DC CDB=+-⋅⋅∠即2913cos 416BD CDB =+∠.……10分 又πADB CDB ∠+∠=,所以cos cos 0ADB CDB ∠+∠=. 所以29134248BD +=+,所以BD.……12分 若选②.在△ABC 中,ABC ABD CBD S S S =+△△△,……8分 即1π1π1πsin sin sin 232626BA BC BA BD BD BC ⋅=⋅+⋅,……10分即1311131222222222BD BD ⨯⨯=⨯⨯⨯+⨯⨯⨯,解得BD =……12分 若选③.在△ABC 中,由余弦定理,得2222cos AC AB BC AB BC B =+-⋅⋅()2233π222cos 223=+-⨯⨯⨯134=,所以AC =.……8分由于1sin 2ABC S BA BC B =⋅⋅=△12ABC S BD AC =⋅=△,……10分=,解得BD =……12分 21.(本小题满分12分) 已知圆C :222230x y x ay ++--=关于直线l :210x y -+=对称.(1)求实数a 的值;(2)设直线m :(0)y kx k =>与圆C 交于点A B ,,且AB . ① 求k 的值; ② 点P ( 3,0 ),证明:x 轴平分APB ∠. 解:(1)由于圆C :222230x y x ay ++--=关于直线l :2+10x y -=对称, 所以圆心C ()1a -,在直线l :2+10x y -=上. ……2分 所以1210a --+=,解得0a =. ……4分 (2)① 由(1)知,圆C :22(1)4x y ++=. 所以圆心C ()10-,到直线m :0kx y -=……6分由于AB ==24k =, 由于0k >,所以2k =. ……8分 ② 法一:由①知,直线m :2y x =. 联立222230y x x y x =⎧⎨++-=⎩,,消去y ,得25230x x +-=,解得1x =-或35x =. 不妨()()361255A B --,,,, ……10分 所以6211503132235PA PB k k -+=+=-+=---. 所以直线PA PB ,的倾斜角互补,从而OPA OPB ∠=∠, 所以x 轴平分APB ∠. ……12分 法二:设直线m :2y x =上的点()112A x x ,,()222B x x ,,又点P ( 3,0 ),所以12122233PA PB x x k k x x +=+-- ()()()()122112232333x x x x x x -+-=--()()()12121222333x x x x x x -+⎡⎤⎣⎦=--.(*) ……8分联立222230y x x y x =⎧⎨++-=⎩,,消去y ,得25230x x +-=, 所以1212253.5x x x x ⎧+=-⎪⎨⎪=-⎩,代入(*),得0PA PB k k+=.所以直线PA PB ,的倾斜角互补,从而OPA OPB ∠=∠, 所以x 轴平分APB ∠. ……12分 22.(本小题满分12分)已知函数()()f x g x ,分别是定义在R 上的偶函数和奇函数,且2()()1f x g x x x +=-+. (1)求函数()f x 与()g x 的解析式;(2)设函数()()()1G x f x a g x =++,若对任意实数x ,3()2G x ≥恒成立,求实数a的取值范围.解:(1)由于()f x 为偶函数,()g x 为奇函数,且2()()1f x g x x x +=-+,①所以2()()1f x g x x x -+-=++,即2()()+1f x g x x x -=+, ② ……2分 由①+②2,得2()1f x x =+,由①-②2,得()g x x =-. ……4分 (2)方法一:由(1)得,()G x =()()1f x a g x ++211x a x =+-+.由于对任意实数x ,3()2G x ≥恒成立.当1x ≥时,设()22211()2242a a h x x ax a x a =+--=+---,则()h x 0≥恒成立.若12a-≤,即2a -≥,则当1x =时,()h x 取得最小值12,符合题意; ……6分 若12a->,即2a <-,则当2ax =-时,()h x 取得最小值2142a a ---. 由21042a a ---≥,得22a --+≤22a -<-.所以2a -≥. ……8分 当1x <时,设()22211()2242a a r x x ax a x a =-+-=--+-,则()r x 0≥恒成立. 若12a <,即2a <,则当2a x =时,()r x 取得最小值2142a a -+-. 由21042a a -+-≥,得22a ≤.所以22a <. ……10分 若12a ≥,即2a ≥时,1()(1)2r x r >=,符合题意.所以2a ≥综上,实数a的取值范围是)2⎡+∞⎣. ……12分 方法二:23()112G x x a x =+-+≥恒成立,即2112a x x --≥恒成立. 当1x =时,明显成立; 当1x ≠时,2121x a x --≥,令1x t -=,设2122()t t h t t ++=-, ……6分 当1x >,即0t >时,()21212()22t t h t t t t ++=-=-++. 设12t t ,是(0)+∞,上任意两个值,且12t t <, 则12()()h t h t -=()()()2112122121121212211122()()2222t t t t t t t t t t t t t t t t ---+++++=--=-,当120t t <<<时,1221t t <,210t t ->,120t t >,所以12()()0h t h t -<,即12()()h t h t <;当122t t <<时,1221t t >,210t t ->,120t t >,所以12()()0h t h t ->,即12()()h t h t >, 所以函数()h t在(0上单调递增,在)+∞上单调递减. ……8分所以当t =()h t 在(0)+∞,上取得最大值2-.所以2a -≥. ……10分 当1x <,即0t <时,21212()22t t h t t t t ++==++, 同理可证,函数()h t在(-∞-,上单调递增,在()0上单调递减.所以当t =时,()h t 在(0)-∞,上取得最大值2所以2a ≥综上,实数a 的取值范围是)2⎡+∞⎣. ……12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省启东中学2019年创新人才培养实验班自主招生考试数学试卷一、选择题(本大题共 6 小题,每小题 5 分,共 30 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 把2232x y xy y -+分解因式正确的是 A .()222y x xy y -+B .()2y x y -C .()22y x y -D .()2y x y +2. 已知a ,b 为一元二次方程2290x x +-=的两个根,那么2a a b +-的值为A .﹣7B .0C .7D .113. 如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,O 是△ABC 的内心,以O 为圆心,r 为半径的圆与线段AB 有交点,则r 的取值范围是 A .r ≥1B .1≤r ≤ 5C .1≤r ≤10D .1≤r ≤44. 如图,等边△ABC 中,AC =4,点D ,E ,F 分别在三边AB ,BC ,AC 上,且AF =1,FD ⊥DE ,且∠DFE =60°,则AD 的长为 A .0.5B .1C .1.5D .25. 如图,△ABC 中,AB =BC =4cm ,∠ABC =120°,点P 是射线AB 上的一个动点,∠MPN =∠ACP ,点Q 是射线PM 上的一个动点.则CQ 长的最小值为 AB .2C.D .4(第3题)B C(第4题)(第5题)NMQPCAB6. 二次函数228y x x m =-+满足以下条件:当21x -<<-时,它的图象位于x 轴的下方;当67x << 时,它的图象位于x 轴的上方,则m 的值为 A .8 B .10-C .42-D .24-二、填空题(本大题共6小题,每小题5分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 计算-82015×(-0.125)2016= ▲ .8. 市政府为了解决老百姓看病贵的问题,决定下调药品的价格.某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意,可列方程为 ▲ .9. 在平面直角坐标系中,点A ,B 的坐标分别A (3,0),B (8,0),若点P 在y 轴上,且△P AB 是等腰三角形,则点P 的坐标为 ▲ . 10.关于x 的方程2101x ax +-=-的解是正数,则a 的取值范围是 ▲ . 11.如图,在平面直角坐标系中,四边形OABC 是边长为8的正方形,M (8,s ),N (t ,8)分别是边AB ,BC 上的两个动点,且OM ⊥12.如图,△ABC 在第一象限,其面积为5.点P 从点A 出发,沿△ABC 的边从A —B —C —A运动一周,作点P 关于原点O 的对称点Q ,再以PQ 为边作等边三角形PQM ,点M 在第二象限,点M 随点P 的运动而运动,则点M 随点P 运动所形成的图形的面积为 ▲ .三、解答题(本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)图113.(本小题满分15分)阅读下面材料,并解决问题.材料:如图1,在平面直角坐标系xOy 中,直线1y ax b =+与双曲线2ky x=交于 A (1,3)和B (-3,-1①当3x =-或1时,12y y =;②当30x -<<或x 即通过观察函数的图象,可以得到不等式ax b +>问题:求不等式32440x x x +-->的解集.下面是他的探究过程,请将(2),(3),(4(1)将不等式按条件进行转化当x =0时,原不等式不成立;当x >0时,原不等式可以转化为2441x x x +->; 当x <0时,原不等式可以转化为2441x x x+-<. (2)构造函数,画出图象设2341y x x =+-,44y x=,在同一坐标系中分别画出这两个函数的图象. 双曲线44y x=如图2画出抛物线.....2341y x x =+-.(3)确定两个函数图象公共点的横坐标代入函数解析式验证可知满足34y y =所有x 的值为 ▲ ; (4)借助图象,写出解集结合(1可知不等式32440x x x +-->如图,“元旦”期间,学校在综合楼上从点A 到点B 悬挂了一条宣传条幅,小明和小芳所在的教学楼正好在综合楼的对面.小明在四楼D 点测得条幅端点A 的仰角为30 o ,测得条幅端点B 的俯角为45o ;小芳在三楼C 点测得条幅端点A 的仰角为45o ,测得条幅端点B 的俯角为30 o .若楼层高度CD 为3米,请你根据小明和小芳测得的数据求出条幅AB 的长.(结果保留根号)15.(本小题满分14分)如图1,A ,B ,C ,D 四点都在⊙O 上,AC 平分∠BAD ,过点C 的切线与AB 的延长线交于点E .(1)求证:CE ∥BD ;(2)如图2,若AB 为⊙O 的直径,AC =2BC ,BE =5,求⊙O 的半径.(第14题)(第15题)图1图2惠民超市试销一种进价为每件60元的服装,规定试销期间销售单价不低于进价,且获利不得高于40%.经试销发现,销售量y (件)与销售单价x (元)满足一次函数y =kx +b ,且当x =70时,y =50;当x =80时,y =40. (1)求一次函数y =kx +b 的解析式;(2)设该超市获得的利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,超市可获得最大利润,最大利润是多少元? (3)若该超市预期的利润不低于500元,试确定销售单价x 的取值范围.17.(本小题满分16分)如图,已知抛物线223y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的顶点为D . (1)求直线B C 的解析式;(2)点M 在抛物线上,且△BMC 的面积与△BCD 的面积相等,求点M 的坐标; (3)若点P 在抛物线上,点Q 在y 轴上,以P ,Q ,B ,D 四个点为顶点的四边形是平行四边形,请直接写出点P 的坐标.(第如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴和y轴上,OA=8,OB=6.点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动,点P,点M同时出发,它们移动的速度均为每秒一个单位长度,设两个点运动的时间为t秒(0≤t≤6).(1)连接矩形的对角线AB,当t为何值时,以P,O,M为顶点的三角形与△AOB 相似;(2)在点P,点M运动过程中,线段PM的中点Q也随着运动,请求出CQ的最小值;(3)将△POM沿PM所在直线翻折后得到△PDM,试判断D点能否在对角线AB上,如果能,求出此时t的值,如果不能,请说明理由.数学答案一、选择题(本大题共6小题,每小题5分,共30分) 1. B2. D3. C4. C5. A6. D二、填空题(本大题共6小题,每小题5分,共30分) 7.-0.1258. ()272156x -= 9.(0,4),(0,-4) 10. a <-1且a ≠-211. 1012. 15三、解答题(本大题共6小题,共90分) 13.(本小题满分15分)(2)抛物线如图所示; ……………………5分(3)x =4-,1-或1;……………………11分 (4)41x -<<-或1x >.…………………15分14.(本小题满分12分)过D 作DM ⊥AE 于M ,过C 作CN ⊥AE 于N ,则DM =CN ,MN =CD =3米, 设AM =x ,则AN =x +3,由题意:∠ADM =30o, ∴∠MAD =60o. 在Rt △ADM 中,DM =AM ·tan60o.在Rt △ANC 中,CN =AN =x +3, ………6分=x +3,解之得,)312x =,…………10分∵MB =MD ,∴AB =AM +MB =x=6+.……12分EF15.(1)连接OC ,∵CE 为⊙O 的切线,∴OC ⊥CE .……………………………………2分 ∵AC 平分∠BAD ,∴点C 平分弧BD .∴OC ⊥BD ……………………………4分 ∵BD ∥CE . ………………………6分 (2)∵BD ∥CE ,∴∠CBD =∠BCE .∵∠CBD =∠CAD ,∠CAD =∠CAE , ∴∠CAE =∠BCE . ∵∠E =∠E ,∴△ACE ∽△CBE . ………………10分 ∴AC AE CE CBCEBE==.∴25AE CE CE==.∴CE =10,AE =20, ………………………12分 ∴AB =15,⊙O 的半径为7.5. ………………………14分16.(1)根据题意得7050,8040.k b k b ì+=ïí+=ïî解得k =-1,b =120.所求一次函数的表达式为y =-x +120. ………………………4分 (2)()()60120W x x =--+21807200x x =-+-()290900x =--+.…………………8分抛物线的开口向下,∴当x <90时,W 随x 的增大而增大, 而60≤x ≤84,∴当x =84时,()28490900864W =--+=.∴当销售单价定为84元时,商场可获得最大利润,最大利润是864元.……10分(3)由W =500,得500=-x 2+180x -7200,整理得,x 2-180x +7700=0,解得,x 1=70,x 2=110. ……………………13分 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之 间.而60≤x ≤84,所以,销售单价x 的取值范围是70≤x ≤84.…………………15分17.(1)易得A (-1,0),B (3,0),C (0,3) ,D (1,4),所以直线BC 的解析式为 y =-x +3 …………………4分 (2)过点D 作直线BC 的平行线交y 轴于点E ,直线DE 与抛物线的交点即为所求的点M .易得直线DE 的解析式为y =-x +5,所以点E 的坐标为(0,5).解25,23y x y x x ì=-+ïí=-++ïî 得点M 的坐标为(2,3). …………………6分 在y 轴上取F (0,1),则CE =CF ,所以过F 且平行于BC 的直线与抛物线的交点也是所要求的M 点. 解21,23y x y x x ì=-+ïí=-++ïî得点M 的坐标为:. …………………………10分 综合得点M 的坐标为: (2,3),.(3)符合要求的点P 有三个:(4,-5),(-2,-5),(2,3). ……………16分(第17题)18.(1)由题意得OM =6-t ,OP =t .若△POM ∽△AOB ,则624,867t tt -==解得; ……………3分若△POM ∽△BOA ,则618,687t tt -==解得. ……………6分 (2)过点Q 作QH ⊥OP ,垂足为易得1122OH OP t ==,QH ∴点Q (6,22t t-).过点Q 作QG ⊥AC ,垂足为则182QG t =-,662t CG -=-∴CQ ∴当t =5时,CQ 有最小值2. ……… ……12分 (3)不能.理由如下:设OD 与PM 相交于点E ,则OE ⊥PM ,OD =2OE .在Rt △POM 中, PM 则OE =2OP OM PM ?当t =3时,2(3)9t --+有最大值9, 所以,当t =3时,OE 所以OD 有最大值O 到AB 的最短距离为684.810´=. 因为 4.8,所以,点D 不可能在AB 上. ……………18分。