高考数学小题训练10(无答案)

合集下载

2010广东高考数学试题及答案

2010广东高考数学试题及答案

2010广东高考数学试题及答案2010年广东高考数学试题及答案【试题部分】一、选择题(共10小题,每小题4分,共40分)1. 下列哪个数是无理数?A. 0.33333…(3无限循环)B. πC. √2D. 0.52. 已知函数f(x)=2x-3,求f(5)的值。

3. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B。

4. 已知等差数列的首项为3,公差为2,求第10项的值。

5. 已知直线y=3x+2与x轴的交点坐标。

6. 已知抛物线方程为y=x^2-4x+4,求其顶点坐标。

7. 已知向量a=(3, 4),b=(-1, 2),求向量a与b的点积。

8. 已知圆的方程为(x-2)^2+(y-3)^2=25,求圆心坐标和半径。

9. 已知正弦函数y=sin(x)的周期。

10. 已知复数z=2+3i,求其共轭复数。

二、填空题(共5小题,每小题4分,共20分)11. 求二次方程x^2-4x+3=0的根。

12. 求等比数列1, 3, 9, …的第5项。

13. 已知正方体的边长为a,求其对角线的长度。

14. 已知函数y=x^3-2x^2+x,求其导数。

15. 已知椭圆的长半轴为a,短半轴为b,求其焦点到中心的距离。

三、解答题(共5小题,每小题10分,共50分)16. 解不等式:|x-2|+|x-3|≤4。

17. 已知三角形ABC,AB=5,AC=7,BC=6,求角A的余弦值。

18. 已知函数f(x)=x^3-6x^2+11x-6,求其极值点。

19. 已知矩阵A=\[\begin{array}{cc} 4 & 1 \\ 1 & 3\end{array}\],求矩阵A的特征值。

20. 已知平面直角坐标系中点A(2, 3),B(-1, -2),求直线AB的斜率和方程。

【答案部分】一、选择题答案1. C2. 73. {1, 2, 3, 4}4. 235. (-2/3, 0)6. (2, 0)7. 68. 圆心(2, 3),半径59. 2π10. 2-3i二、填空题答案11. x1=1,x2=312. 24313. a√214. 3x^2-4x+115. √(a^2-b^2)三、解答题答案16. 解:由绝对值不等式的性质,我们可以得到x的取值范围为[1, 4]。

高考数学压轴小题训练:函数与导数 菁优网

高考数学压轴小题训练:函数与导数 菁优网

高考数学压轴小题训练:函数与导数一、选择题(共7小题,每小题3分,满分21分)1.(3分)(2014•海口二模)设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有恒成立,则不等式x2f(x)>0的解集是()A.(﹣2,0)∪(2,+∞)B.(﹣2,0)∪(0,2) C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣2)∪(0,2)2.(3分)已知函数f(x)满足:f(1)=,f(x+y)+f(x﹣y)=2f(x)f(y)(x,y∈R),则f(i)=()A.﹣1 B.0C.D.13.(3分)(2010•温州一模)已知函数f(x)满足f(1)=a,且f(n+1)=,若对任意的n∈N*总有f(n+3)=f(n)成立,则a在(0,1]内的可能值有()A.1个B.2个C.3个D.4个4.(3分)(2014•安徽模拟)定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定5.(3分)已知函数f(x)满足对任意的x,y∈R,都有f(x+y)=f(x)+f(y)且在区间[3,7]上是增函数,在区间[4,6]上的最大值为1007,最小值为﹣2,则2f(﹣6)+f(﹣4)=()A.﹣2012 B.﹣2011 C.﹣2010 D.20106.(3分)函数f(x)在定义域R内可导,若f(x)=f(2﹣x),且当x∈(﹣∞,1)时,(x﹣1)•f′(x)<0,a=f (0),b=f(),c=f(3),则()A.a<b<c B.c<b<a C.c<a<b D.b<c<a7.(3分)(2014•南昌模拟)已知定义域为R的函数y=f(x)满足f(﹣x)=﹣f(x+4),当x>2时,f(x)单调递增,若x1+x2<4且(x1﹣2)(x2﹣2)<0,则f(x1)+f(x2)的值()A.恒大于0 B.恒小于0 C.可能等于0 D.可正可负二、填空题(共3小题,每小题3分,满分9分)8.(3分)(2010•重庆)已知函数f(x)满足:,4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),则f (2010)=_________.9.(3分)(2011•郑州二模)设f(x)是R上的奇函数,且f(﹣1)=0,当x>0时,(x2+1)f′(x)﹣2xf(x)<0,则不等式f(x)>0的解集为_________.10.(3分)(2010•济南一模)已知定义在R上的函数f(x)的图象关于点成中心对称,对任意实数x都有,且f(﹣1)=1,f(0)=﹣2,则f(0)+f(1)+…+f(2010)=_________.2013年高考数学压轴小题训练:函数与导数参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.(3分)(2014•海口二模)设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,有恒成立,则不等式x 2f (x )>0的解集是( )A . (﹣2,0)∪(2,+∞)B . (﹣2,0)∪(0,2)C . (﹣∞,﹣2)∪(2,+∞)D . (﹣∞,﹣2)∪(0,2)考点:函数的单调性与导数的关系;奇偶函数图象的对称性;其他不等式的解法. 专题:综合题;压轴题.分析:首先根据商函数求导法则,把化为[]′<0;然后利用导函数的正负性,可判断函数y=在(0,+∞)内单调递减;再由f(2)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(﹣∞,0)内的正负性.则x2f(x)>0⇔f(x)>0的解集即可求得.解答:解:因为当x>0时,有恒成立,即[]′<0恒成立,所以在(0,+∞)内单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(﹣∞,﹣2)∪(0,2).故选D.点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.2.(3分)已知函数f(x)满足:f(1)=,f(x+y)+f(x﹣y)=2f(x)f(y)(x,y∈R),则f(i)=()A.﹣1 B.0C.D.1考点:抽象函数及其应用;数列的求和.专题:计算题;函数的性质及应用.分析:令x=1,y=0,可求得f(0);再令y=1,可得f(x+1)=f(x)﹣f(x﹣1),f(x+2)=﹣f(x﹣1),从而可得函数f(x)是以6为周期的周期函数,分别求得f(i)(i=2,3,4,5,6)的值,利用其周期性即可求得f(i).解答:解:令x=1,y=0,则2f(1)f(0)=f(1+0)+f(1﹣0)=2f(1),所以f(0)=1.令y=1,得f(x)=f(x+1)+f(x﹣1),即f(x+1)=f(x)﹣f(x﹣1),由此得f(x+2)=f(x+1)﹣f(x)=f(x)﹣f(x﹣1)﹣f(x)=﹣f(x﹣1),以x+1代替x,得f(x+3)=﹣f(x),由此可得f(x+6)=﹣f(x+3)=f(x),即函数f(x)是以6为周期的周期函数,又f(x+1)=f(x)﹣f(x﹣1),得f(2)=f(1)﹣f(0)=﹣,f(3)=f(2)﹣f(1)=﹣﹣=﹣1,f(4)=f(3)﹣f(2)=﹣1+=﹣,f(5)=f(4)﹣f(3)=﹣+1=,f(6)=f(5)﹣f(4)=﹣(﹣)=1,即一个周期内的整点函数值是,﹣,﹣1,﹣,,1,其和为0,又2010=6×335,故f(i)=f(0)+f(i)=1.点评:本题考查抽象函数及其应用,突出考查赋值法的应用,求得函数f(x)是以6为周期的周期函数是关键,考查推理与运算能力,属于中档题.3.(3分)(2010•温州一模)已知函数f(x)满足f(1)=a,且f(n+1)=,若对任意的n∈N*总有f(n+3)=f(n)成立,则a在(0,1]内的可能值有()A.1个B.2个C.3个D.4个考点:函数恒成立问题.专题:计算题;压轴题.分析:欲求出对任意的n∈N*总有f(n+3)=f(n)成立时a在(0,1]内的可能值,只须考虑n=1时,使得方程f(4)=f(1)的a在(0,1]内的可能值即可.对a进行分类讨论,结合分段函数的解析式列出方程求解即可.解答:解:∵0<a≤1,∴f(2)=2f(1)=2a,①当0<a≤时,0<2a≤,0<4a≤1,∴f(3)=2f(2)=4a,f(4)=2f(3)=8a,此时f(4)=f(1)不成立;②当<a≤时,<2a≤1,1<4a≤2,∴f(3)=2f(2)=4a,f(4)==,此时f(4)=f(1)⇔=a⇔;③当<a≤1时,1<2a≤2,2<4a≤4,∴f(3)==,∴f(4)=2f(3)=,此时f(4)=f(1)⇔=a⇔a=1;综上所述,当n=1时,有f(n+3)=f(n)成立时,则a在(0,1]内的可能值有两个.故选B.点评:本小题主要考查分段函数、函数恒成立问题、方程式的解法等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于基础题.4.(3分)(2014•安徽模拟)定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定考点:函数的单调性与导数的关系.专题:转化思想.分析:由题设中条件f(4﹣x)=f(x)可得出函数关于x=2对称,由(x﹣2)f′(x)<0可得出x>2时,导数为正,x<2时导数为负由此可必出函数的单调性利用单调性比较大小即可选出正确答案解答:解:由题意f(4﹣x)=f(x),可得出函数关于x=2对称又(x﹣2)f′(x)<0,得x>2时,导数为负,x<2时导数为正,即函数在(﹣∞,2)上是增函数,在(2,+∞)上是减函数又x1<x2,且x1+x2>4,下进行讨论若2<x1<x2,显然有f(x1)>f(x2)若x1<2<x2,有x1+x2>4可得x1>4﹣x2,故有f(x1)>f(4﹣x2)=f(x2)综上讨论知,在所给的题设条件下总有f(x1)>f(x2)故选B点评:本题考查函数单调性与导数的关系以及利用单调性比较大小,求解本题的关键是根据导数的符号判断出函数的单调性,在比较大小时根据所给的条件灵活变形,将两数的大小比较转化到一个单调区间上比较也很重要,本题考查了转化化归的能力.5.(3分)已知函数f(x)满足对任意的x,y∈R,都有f(x+y)=f(x)+f(y)且在区间[3,7]上是增函数,在区间[4,6]上的最大值为1007,最小值为﹣2,则2f(﹣6)+f(﹣4)=()A.﹣2012 B.﹣2011 C.﹣2010 D.2010考点:抽象函数及其应用.专题:计算题;函数的性质及应用.分析:先令x=y=0求得f(0)=0,再令y=﹣x,求得f(x)+f(﹣x)=0,从而判断函数f(x)为奇函数;利用奇函数在区间[3,7]上是增函数,在区间[4,6]上的最大值为1007,最小值为﹣2,即可求得2f(﹣6)+f(﹣4)的值.解答:解:令x=y=0,得f(0)=f(0)+f(0),解得f(0)=0.令y=﹣x,得f(0)=f(x)+f(﹣x),故f(x)+f(﹣x)=0,所以函数f(x)为奇函数.由函数f(x)在区间[3,7]上是增函数,可知函数f(x)在区间[4,6]上也是增函数,故最大值为f(6)=1007,最小值为f(4)=﹣2.而f(﹣6)=﹣f(6)=﹣1007,f(﹣4)=﹣f(4)=2,所以2f(﹣6)+f(﹣4)=2×(﹣1007)+2=﹣2012.故选A点评:本题考查抽象函数及其应用,着重考查赋值法的应用,突出函数奇偶性与单调性的综合应用,考查分析与推理、运算能力,属于中档题.6.(3分)函数f(x)在定义域R内可导,若f(x)=f(2﹣x),且当x∈(﹣∞,1)时,(x﹣1)•f′(x)<0,a=f (0),b=f(),c=f(3),则()A.a<b<c B.c<b<a C.c<a<b D.b<c<a考点:导数的运算;函数单调性的性质.专题:函数的性质及应用.分析:由题意可得,函数f(x)的图象关于直线x=1对称,在(﹣∞,1)上是增函数,再根据c=f(﹣1),,利用函数的单调性判断a、b、c的大小关系.解答:解:由f(x)=f(2﹣x)可得函数f(x)的图象关于直线x=1对称,当x∈(﹣∞,1)时,(x﹣1)•f′(x)<0,∴函数f(x)在(﹣∞,1)上是增函数,在(1,+∞)上是减函数,由于c=f(3)=f(2﹣3)=f(﹣1),,a=f(0),b=f(),c=f(3),∴b>a>c,故选C.点评:本题主要考查函数的图象的对称性和单调性的应用,体现了转化的数学思想,属于中档题.7.(3分)(2014•南昌模拟)已知定义域为R的函数y=f(x)满足f(﹣x)=﹣f(x+4),当x>2时,f(x)单调递增,若x1+x2<4且(x1﹣2)(x2﹣2)<0,则f(x1)+f(x2)的值()A.恒大于0 B.恒小于0 C.可能等于0 D.可正可负考点:奇偶函数图象的对称性;函数单调性的性质.专题:压轴题.分析:先通过给定条件确定函数为关于点(2,0)成中心对称,再由图象可得答案.解答:解:由函数y=f(x)满足f(﹣x)=﹣f(x+4)得函数的图象关于点(2,0)对称,由x1+x2<4且(x1﹣2)(x2﹣2)<0不妨设x1>2,x2<2,借助图象可得f(x1)+f(x2)的值恒小于0,故选B.点评:本题主要考查函数的对称性.二、填空题(共3小题,每小题3分,满分9分)8.(3分)(2010•重庆)已知函数f(x)满足:,4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),则f(2010)=.考点:抽象函数及其应用;函数的周期性.专题:计算题;压轴题.分析:由于题目问的是f(2010),项数较大,故马上判断函数势必是周期函数,所以集中精力找周期即可;周期的寻找方法可以是不完全归纳推理出,也可以是演绎推理得出.解答:解:取x=1,y=0得法一:根据已知知取x=1,y=1得f(2)=﹣取x=2,y=1得f(3)=﹣取x=2,y=2得f(4)=﹣取x=3,y=2得f(5)=取x=3,y=3得f(6)=猜想得周期为6法二:取x=1,y=0得取x=n,y=1,有f(n)=f(n+1)+f(n﹣1),同理f(n+1)=f(n+2)+f(n)联立得f(n+2)=﹣f(n﹣1)所以f(n)=﹣f(n+3)=f(n+6)所以函数是周期函数,周期T=6,故f(2010)=f(0)=点评:准确找出周期是此类问题(项数很大)的关键,分别可以用归纳法和演绎法得出周期,解题时根据自己熟悉的方法得出即可.9.(3分)(2011•郑州二模)设f(x)是R上的奇函数,且f(﹣1)=0,当x>0时,(x2+1)f′(x)﹣2xf(x)<0,则不等式f(x)>0的解集为(﹣∞,﹣1)∪(0,1).考点:奇偶性与单调性的综合.专题:计算题;综合题.分析:首先根据商函数求导法则,把(x2+1)f'(x)﹣2xf(x)<0,化为[]′<0;然后利用导函数的正负性,可判断函数y=在(0,+∞)内单调递减;再由f(﹣1)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(﹣∞,0)内的正负性.则f(x)>0的解集即可求得.解答:解:因为当x>0时,有(x2+1)f'(x)﹣2xf(x)<0恒成立,即[]′<0恒成立,所以y=在(0,+∞)内单调递减.因为f(﹣1)=0,所以在(0,1)内恒有f(x)>0;在(1,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(﹣∞,﹣1)内恒有f(x)>0;在(﹣1,0)内恒有f(x)<0.即不等式f(x)>0的解集为:(﹣∞,﹣1)∪(0,1).故答案为:(﹣∞,﹣1)∪(0,1).点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征,熟练掌握导数的运算法则是解题的关键,考查运算能力,属中档题.10.(3分)(2010•济南一模)已知定义在R上的函数f(x)的图象关于点成中心对称,对任意实数x都有,且f(﹣1)=1,f(0)=﹣2,则f(0)+f(1)+…+f(2010)=﹣2.考点:函数的周期性.专题:计算题.分析:由已知中定义在R上的函数f(x)的图象关于点成中心对称,对任意实数x都有,我们易判断出函数f(x)是周期为3的周期函数,进而由f(﹣1)=1,f(0)=﹣2,我们求出一个周期内函数的值,进而利用分组求和法,得到答案.解答:解:∵,∴,所以,f(x)是周期为3的周期函数.f(2)=f(﹣1+3)=f(﹣1)=1,又,∴,∵函数f(x)的图象关于点,∴,∴f(0)+f(1)+…+f(2010)=f(2010)=f(0)=﹣2.故答案为:﹣2点评:本题考查的知识点是函数的周期性,其中根据已知中对任意实数x都有,判断出函数的周期性,是解答本题的关键.参与本试卷答题和审题的老师有:wzj123;刘春江;wsj1012;caoqz;wfy814;xintrl;394782;lily2011;geyanli (排名不分先后)菁优网2014年10月11日。

(整理版)高考数学小题狂做冲刺训练(详细解析)

(整理版)高考数学小题狂做冲刺训练(详细解析)

高考数学小题狂做冲刺训练〔详细解析〕、选择题〔本大题共10小题,每题5分,共50分。

在每题给出的四个选项中,只有一个选项是符合题目要求的〕 1.点P 在曲线323+-=x x y 上移动,设点P 处切线的倾斜角为α,那么角α的取值范围是( )A.[0,2π]B.[0,2π〕∪[43π,π) C.[43π,π) D.(2π,43π]解析:∵y′=3x 2-1,故导函数的值域为[-1,+∞). ∴切线的斜率的取值范围为[-1,+∞〕. 设倾斜角为α,那么tanα≥-1. ∵α∈[0,π),∴α∈[0,2π)∪[43π,π).答案:B2.假设方程x 2+ax+b =0有不小于2的实根,那么a 2+b 2的最小值为( )A.3B.516 C.517 D.518 解析:将方程x 2+ax+b =0看作以(a,b)为动点的直线l:xa+b+x 2=0的方程,那么a 2+b 2的几何意义为l 上的点(a,b)到原点O(0,0)的距离的平方,由点到直线的距离d 的最小性知a 2+b 2≥d 2=211)1(1)100(2224222-+++=+=+++x x x x x x (x ≥2), 令u =x 2+1,易知21)(-+=u u u f (u ≥5)在[5,+∞)上单调递增,那么f(u)≥f(5)=516, ∴a 2+b 2的最小值为516.应选B. 答案:B3.国际上通常用恩格尔系数来衡量一个国家或地区人民生活水平的状况,它的计算公式为yxn =(x:人均食品支出总额,y:人均个人消费支出总额),且y =2x+475.各种类型家庭情相同的情况下人均少支出75元,那么该家庭属于( )解析:设1998年人均食品消费x 元,那么人均食品支出:x(1-7.5%)=92.5%x,人均消费支出:2×92.5%x+475,由题意,有2×92.5%x+475+75=2x+475,∴x=500. 此时,14005.462475%5.922%5.92=+⨯=x x x ≈0.3304=33.04%,应选D.答案:D4.(海南、宁夏高考,文4)设f(x)=xlnx,假设f′(x 0)=2,那么x 0等于( )2B.eC.22ln 解析:f′(x)=lnx+1,令f′(x 0)=2, ∴lnx 0+1=2.∴lnx 0=1.∴x 0=e. 答案:B5.n =log n+1 (n+2)(n∈N *).定义使a 1·a 2·a 3·…·a k 为整数的实数k 为奥运桔祥数,那么在区间[1,2 008]内的所有奥运桔祥数之和为( )A.1 004B.2 026C.4 072D.2 044解析:a n =log n+1 (n+2)=)1lg()2lg(++n n ,a 1·a 2·a 3·…·a k =2lg )2lg()1lg()2lg(4lg 5lg 3lg 4lg 2lg 3lg +=++••k k k . 由题意知k+2=22,23,…,210,∴k=22-2,23-2,…,210-2.∴S=(22+23+…+210)-2×9=20261821)21(49=---. 答案:B6.从2 004名学生中选取50名组成参观团,假设采用下面的方法选取,先用简单随机抽样法从2 004人中剔除4人,剩下的 2 000人再按系统抽样的方法进行,那么每人入选的概率〔 〕A .不全相等B .均不相等C .都相等且为002125D .都相等且为401解析:抽样的原那么是每个个体被抽到的概率都相等,所以每人入选的概率为002125. 答案:C7.将数字1,2,3,4,5,6拼成一列,记第i 个数为a i 〔i =1,2,…,6〕,假设a 1≠1,a 3≠3,5≠5,a 1<a 3<a 5,那么不同的排列方法种数为〔 〕A .18B .30C .36D .48 解析:∵a 1≠1且a 1<a 3<a 5,∴〔1〕当a 1=2时,a 3为4或5,a 5为6,此时有12种; 〔2〕当a 1=3时,a 3仍为4或5,a 5为6,此时有12种; 〔3〕当a 1=4时,a 3为5,a 5为6,此时有6种. ∴共30种. 答案:B8.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.假设从中任选3人,那么选出的火炬手的编号能组成以3为公差的等差数列的概率为〔 〕A .511 B .681 C .3061 D .4081 解析:属于古典概型问题,根本领件总数为318C =17×16×3,选出火炬手编号为a n =a 1+3〔n -1〕〔1≤n ≤6〕,a 1=1时,由1,4,7,10,13,16可得4种选法; a 1=2时,由2,5,8,11,14,17可得4种选法; a 1=3时,由3,6,9,12,15,18可得4种选法. 故所求概率68131617444444318=⨯⨯++=++=C P . 答案:B9.复数i 3(1+i)2等于( )A.2B.-2 C解析:i 3(1+i)2=-i(2i)=-2i 2=2. 答案:A 10.(全国高考卷Ⅱ,4)函数x xx f -=1)(的图象关于( ) A.y 轴对称 B.直线y =-x 对称 C.坐标原点对称 D.直线y =x 对称 解析: x xx f -=1)(是奇函数,所以图象关于原点对称. 答案:C、填空题〔本大题共5小题,每题5分,共25分〕11.垂直于直线2x-6y+1=0且与曲线y=x 3+3x 2-5相切的直线方程为___________________.解析:与直线2x-6y+1=0垂直的直线的斜率为k=-3,曲线y=x 3+3x 2-5的切线斜率为y ′=3x 2+6x.依题意,有y ′=-3,即3x 2+6x=-3,得x=-1.当x=-1时,y=(-1)3+3·(-1)2-5=-3.故所求直线过点(-1,-3),且斜率为-3,即直线方程为y+3=-3(x+1), 即3x+y+6=0. 答案:3x+y+6=0 12.函数13)(--=a axx f (a≠1).假设f(x)在区间(0,1]上是减函数,那么实数a 的取值范围是______________. 解析:由03)1(2)('<--=axa a x f ,⎪⎩⎪⎨⎧<->-②,0)1(2①,03a aax由①,得a <x3≤3. 由②,得a <0或a >1,∴当a =3时,f(x)在x∈(0,1)上恒大于0,且f(1)=0,有f(x)>f(1). ∴a 的取值范围是(-∞,0)∪(1,3]. 答案:(-∞,0)∪(1,3] 13.平面上三点A 、B 、C满足3||=AB ,5||=CA ,4||=BC ,那么AB CA CA BC BC AB •+•+•的值等于________________.解析:由于0=++CA BC AB ,∴)(2||||||)(2222AB CA CA BC BC AB CA BC AB CA BC AB •+•+•+++=++0)(225169=•+•+•+++=AB CA CA BC BC AB ,即可求值.答案:-2514.设一次试验成功的概率为p,进行100次独立重复试验,当p=_________________时,成功次数的标准差的值最大,其最大值为___________________________________.解析:4)2(2n q p n npq D =+≤=ξ,等号在21==q p 时成立,此时Dξ=25,σξ=5. 答案:215 15.设z 1是复数,112z i z z -=(其中1z 表示z 1的共轭复数),z 2的实部是-1,那么z 2的虚部为___________________.解析:设z 1=x+yi(x,y ∈R),那么yi x z -=1. ∴z 2=x+yi-i(x-yi)=x-y+(y-x)i. ∵x-y=-1, ∴y-x=1. 答案:1。

福建高考数学基本不等式及其应用专项练习(无答案)

福建高考数学基本不等式及其应用专项练习(无答案)

福建高考数学基本不等式及其应用专项练习(无答案)不等式的应用是高考考点的重点内容之一,以下是基本不等式及其应用专项练习,希望对考生查缺补漏有帮助。

1.已知a0,且b0,若2a+b=4,则的最小值为()A. 1B.4C.3D.22.已知a0,a,b的等比中项是1,且m=b+,n=a+,则m+n的最小值是()A.3B.4C.5D.63.(2019浙江十校联考)若正数x,y满足4x2+9y2+3xy=30,则xy的最大值是()A. 1B.2 C5.2 D.74.(2019重庆,文9)若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+45.已知函数y=x-4+(x-1),当x=a时,y取得最小值b,则a+b=()A.-3B.2C.3D.86.(2019福建泉州模拟)已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得=4a1,则的最小值为()A. B. C. D.不存在7.当x0时,则f(x)=的最大值为.8.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价%,若p0,则提价多的方案是.9.设a,b均为正实数,求证:+ab2.10.某厂家拟在2019年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m0)满足x=3-(k为常数).如果不搞促销活动,则该产品的年销售量只能是1万件.已知2019年生产该产品的固定投入为8万元.每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2019年的促销费用投入多少万元时,厂家的利润最大?能力提升组11.若不等式(a-a2)(x2+1)+x0对一切x(0,2]恒成立,则a的取值范围是()A.B.C.D.12.已知,,满足tan(+)=4tan ,则tan 的最大值是()A. B. C. D.13.(2019福建,文9)要制作一个容积为4 m3,高为1 m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是()A.80元B.120元C.160元D.240元14.(2019浙江杭州模拟)若正数x,y满足2x+y-3=0,则的最小值为.15.已知x0,且2x+5y=20.求:(1)u=lg x+lg y的最大值;(2)的最小值.16.(2019福建福州模拟)地沟油严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从食品残渣中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似地表示为:y=且每处理一吨食品残渣,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

函数单调性与奇偶性【15类题型全归纳】(无答案版)

函数单调性与奇偶性【15类题型全归纳】(无答案版)

热点专题2-2函数单调性与奇偶性15类题型全归纳【题型1】函数的单调性 (2)【题型2】复合函数单调性的判断 (3)【题型3】由分段函数的单调性与最值求参数范围 (4)【题型4】利用单调性求最值或值域 (6)【题型5】由单调性求参数的范围 (7)【题型6】结合单调性解函数不等式 (8)【题型7】已知函数的奇偶性求解析式、求值 (10)【题型8】函数的奇偶性的判断与证明 (11)【题型9】函数图像的识别 (13)【题型10】利用单调性,奇偶性比大小 (16)【题型11】已知函数的奇偶性求参数 (17)【题型12】解奇函数不等式 (19)1/242/24【题型13】解偶函数不等式.......................................................................................................20【题型14】函数不等式恒成立问题与能成立问题...................................................................21【题型15】存在任意双变量问题...............................................................................................22【题型1】函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)几条常用的判断单调性的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x为增函数,1()f x 为减函数;④若()0f x >且()f x为减函数,1()f x 为增函数.3/241.(2024·安徽蚌埠·模拟预测)下列函数中,满足“对任意的12,(0,)x x ∈+∞,使得()()12120f x f x x x -<-”成立的是()A .2()21f x x x =--+B .1()f x x x=-C .()1f x x =+D .2()log (2)1f x x =+【巩固练习1】已知函数()f x 的定义域为R ,则“(1)()f x f x +>恒成立”是“函数()f x 在R 上单调递增”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【巩固练习2】(2024·陕西榆林·一模)已知函数()f x 在[)0,∞+上单调递增,则对实数0,0a b >>,“a b >”是“()()f a f b >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【题型2】复合函数单调性的判断复合函数的单调性:“同增异减”判断复合函数()y f g x =⎡⎤⎣⎦的单调性的步骤,第一步:定义域优先,拆分前必须确定函数的定义域。

新课改高三高考数学小题专项仿真模拟训练(共40套)含答案

新课改高三高考数学小题专项仿真模拟训练(共40套)含答案

新课改高三高考数学小题专项仿真模拟训练一(含答案)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数y =2x +1的图象是( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556 B.-6556 C.-6516 D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( )A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B 二、13.(21,1) 14.6 15. 21新课改高考数学小题专项仿真模拟训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量外,与向量共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2-312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203 B . 103C .201 D . 101EFDOC BA5.抛物线y2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a,b),向量n⊥m,且|n|=|m|,则n的坐标可以为()A.(a,-b)B.(-a,b)C.(b,-a)D.(-b,-a)7. 如果S={x|x=2n+1,n∈Z},T={x|x=4n±1,n∈Z},那么A.S TB.T SC.S=TD.S≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种 B.48种 C.72种 D.96种9.已知直线l、m,平面α、β,且l⊥α,m β.给出四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上递增,则实数a的取值范围是()A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)。

山东省平度第一中学2018年高考数学试题(理)无答案

山东省平度第一中学2018年高考数学试题(理)无答案

平度一中高考数学试题(理)一、选择题(本大题共10小题。

每小题5分,共50分.)命题人:韩玉进、代普杰 1、复数ii+1在复平面中所对应的点到原点的距离为( ) A. 21 B.22 C. 1 D.22、若全集为实数集R ,集合A =12{|log (21)0},R x x C A ->则=( )A .1(,)2+∞B .(1,)+∞C .1[0,][1,)2+∞D .1(,][1,)2-∞+∞3、设随机变量X ~N (3,1),若P (X >4)=p ,则P (2<X <4)=( ) A .21+p B .1—p C .1—2p D .21—p4、一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是 m 2( )A .4+B .4+C .4+D .4+正视图 侧视图 俯视图5、已知函数)0)(3sin()(>+=w wx x f π的图象与1-=y 的图象的相邻交点间的距离为π,要得到)(x f y =的图象,只需把x y 2cos =的图象( ) A.向左平移12π个单位 B. 向右平移12π个单位C. 向左平移125π个单位 D. 向右平移125π个单位6、已知集合{}Z y x y x y x A ∈≤≤=,,2,2|),(,{}Z y x y x y x B ∈≤-+-=,,4)2()2(|),(22,在集合A 中任取一个元素p ,则B p ∈的概率( ) A. 4π B.16π C.256 D.517、等差数列{}n a 的前项和为n S ,已知0211=-+-+m m m a a a ,12-m S =38,则=m ( )A. 10B. 8C. 5D. 6 8、已知两点)3,1(),0,1(B A ,O 为坐标原点,点C 在第三象限,且65π=∠AOC ,设)(2R OB OA OC ∈+-=λλ,则=λA.-1B. 1C.-2D.219、已知双曲线)0,(1:2222>=-b a by a x C 的左右焦点分别为21,F F ,过2F 作双曲线C 的一条渐近线的垂线,垂足为H ,若H F 2的中点M 在双曲线C 上,则双曲线C 的离心率为( ) A.2 B.3 C. 2 D. 310、若函数()f x 满足()()[]110,11f x x f x +=∈+,当时,()f x x =,若在区间(]1,1-上,方程()20f x mx m --=有两个实数根,则实数m 的取值范围是 A.103m <≤B.103m <<C.113m <≤ D.113m << 二、填空题(本大题共5小题,每小题5分,共25分)命题人:臧传金、杜兆洲11. 阅读右侧的程序框图,输出的结果S 的值为_______;12.函数1)(23++-=x x x x f 在点)2,1(处的切线与函数2)(x x g =围成的图形的面积等于 。

《最高考》聚焦小题强化训练50练(提升版)(含详细解答)

《最高考》聚焦小题强化训练50练(提升版)(含详细解答)

(第 7 题) 6.已知函数 f(x)=sinx(x∈[0,π])和函数 g(x)=12tanx 的图象交于 A,B,C 三点,则△ABC 的面 积为________. 7.如图,在圆柱 O1O2 内有一个球 O,该球与圆柱的上、下底面及母线均相切.记圆柱 O1O2 的体积为 V1,球 O 的体积为 V2,则VV12的值是________. 8.已知函数 f(x)=mx3x++x22+,mx>,1,0≤x≤1,若函数 f(x)有且只有两个零点,则实数 m 的取值范围是 ________.
11.(本小题满分 16 分) 某农场有一块农田,如图,它的边界由圆 O 的一段圆弧 MPN(P 为此圆弧的中点)和线段 MN 构成.已知圆 O 的半径为 40 米,点 P 到 MN 的距离为 50 米.现规划在此农田上修建两个温 室大棚,大棚Ⅰ内的地块形状为矩形 ABCD,大棚Ⅱ内的地块形状为△CDP,要求 A,B 均在 线段 MN 上,C,D 均在圆弧上.设 OC 与 MN 所成的角为 θ. (1)用 θ 分别表示矩形 ABCD 和△CDP 的面积,并确定 sinθ 的取值范围; (2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值 之比为 4∶3.求当 θ 为何值时,能使甲、乙两种蔬菜的年总产值最大.
小题强化训练二
一、填空题:本大题共 8 小题,每题 5 分,共 40 分. 1.已知复数 z 满足(z-2)i=1+i(i 为虚数单位),则复数 z 的共轭复数 z 在复平面内对应的点位 于第________象限. 2.设集合 A={x|y=ln(x2-3x)},B={y|y=2x,x∈R},则 A∪B=____________. 3.若 θ∈(0,π4),且 sin2θ=14,则 sin(θ-π4)=________. 4.已知一个正方体的外接球体积为 V1,其内切球体积为 V2,则VV12的值为________. 5.记等差数列{an}的前 n 项和为 Sn.已知 a1=3,且数列{ Sn }也为等差数列,则 a11=________. 6.在▱ABCD 中,∠BAD=60°,E 是 CD 上一点,且A→E=12A→B+B→C,|A→B|=λ|A→D|.若A→C·E→B=12A→D 2,则 λ=________. 7.设函数 f(x)=lnx+mx ,m∈R,若对任意 x2>x1>0,f(x2)-f(x1)<x2-x1 恒成立,则实数 m 的 取值范围是__________. 8.已知实数 x,y 满足 x2+y2=1,则(x-1y)2+(x+1y)2的最小值为________. 二、解答题:本大题共 4 小题,共 60 分.解答时应写出必要的文字说明、证明过程或演算步 骤. 9.(本小题满分 14 分) 在平面四边形 ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求 cos∠ADB 的值; (2)若 DC=2 2,求 BC 的值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 高三数学小题训练(10)班级 姓名 学号
1. 命题“x ∃∈R ,sin 1x ≤”的否定是 .
2. 若集合A ={}3x x ≥,B ={}x x m <满足A ∪B =R ,A ∩B =∅,则实数m = .
3. 若22(1)(32)i a a a -+++是纯虚数,则实数a 的值是 .
4. 已知π3sin()45x +=,π4sin()45
x -=,则tan x = . 5. 若函数2()12x x
k f x k -=+⋅(k 为常数)在定义域上为奇函数,则k = . 6. 若直线4mx ny +=和圆O :224x y +=没有公共点,则过点(,)m n 的直线与椭圆
22154
y x +=的交点个数为 . 7. 曲线C :()sin e 2x f x x =++在x =0处的切线方程为 .
8. cos103sin10
+= .
9. 函数e ln y x x =-的值域为 .
10.将函数)(3
2sin πx y -=的图像向左平移)(0>φφ个单位后, 所得到的图像对应的函数为奇函数, 则φ的最小值为 .
11.已知椭圆22
221(0)x y a b a b
+=>>的中心、右焦点、右顶点分别为O 、F 、A ,右准 线与x 轴的交点为H ,则FA OH
的最大值为 . 12.已知函数)(x f 的定义在R 上的奇函数,当0>x 时,x x f --=21)(,则不等式
2
1)(-
<x f 的解集是 .。

相关文档
最新文档