电子线路董尚斌编_课后答案超全

合集下载

《电子线路》参考答案

《电子线路》参考答案

1考答案第一部分:判断、选择题(40%)第二部分:非选择题(60%)三、填空题(本大题每格1分、共40分):1、截止、饱和2、4、13、10、14、非、非5、调整管、基准电路、取样电路、比较放大6、A 、B7、饱和、截止、放大8、输入、输出9、逻辑关系、逻辑代数、真值表、逻辑表达式、波形图、开关元件 10、010********* 11、保持、翻转 12、共发射极、共集电极、共基极 13、相位平衡、幅度平衡 14、与、或、非 15、Y=AB 、有0出0全1出1 16、积、和四、计算分析题(本大题2小题、共8分):(5分)1、(1)静态工作点:(3分)解:VV V V RE IEQ RC ICQ VCC VCEQ uA mA ICQ IBQ mA IEQ ICQ mAKVV IEQ VKK KV Rb Rb Rb VCC VBQ VVBEQ VBEQVBQ IEQ 7.53.331260503331.17.044102010122127.0Re=--=⨯-⨯-=====≈=-==+⨯=+⨯==-=β2CP D Q /Q A 0011B 0101Y 1000(2)输入电阻和输出电阻:(2分) 解:(3分)2、(1)反相比例运算电路(1分) (2) 解 (2分) 五、化简下列逻辑函数式:(本大题2小题、共6分)(3分)1、ABD C AB AB Y ++= (3分) 2、C B AC AB Y ++=六、分析题(本大题2小题、共6分): (3分)1、(3分)2、(2分)(1) (1分)(2) 或D AB ABDAB +=+=K Rc ro mAmVrbe rbe Rb Rb ri 1742326)1(300‖2‖1==Ω=++=≈=βV VK KViRi RfVo 511050-=⨯-=-=C B AB C B A C B ABC AB C B A ABC C B AB AC C B AB +=+++=+++=++=)()(B A Y +=B A Y •=。

电子线路(清华大学出版社,董尚斌主编)第3章集成电路与运算放大器

电子线路(清华大学出版社,董尚斌主编)第3章集成电路与运算放大器
双端输出时
o o1 o2 Ad i1 i 2
可见,υo仅与差模输入电压,即两输入电压的差值 成正比,而与共模输入电压,即两输入电压大小无关。 单端输出,只要KCMR足够大,可使任一输出电压近 似与两输入电压的差值成正比。
2)动态分析: 当在电路的两个输入端各加一个大小相等,极 性相反的信号电压 υid1=-υid2=υid/2 时,一管的 输入电压将增加,而另一管的输入电压将减小,相 应的两个输出端均有电压输出,即在两输出端有差 模信号电压输出,亦υod≠0。可见,差分放大器对 差模输入信号具有放大作用。
3.2.1 差分放大电路的工作原理
3.2.2 差分放大电路的基本性 能分析
因而单端输出时的电压增 益是
d 1 A
Rc
2( Rs rbe )
双端输出时,由于输出电 压增大一倍,增益也增大一 倍 R
d A
c
( Rs rbe )
3.2.2 差分放大电路的基本性能分 析
4.差分放大器对任意输入信号的放大 两输出电压为
iE1 iE 2 ICQ1 ICQ 2 2iC
I 0 2iC
3.2.2 差分放大电路的基本性 能分析
在共模输入信号的作用 下,流经REE的电流等于原 静态电流Io与2倍的增量电 流Δ iC之和 ,因而对共模 信号而言,半边电路三极管 发射极相当于接入2REE; 当负载在双端输出的条 件下,集电极两端输出的交 流电压大小相等,方向相同, 通过RL的电流为零,RL等效 为开路。


ic1 ic 2 ic
1 ( i1 i 2 ) 2
3Байду номын сангаас2.1 差分放大电路的工作原理
实际加到差分放大器两输入端的信号电压往往为任意 信号,它们既不是差模信号,也不是共模信号。在这种情 况下,将υ i1和υ i2改写成下列形式

电子线路(1) (董尚斌 著) 清华大学出版社 课后答案(1-3章)

电子线路(1) (董尚斌 著) 清华大学出版社 课后答案(1-3章)
是由于浓度差而引起的载流子的定向运动而形成的电流
h 1-4 在 PN 结两端加反向偏压时,为什么反向电流几乎与反向电压无关? k 解:PN 结加反偏电压,外加电场与内电场方向相同,PN 结变宽,外加电压
全部降落在 PN 结上,而不能作用于 P 区和 N 区将少数载流子吸引过来。漂移大
. 于扩散,由于在 P 区及 N 区中少子的浓度一定,因而反向电流与反偏电压无关。 w1-5 将一个二极管看作一个电阻,它和一般由导体构成的电阻有何区别?
2
课后答案网,用心为你服务!
ni=2.4×1013cm-3,Na=3×1014cm-3, Nd=2×1014cm-3 代入上式得[ ] p=1 2⎢⎣⎡−
(2

3) ×1014
+
(2 − 3) ×1014
2
+ 4(2.4 ×1013 )2
⎤ ⎥⎦
= 1.055 ×1014 cm−3
课后答案网,用心为你服务!
第1章
低频电子线路习题
课 后 答 案 网
1-1 本征半导体与杂质半导体有什么区别? 解 :本征半导体是纯净的,没有掺杂的半导体,本征半导体的导电性能较差 , 在温度为 0K 时,半导体中没有载流子,它相当于绝缘体。在室温的情况下,由 本征激 发 产 生 自 由 电 子 — 空穴对 , 并达 到某 一 热平衡 值 ,本 征载流 子浓度

16V<VI<39.3V
5
课后答案网,用心为你服务!
1-29 题图 1-29 中给出实测双极型三极管各个电极的对地电位,试判 定
这些三极管是否处于正常工作状态?如果不正常,是短路还是断路?如果正常,
解 :万用表测量电阻时,实际上是将流过电表的电流换算为电阻值刻在表盘 上,当流过电表的电流大时,指示的电阻小,测量时,流过电表的电流由万用表 的内阻和二极管的等效直流电阻之和联合决定。

现代电子线路基础----_习题答案

现代电子线路基础----_习题答案
ic
A
临 界 线
vBmax
B
C
Q
vCE
题图 6.4 解: 1)根据电路可得 : 则在 vi 0,VCE VCC 时,
i
C
GVbm cos ,又因为 0 / 2 ,所以 i C 0
因此,当 vi 0,VCE VCC 时,动特性不从 C 点开始,而是从 Q 点开始。
2 2 2 6 G P 0.252 2860 106 36.7 106 0.228(mS ) 1 goe P 2 gie g0 0.25 200 10
BW
f0 10.7 656( KHz) , Q L 16.3
A V0
P1P2 | y fe | 0.25 0.25 45 10 3 12 G 0.228 10 6
I1=I2=I/2
题图 6.8 v1=v2
RD 上的电压 VRD=v1+v2
V I 2 * RD v2 ( I1 I 2 )* RC v1 ( I1 I 2 )* RC
I * 2 R v1 v1 v1 I * RC 2
V 2
V V1 I * R C v1
2 2 3 2 3 6 G P 0.396( mS ) 1 goe P 2 gie g0 0.2 10 0.25 2.8 10 21.4 10
(4)
QL
1 G0 L

1 8.9 0.396 10 2 30 106 1.5 106
6.4 题图 6.4 示出了晶体管丙类调谐功放晶体管的输出特性 (vBE 最大值对应的一条输出特性曲线 )和负载线 A-B-Q 直线 (也称输出动特性 ),图中 C 点对应的 vCE 等于电源 VCC,试解答下列问题。 (1) 当 vi=0,VCE=VCC 时 ,动特性为何不从 C 点开始 ,而是从 Q 点开始? (2) 导通角 为何值时 ,动特性才从 C 点开始? (3) ic 电流脉冲是从 B 点才开始发生,在 BQ 段区间并没有 ic ,为何此时有电压降 vBC 存在?

电工电子学课后习题答案

电工电子学课后习题答案

电工电子学课后习题答案目录电工电子学课后习题答案 (1)第一章电路的基本概念、定律与分析方法 (1)练习与思考 (1)习题 (4)第二章正弦交流电 (14)课后习题 (14)第三章电路的暂态分析 (29)第四章常用半导体器件 (41)第五章基本放大电路 (43)第六章集成运算放大器及其应用 (46)第七章数字集成电路及其应用 (54)第八章Multisim简介及其应用 (65)第九章波形的产生与变换 (65)第十章数据采集系统 (67)第十一章直流稳压电源 (69)第十二章变压器与电动机 (71)第十三章电气控制技术 (77)第十四章电力电子技术 (80)第一章电路的基本概念、定律与分析方法练习与思考1.4.2(b )1.4.2(c)1.4.3(a )1.4.3 (b)1.4.3 (c)aababb552155a ba b U V R =+⨯==Ωab666426ab ab U V R =+⨯==Ω1.4.3 (d)1.4.4 (2)abR 106510405a b a b U U V R =+=⨯+==Ωab124s s u u I =I = 912:23036ab sab ab KVL u u u R I +- I = =-6⨯ =+1=3Ω3+6R习题1.1 (a )(b ) (C) 1.2242434311515155b bb bV V R R V V R R --I = I =-+I =I =12341243:b b b b bKCL V V V V R R R R V I =I +I +I +515-6- 5- = + +求方程中2121+9+9==50k 100k 9:=150k 100kb b b b b b b V V V V R R V V K C L V V 6-6-I =I = 6-+=b :650K I+100K I 9=01100K I=15 I=A10k 1=650k =1V10kK V L V -+--⨯5427x A I =+-=10.40.70.3x AI =-=-20.30.20.20.1x AI =-++=40.230x ⨯I ==0.1A 6030.20.10.3x AI =+=2x 10⨯0.3+0.2⨯30I ==0.6A1.510.30.60.9x AI =+=30.010.30.31A I =+=49.610.319.3AI =-=1.3发出功率吸收功率吸收功率 吸收功率1.61.7(a ) (b) 1.81.91.10(a): 60.39.39.6AI =+=114228P =-⨯=-ω211010P =⨯=ω3428P =⨯=ω4(110)10P =--⨯=ω=28=28P P ωω发吸=P P 吸发612050606()12460120R R R mvV b V=== =⨯=+Ω(a) u u 144s u V=⨯=252209s s s I A u u V = -+-⨯= =12221014102110s s u V I A =⨯+==-=-121428P =-⨯=-ω210110P =-⨯(-)=ω1230.450.30.450.30.15I A I A I A= = =-=1233 6.341680.1510 6.34 6.3174.40.45x y u R I R ⨯===-⨯-==ΩΩ2116u u V==(b): (c): (d): 1.111.121.13 (a)(b)2516 1.6455u V =⨯=+251.60.16455u V =⨯=+250.160.016455u V =⨯=+2211128.41p pR R u u VR R R +==++222112 5.64pR u u VR R R ==++B A 630.563=0.51990.5199.5CD D D R R R ⨯==+=+=ΩΩΩ12342311055235 4.23.60.650.83.6I mA I mA I mA I mA I I =⨯= = =⨯==⨯==-10199.5 1.995=15=510 1.9950.01995AD BD s u mV u mVP =⨯=⨯=-⨯=-ωRAB1.151.16AB3Ω1.5Ω1.5611.53I A -==-+2Ω3Ω3I1.171.181.19311302451010110532110202121621633311633s I A I I I I A I A I A I A+==+++=-=-==--=-=-+==⨯=+=⨯=+Ω821222I A-==++1231113333222:00I I I KVL u I R I R I R I R u += -++= --+=12316622757575I I I ==0.213 ==0.08 ==0.2931.201.211.221321232123218:14020606041012n I I I KVL I I I I I A I A I A=+=+ -++= 5-== = =1122208066014045606018108u I V u I VP P ==== =-⨯=-ω =-⨯=-ω 电压源发出功率电流源发出功率1212221232+10:0.81201160.400.4116408.759.37528.125n I I IKVL I I I I I A I A I A=+= -+-= -+== = =22120:1209.3751125116:120160.75101510:10428.1251175:28.12543078.125L V P V P A P R P I R =-⨯=-ω=-⨯=-ω =-⨯⨯=-ω ==⨯=-ω122212220.523133427I I V V I V I V +=----====suR R1.231.24 (a)(b)开关合在b 点时,求出20V 电压源单独作用时的各支路电流:212460.14020s u I AR R ===++R R sI 2422240.10.10.2200.30.14020s I A R I I AR R =+==⨯=⨯=++31110.250.50.5111I A=⨯=+++sI 3231120.50.50.5120.250.50.75I AI A =⨯⨯=++=+=1231223123:01:2130120202:21204015,10,25KCL I I I KVL I I KVL I I I A I A I A++= -+-= --== = =-所以开关在b 点时,各支路电流为:1.25(b )等效变换(c )等效变换2Ω''1'2'3204422442206224202222442I A I A I A =-⨯=-+//+==+//=-⨯=-+//+123154111061625227I AI AI A=-==+==--=-3A AA B(3 2.5)211ab U V=+⨯=ab b4A1.26戴维宁:诺顿:1.28(1) 求二端网络的开路电压:(42) 1.59ab U V=+⨯=1220110225122110255015a ab L u V R I A =⨯===⨯=+Ω22022505252225225255015ab ab L I A R I A ====⨯=+Ω10410242ab U I V ⨯=-=-=10410242ab U I V⨯=-=-=(2)求二端网络的等效内阻(电压源短路、电流源开路)(3)得到戴维南等效电路1.32 (a )2.3.2(a) 取电源为参考向量(b)24ab R R Ω==1120.15413ab ab U I A A R R ∴==≈+1231235050105205050105201007A A AA A A A I I I V V V I I I V V V V V =+-+===-+=+=-2()tan 601=22c C c C C U I RU I jX IR R IX X X X fc fc ∙∙∙∙0==-==== π∴π又第二章 正弦交流电课后习题2.3.2(a) 取电源为参考向量(b)2R U ∙∙2()tan 601=22c C cC C U I RU I jX IRR IX X X X fcfc ∙∙∙∙0==-==== π∴π又R U ∙∙1U ∙2()tan 60=2R2c R CL L U I jX U I RIRIX X X fL fL ∙∙∙∙0==∴==∴=π∴π又2()tan 60=2R2c R C L L U I jX U I RIR IX X X fL fL ∙∙∙∙0==∴==∴= π∴π又习题2.22.3(1)(2)111122334455,10sin(100045)45554510sin(100045)5513510sin(1000135)5513510sin(1000135)I j I i t AI AI j Ai t A I j Ai t AI j A i t A ∙00∙00∙00∙00=+ =∴=+==-=-=-=-+==+=--=-=-1∙∙12126306308arctan =536=+=10)U V U VU U U Vu t V∙∙000∙∙∙00=∠ =∠ϕ= ∠83=ω+832.4(a) 以电流为参考向量(b )以电流为参考向量1210301060arctan1=45(4530)7520sin(75)I A I A I A i t A∙∙000∙0000=∠- =∠ ϕ= ∴=-+=-=ω-I ∙∙RU ∙10arctan=451014.145U V U V 0∙0ϕ= ===I ∙CR U ∙∙22280C R C U U U U V=+∴==(c) 以电流为参考方向(d )以电压为参考方向(e ) 以电压为参考方向1122sin()sin(90)sin(45)u t i t A i t A 00=ω=ω+=ω-I ∙∙C (200100)9010090100U V U V∙00=-∠=∠=U∙I ∙∙RI∙L I ∙3L I I A=∴==U ∙∙R I I ∙(f )以电压为参考方向2.5 (1)(2)2.6(1)7.07I A ===U ∙∙I ∙18L CL C I I I I II A=-∴=+=3)70,2314/31.470314100219.80309.9sin()310C L L L C L I t AI A f rad s X L U I j L V Vu t V ∙0∙∙0-000=ω=∠ ω=π==ω=Ω=ω=∠⨯⨯⨯10∠90=∠9=ω+903309.9sin()3101274314100L L L Lu t V U I A L X 0-=ω+90===ω⨯⨯10(2)2.9 (1)(2)(3)2.10(1) 电容两端6220022011796.22 3.1402200.28796.20.280.39sin()c c C c C c C c U V U VX C U I A X I i t A∙0-∙00=∠ ====Ωω⨯⨯5⨯4⨯10====∠90=ω+900.10796.279.6c U V∙000=∠-6⨯∠-90⨯=∠-150)22002314/)100u t V U Vf rad si t A I A0∙00∙0=ω+30=∠3ω=π==ω-30=∠-322002201110060.7L UZ I X L mH ∙0∙0∠3===∠6=+Ω∠-3∴===ω00220102200cos 22010cos 601100sin 2200sin 601905varS UI V A P UI W ==⨯=∙=ϕ=⨯⨯=ϕ=ϕ=⨯=2u f=HZ|Z |=2000Ω 1000以为参考向量(2)电阻两端2.121I∙=-601cos 212sin 21707110.1c c cR k K X k X c uF c X ϕ=|Z |ϕ=⨯=Ω=-|Z |ϕ=-=Ω= ∴==ωω1U ∙U 2R U U ∙∙=1I∙0c =-30cos =2k 1X =sin =-2K =210.16R c uF c ϕ=|Z |ϕΩ|Z |ϕΩ==ω—(—)1000CLCZ=R+(X )10V L C R X j U -=Ω=∣Z∣I =10⨯1=102.132.14000001111111()300400500.0030.00050.003991000.33300L cZ R jX jX j j j U I A Z ∙∙=++- =+-+ =-=∠-∴Z =300∠∠20∴===∠11∠9U ∙以为参考向量I ∙L I ∙0000006V100200.47sin(100020)10000.4400100200.25400900.35sin(100070)11500C 100021010020R L L L L C c C U U Vu i R t X L U I A jX i t AX U I jX ∙∙∙-∙∙=∣Z∣I =10⨯1=10=∠== =+=ω=⨯=Ω∠===∠-70∠=-===Ωω⨯⨯∠==-00000.20500900.28sin(1000110)c A i t A=∠11∠-=+2.15(1)(2)(3)2.1813022101010101045C LC LC L R RR C C CR C X X I I I I I I I U I A U RV RU R I I A X X I I I AI ∙∙∙∙∙∙∙∙=∴=∴=++=== ======+=∠∴=000000000001000t-30V 1030()103040304090400120120)103050535008383)R S s C s C C s u i R I AU I jX Vu t V U I Z Vu t V ∙∙∙∙∙===∠-=-=∠-⨯∠-⨯∠- =∠-=-==∠-⨯∠-=∠-=-()00300103000400104000500105000cos -53=3009sin -53=-3993VarR S C C S S P U I WQ Q U I Var S UI V A P S WQ S ==⨯===-=-⨯=-==⨯=∙==()()601301000251030405053CZ R jX j j -=- =-⨯⨯⨯ =-Ω=∠-Ω2.19 (a) (1)(2)U ∙U ∙222824123430.3108(12)(12)10681.5111=X 0.067=0.022C 10 1.510 4.5R L R L CC C C C C C U R I U L I L H U U U U U jU U V VU X IC F F ∙∙∙∙===Ωω===Ω===++ =+-∴8+-=∴= == 4.5Ω ==ω⨯⨯或1或或0000010002000300040041000420100237537237483723749085323719025323729041274127 1.3337339041270.67376690U I A Z U VU VU VU VU I A j U I A j ∙∙∙∙∙∙∙∙∙∙∠===∠∠-=∠⨯=∠=∠⨯∠-=∠-=∠⨯∠-=∠-=∠⨯∠=∠∠===∠∠∠===∠∠10361823691243537j j Z j j j jj j j j ⨯-===Ω+Z =4-4-+ =-=∠-Ω(3)(b) (1)(2)(3)2.202.230cos 102cos(37)16P UI W =ϕ=⨯⨯-=10(4)(6)24 2.436102 2.443537j j Z j j j jj j j j ---===-Ω---Z =3.4+4+- =+=∠Ω0cos 102cos(37)16P UI W=ϕ=⨯⨯=01221201115545(55)105-5)10100==10A Z 10A 10AZ=10+1045Z 141.4Z j j j Z j jU I j U I V V=-=-Ω-⨯10==Ω+∴=||∴=Ω∴=||==(读数为读数为0000001002000300040041000420100237537237490237237483723790453237 2.490 4.81274.8127 1.2374904.81270.8376690U I A Z U V U VU V U VU I A j U I A j ∙∙∙∙∙∙∙∙∙∙∠===∠-∠=∠-⨯3.∠=∠-=∠-⨯=∠-=∠-⨯2∠=∠=∠-⨯∠-=∠-∠-===∠--4∠-∠-===∠--∠-2.242.292.30426014411111010101()11451()122101011 1.50.5C L X C j j Z j j j X L Z j Z j-===Ωω⨯⨯⨯--===-=-+--=ω=⨯=Ω=++=-000000000100.5229010110.5110.5 1.1(10.5)22+2(10.5)2211+2212123 3.61c c c c R c R R L R L c U I A j U I A R I I I j A A U I R j j VU I j j j j j V U U U U j j j V P UI ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∠===∠90-∠-∠===∠0=+=∠90+∠0=+ =∠26.6==+⨯= ==+=-=- =++=+-++=+=∠56.3 =00os 3.61 1.1cos(W ϕ=⨯⨯56.3 -26.6)=3.45 1100121221.21cos cos =0.5112206024.5(tan -tan 1.21(1.7320.456)=10222 3.14502201 4.54220380 4.541727.3sin 177.3-=-VarR P K P UI UI P C U K uF P K I A U S UI V AS =ϕϕ==⨯∴ϕ=ϕ==ϕϕω- =⨯⨯⨯=====⨯=∙ϕ=ϕ=⨯0.821408 ,,)()2.312.32(1)0861037220220221022P P P L P Z j U V U I A I I A=+=∠ Ω======|Z |==01601212.5617.3712.671131.5825010010220 6.9131.85=25.15220==8.75A 25.15cos =220cos RL RL C c c RL C RL C RL c Z R j L j UI Z Z j j c U I A Z Z Z Z Z Z Z U I Z P UI -=+ω=+=∠46.3Ω===Ω∣∣==-⨯=-Ωω⨯π⨯⨯⨯===∣∣//Z ==∠14.4Ω+==ϕ⨯8.75⨯14.4总总00=1864.5w cos =220sin =478.73w S=UI=220.75=1925V Acos 0.9686Q UI =ϕ⨯8.75⨯14.4⨯8∙ϕ=002202.22201002.2arccos 0.837100378060P P L P P U V I I AU I Z j ====|Z |===Ωϕ===∠=+ Ω(2)(3)(4)2.332.34220220220221038L P L P P L P U V U U VU I A I A= =====|Z |==380380380381066L P L P P L P U V U U VU I A I A= =====|Z |==220,380,Y 220N L L U V U V U V == =∆行,形C000000000000038022022002200220022002201022002201002200220100220220220L P A B C A A B B C C N A B B U V U VU VU VU VU I A R U I A R U I A R I I I I ∙∙∙∙∙∙∙∙∙∙∙∙∙= =∣Z∣=10Ω=∠ =∠-12 =∠12 ∠===∠∠-12===∠-3∠-9∠12===∠3∠9=++=∠+∠-3+∠3设002260.1022104840A A P I R W =∠==⨯=2.35(1)(2)(3)000312238380,220220 5.838cos cos35.63054sin sin35.6=2290Var 3817cos 0.8L P PL P L L L L L L Z j U V U VU I I A Z P I W I S I V A=+=∠35.6======∣∣∴=ϕ=380⨯5.8⨯=ϕ=ϕ380⨯5.8⨯==∙ϕ=380,1122L A B C U V R R R ==Ω==Ω,0000000000022222222002200220022002201122001002222010010010022111088A B C A A A B B B N A B B A A A B C C U V U V U V U I A R U I A R I I I I A P I R I R I R ∙∙∙∙∙∙∙∙∙∙∙=∠ =∠-12 =∠12∠∴===∠∠12 ===∠12=++=∠+∠-12+∠12=∠=++=⨯+⨯22+10⨯22=设00W0000000017.3017.30017.30017.3017.30300AB ABB CA CAC B AB C CA A AB CA U I A R U I A R I I A I I AI I I A∙∙∙∙∙∙∙∙∙∙∙===∠3===∠15=-=-=∠-15===-=∠3-∠15=∠2.362.372.38第三章电路的暂态分析3.1(1)00008.608.60N A BC B C B C C I I U I I A R R I A∙∙∙∙∙∙===-===∠-9+=∠9,05.57760cos ===1018.31018.3 5.59700320.7320.737256.6192.4L L L L I A P W U V S I V AZ = = ϕ0.8==⨯=∙∣Z∣===Ω=∠=+Ω32.919380380L P P P L P I AI A U I V U U V=====|Z |====0000000000380=2200220022010100000220039.3039.3L A A AAB ABA A A A U VU VU I A R U I A R I A I I I A I A∙∙'∙'∙'∙''''∙'''∙∙∙=∠∠∴===∠===∠3=⨯∠-3=∴=+=∠+=∠∴=设(2)3.2 (1)换路前:U c 22212111120(0)1000(0)(0)100(0)100100100(0) 1.0199(0)(0)1001000(0)0(0) 1.01c c c R R R R c t u U V t u u U V u V i A R u U u V u i A R i i i A--+-+++++++= == = === =====-=-=∴===-=-+-U c i cu 12121112222100()()1199()()1()()99()0()()99R R c c R U i i A R R u i R V u i R V i A u u V∞=∞===++∞=∞=∞=∞=∞=∞=∞=0t -=4(2)换路后 (2) 34342341234123442123(0) 1.52(0) 1.51 1.5L c L R R R K R K R R R K i uA Ku i R uA K V --=+=Ω=Ω=+=Ω====⨯=0t +=(0)(0) 1.5(0)(0) 1.5L L c c i i mA u u V+-+-====412146 1.5(0) 2.2511(0)0(0)(0)(0) 2.25 1.50.75(0) 1.5 1.5 1.510c L L L i mA K Ki A i i i mA mA mA u i R mA K V++++++-==+==-=-==-=-⨯Ω=t=∝R 4121236232c L L c L u V i mA Ki i mAi i u V(∝)=6⨯=(∝)==(∝)=(∝)=(∝)=0A(∝)=0A(∝)=03.3(1)求(2)求(3)求(4)3.4 ()c u +00(0)00(0)(0)0c c c t u V t u u V --+-+= ,== ==()c u ∞()20c t u U V=∞,∞==τ8.330.12()20(020)2020t t c u t ee V--=+-=-s/0t -=13K ΩR 60V (0)10660(0)(0)60c c c u m k Vu u V-+-=⨯===0t +=2121212121661:112)22060.12R R K C C Z Z j c Z Z Z j c j c C C C C uFRC K s-==Ω//==ω=//==ωω(2∴=//==∴τ==Ω⨯20⨯10=13K ΩR c u 36=5366060(0)125C K K R K K Ki mA R K +⨯=Ω+--===-Ω总总t =∝10mAR ()0()0C Ci u ∝=∝=1R 3K ΩR []20622100105521010()()(0)()060060()t c c c c tt R K RC K s u t u u u e e e V ----+--=Ωτ==Ω⨯⨯=⎡⎤∴=∝+-∝⎣⎦ =+-=[]210010()012012()tt c i t mA e e mA ---=+--=-3.5(1)求(2)求(3)求t s /s(0),()c c i u ++03131210(0)1005020(0)(0)505010050(0) 6.2544c c c c R t u U V R R t u u V U i A R R --+-++= ,=⨯=⨯= += ==--===++()()c c i u ∞,∞,()0,()100c c t i A u U V=∞∞=∞==τ3.6565612651021051021088210()0(6.250) 6.25()100(50100)10050tt c tt c R R R RC s i t e e A u t ee V -----⨯⨯--⨯⨯=+=Ωτ==⨯0.25=⨯∴=+-==+-=-0t -=U 11124(0)10544c R u u V R R -=⨯=⨯=++0t +=(0)(0)5c c u u V+-==cu U 2212232250c c i i i U iR i R i R i R =+=++-=(0)0.625(0)0.3125c i mAi mA++∴= =3.7t =∝R 2R 120312602244100100.4R R R R K K K R R R C K s -=+=Ω+Ω=Ω+τ==Ω⨯⨯=22122120.40.50.52.5 2.51()5 2.52()05()0.62544() 2.5(5 2.5)2.5 2.5()0(0.6250)()0.625(0.31250.625)c c tc t t c t t R u U V R R i U i mA R R K K u t ee V i t e V e mA i t e -----∝=⨯=⨯=+∝=∝===+Ω+Ω∴=+- =+ =+-- =-0.625=+-2.50.6250.3125t e mA- =-U 650.250.10(0)0()2050100.2()20(020)2020(0.1)0.1(0.1)20207.870.1(0.1)7.87c c tt c c c t u t u U V RC K s u t e e V t s t u e V t u V ++----⨯--++= = =∝ ∝==τ==Ω⨯4⨯=∴=+-=- ≤= =-== =(0.1)(0.1)207.8712.13R c u U u V++=-=-=3.8()0R t u =∝ ∝=36000.2100(0.2)0.0100.2,11010100.01(0.2)(0.2)100.2,(0.2)(0.2)10(0.2)(0.2)(0.2)01010,()0()0(100)10,0.20,(0)(0)0c i c i i c t t c i t RC s u u Vt u u V u u u V t u Vu t e e V t t u u V ----++-+++-------=τ==⨯⨯⨯======∴=-=-=-=∞∞=∴=+--=-≥===001000.0100,(0)(0)0(0)(0)10,()0()0(100)10,00.2c i i tt t u u V u u Vt u Vu t e e V t +++++-======∞∞=∴=+-=≤≤u V/t s/0600.11010.11010.10.1()0252254100.1()0(12.130)12.13(0.1)()20()()12.13(0.1)()20(7.8720)R t t R c t R c t c t u R R K R C K s u t ee V t t u t U Vu t U u t e V t u t eV----+-+-=∝ ∝===Ωτ==Ω⨯⨯==+-= ≥=∝ ===-= ≥=+-3.9求,求3.10求(0)c u +(0),(0)B A V V ++0(6)0,(0)515250,(0)(0)1:10(0)125(0)660(0)0.31(0)6100.31 2.9(0)(0)1 1.9c c c B A B t u V t u u V KVL i i i mAV V V V V -+++-++++++--==⨯=+===⨯++⨯--= =∴=-⨯= =-=(),(),()cB A u V V ∞∞∞67127 2.3104.375106(6)()50.35 1.510525()6100.33()()()3 1.5 1.55(1025) 4.3754.37510010 4.37510() 1.5(1 1.5) 1.50.5() 1.5(1.9 1.5c B A B c tt c A u V V V V V u V R K RC s u t e e V V t -----⨯⨯--∞=⨯=⨯=++∞=-⨯=∞=∞-∞=-==//+=Ωτ==⨯⨯=⨯∴=+-=- =+-66662.310 2.3102.310 2.310) 1.50.4()3(2.93)30.1t t t t B e e V V t e e V-⨯-⨯-⨯-⨯=+ =+-=-U L(0)L i +3.11 (1)31312331210.531040,(0)0.25150,(0)(0)0.24()0.3257.5()0.16215 3.7518.75100.5218.75()0.16(0.20.16)0.160.04L L L L tL U t i A R R t i i A U t i A R R R i i A R R R R L ms R i t ee ---++---⨯====++====∞,∞===+//+ ∞===+//=+=Ωτ===∴ =+-=+875t A121212121212121212121)0.010.020.03(0),(0)0,(0)00,(0)(0)0(0)=(0)=0(),()6,()()2210.033,0.013()2(0L L L Z Z Z j L j L j L L L L L H i i t i At i i A L i i A i i U t i i A R R L R R R s R i t ++--++-++=+=ω+ω=ω(+∴=+=+======∞∞=∞∞=∞===++=+=Ωτ===∴=+求断开:求1000.0110012)22()22tt t e e Ai t e A----=- =-(2)3.123.13100.1220(0),(0)101201(0)(0)10220(),()110110.20.111()110(10110)110100()30,0.02L c L L tt U i i A R R R i i A U i t i A R R L s R R i t ee Ai t A t s+-+---===++++==∞=∞,∞===++τ===++∴=+-=- ==求求1(40')400'1000,(0) 2.5400,(0)(0) 2.5(0) 2.5'(0),'80,()0,()0140'40'5%:()0(2.50) 2.5ln 0.05'40600.0360't R t R t i A t i i A u R V u V R t i A u VL s R R t i t ee R R --++-++--++=======- ⎢⎢≤200≤Ω=∞∞=∞=τ==++=+-=≥--=Ω∴Ω≤≤80Ω求对应1010011112000.00512202020222500.022:()2()()26()320.010.0052()3(23)3:()2()()2()00.020.021()0(20)2tt tt L i t A i t i t A U i A R L s R i t ee A L i t A i t i t A i AL s R i t ee A-+----+---= ==∞===τ====+-=- = ==∞=τ====+-=第四章常用半导体器件4.2 (1)(2)(3)0.05760.05760.02880.02880,() 2.4(0 2.4) 2.4 2.4250,()2(012)12126()6,0.0288ln 0.0212:02500.02t t L t t L L R i t e e R i t e ei t mA t ms R ms----==+-=-==+-=-==-=∴~Ω~延时:0.0166+00,(0)0,0(0)06()1225014.425014.40,0.057625014.4250,0.0288500L L L L t t i A t i A t i mAL R R R s R s--+==>===∞∞==τ==+=τ===Ωτ==设时,开关闭合时,时,∴⨯∴去掉得优先导通则V 截止,,10,0,9109,19A B DA DB A FB D D U V U V D V D ====+∴⨯∴∴∴∴ 去掉得优先导通则V 导通,,6, 5.8,96 5.4,191196 5.81195.596 5.59 5.8 5.590.410.21110.62A B DA DB A FB A F B F F F F FF A B A B D D U V U V D V D V V V V V V V VV VI mA I mAI I I mA====+--+=--+==--=====+=4.44.5∴ ∴∴∴ 去掉得优先导通,,5,5,551194.735 4.730.270.2710.54A B DA DB A B F F FF A B A B D D U V U V D D V V V V VI mA I mAI I I mA==--+==-====+=LR->反向击穿241228,L Z RL ZL Z R U U U VR R U V ====+RL-IU ∴>80.08100:0.160.080.0880I Z R L Z R RL Z ZmU U I A R KCL I I I A mA I I -====-=-==LR -IU > ∴>2反向击穿=2100L IZ I L Z I R U U U R R U V U V=+4.6(1)(2)第五章 基本放大电路5.2输出端等效电路5.4 (1)LR-IU ∴∴∴⨯≤≤⨯∴⨯≤≤⨯∴≤≤3333:1010050050020500510301020510301050022.535R Z RL I Z ZZ L I Z I Z Z I I KCL I I I U U U I R R U I U I I U V U V----=+-=+-=+-=-∆β∆∆β∆11122220500.80.410500.80.6C B C B I I I I ===-===-ββ12184.50.43847.50.8--====-2U 0Ω∴∞ ∴Ω0'000'00'001,11111.1100L L L L R K U VR U U r R U r R U Vr ===+=+===(2)(3)5.6(1)(2)(3)β125024026CCB BC B CE CC C C V I uA R I I mAU V I R V»=====-=∴ ∴β012432640CC C CE C BV mA R I mA U VII ======1206C BE C CE U U U U V=»==R-∙+∙∙∙∙∙∙∙ββββ⨯⨯011(1)(1)10020.98(1.41012)b ccu be Eib be b EU I R R A r R U I r I R --===++++-==-+()()∙∙∙∙∙ββββ⨯⨯02211(1)(1)10120.9(1.41012)b EEu be Eib be b EI R R U A r R U I r I R ++===++++==+5.75.8分压偏置共射极放大电路(1)(2)∙∙∙∙∙∠0⨯∠0∠180 ω⨯∠0∠0ω 000011001000220210.9810.981.39sin(180)0.9910.991.4sin i u i u i U U A U u t mVU A U u t mV===-==+====ΩΩβ⨯Ωβ⨯∴Ωβ∴⨯01200,20lg20046512100,20lg10040510.0520122400052626200(1)200(120)74611007463.7320121 3.738.2u Li m C B CC B B be ECu be u be C CE CC C C A dBmAU R K A dBI uA I I mAB V R K I mA r I R A r A r R K U V I R ==========»===++=++==-=-=-==-=-=7V⨯⨯β212201236020301.52()12 1.5(32) 4.51.52560B B CC B B B BE C E E CE CC C C E C B R U V VR R V V I I mAR U V I R R VI I uA===++--»====-+=-+====5.9 (1)(2)第六章 集成运算放大器及其应用6.2βΩ//⨯ΩΩ'026300(160) 1.361.5366088.21.361.363Lu bebe u i be R A r r K A r r K r RC K =-=++==-=-====β⨯β⨯⨯⨯1295.2(1)755115095.2 4.7612(150)95.217.14CCB B E CB CE CC E E V I uAR R I I mAU V I R V===+++=====-+=β⨯//⨯//ββΩ//β//⨯//1Ω//Ωβ''''0(1)51(11)0.98472.8451(11)(1)(1) 4.8626200(150)472.844.86(1)75472.84(150)(1)19.3472.84757510.741150Lu be LE B be i B be L be S R A r R I I mAr r R r R K r R r +===+++=+==++=éù=++êúëûéù=++=êúëû++===++(1)(2)∴ ∴ ∴ 0000:i f f if LiL L ii i u u u u u u u u u u KCL R Ru u R Ru R Auf u R+--++-==========∴ ∴∴∴∴A 11''1'10''001000:(1)(1)i ii i fE E Ef F FI E EFE i EF c cc EE F EE c EF c F i Ei i u u u u u u i R R KCL i i u R i i R R u R i R R R R u i R u i R i i i i i R u R iR u R Ruf Au R R +-+-+=====-==-===-==-=-»=+=-+==+(3)(4)6.3(1)(2)6.400001i iii i i u u u u u u u u u u uAuf u +-++---=========∴∴∴∴11''0033'''00313031000:i ii f f i fi i i i u u u u u u u i R R u u u i R R u u u u u i R KCL i i u u R R u RAuf u R +-++----+=====-==-==-====-==-==-∴±±⨯±55520lg 100101313100.1310opp dm uAu Au U u V mVA -======±⨯±5max 13100.0652dm id u I mA r -===6.56.6(a)(b)6.76.8∴0201222102212222122112211111f i x A x A F A A x A F A A A x A A F A A F A F A F =++===++++∴∴∴~Ω Ω∴~0101110066:6(1):01010:612F F F F i i u V u u Vu u u KCL R R R Ru u u R R R K R K u V+-+-+----=====-==+=+=∴改变对无影响00,0iiR iL u u u u u u u i i R R u i RR i +--+--=======改变对无影响00,0i iR L u u u i ui i RR i -+-=====改变对无影响00000L i R L iR iiL u i R u u u i i u i R u i R R u i R R i +-+-=+==-===作用时12,i i u u6.9'0u 4u i u ∴∴⨯'12012'12012000123()1()222i i Fi i F i i u u u u u R R R u u u R VR R +-+-====++==-+=-+=-作用时34,i i u u''04R ||∴∴∴34343434343434''012''0''034'''0000:0()2:234737 5.52i i i i i i Fi i i i u u u u KCL R R R R u u u u u R R R R u u u KCL R R R u u u u u u u Vu u u V +-+++---+-==--+=+=+=+-====+=+==+=-+=。

电子线路(清华大学出版社,董尚斌主编)第2章_放大器基础PPT

电子线路(清华大学出版社,董尚斌主编)第2章_放大器基础PPT

2.1.2 共发射极放大电路
输出电流的振幅Icm= 3. 能量关系
βIbm比输入电流Ibm大β 倍,因而实现了电流放大
PDIC(Q VCEQ ICR Qc)
ห้องสมุดไป่ตู้
输出电压的幅度Vcem= IcmRc>>Vim=Vbem=
PC ICQVCEQ
IbmRi〔Rc>Ri输入电 阻〕,因而实现了电压放
PRc IC2QRc
参加单一频率信号后的 波形见图(a)所示
2.1.2 共发射极放大电路
4. 电路的通常画法 直流通路:画直流通路
是为了在计算放大器的 静态工作点时能一目了 然,其具体画法是将电 容断开即可得到直流通 路,图2-1-6(b)为图(a) 的直流通路图。
2.1.2 共发射极放大电路
4. 电路的通常画法
P C2 10 2 iCCd E (t) ICV Q CE 1 2 Q IcV m cem P R c1 20 2 iC 2R cd(t)IC 2R Q c1 2IcV m cem
2.1.2 共发射极放大电路
〔1〕可见,动态时,电源提供的功率未变,均为 ICQVCC,在输入信号的作用下,原来消耗在集电 结的功率的一局部转换为Rc上的功率,假设Rc为 负载,即在输入信号的作用下,电源提供的功率转 换为输出信号功率〔输入→PC↓→PRc↑〕。
状态B 。EVBE QVB(E o)n iB VBBRbVBEQIBQ
iCiBIBQ ICQ
2.1.2 共发射极放大电路 (电
路分析(动态))
动态是υs≠0时的交流工作状态,这时半 导体三极管各电极电流和电压都随交流信号 变化。即动态运用是在直流工作状态的根底
上 电叠流B 加、 E 有电V B 交压流 的 E 信 变i Q 号 化V 时 情B , 况 E 半 。b 导 假Q e 体 设V B 三输极入 E V 管信iQ 各号m s电电i极压tn

高频电子线路最新版课后习题解答第八章--反馈控制电路答案

高频电子线路最新版课后习题解答第八章--反馈控制电路答案

第八章 思考题与习题8.1 反馈控制电路中的比较器根据输入比较信号参量的不同,可分为 自动电平控制电路 、自动频率控制电路 和 自动相位控制电路 三种。

8.2 自动增益控制电路又称AGC ,比较器比较的参量是 电压 。

自动增益控制电路的核心电路是 可变增益放大器 。

8.3自动相位控制电路又称 锁相环,比较器比较的参量是 相位 。

基本的锁相环路由 鉴相器 、 环路低通滤波器和 压控振荡器 三部分组成。

锁相环再锁定时,只有剩余相位 误差,而没有剩余 频率误差。

8.4 锁相环实际上是一个 相位反馈控制系统,当环路达到锁定状态时,输出信号与输入参考信号两者的频率相等。

8.5 AGC 的作用是什么?主要的性能指标包括哪些?答: AGC 电路可用于控制接收通道的增益,它以特性增益为代价,换取输入信号动态范围的扩大使输出几乎不随输入信号的强弱变化而变化。

其性能指标有两个:动态范围和响应时间。

8.6 AFC 的组成包括哪几部分,其工作原理是什么?答:AFC 由以下几部分组成:频率比较器、可控频率电路、中频放大器、鉴频器、滤波器。

工作原理:在正常情况下,接收信号的载波为s f ,本振频率L f ,频输出的中频为I f 。

若由于某种不稳定因素使本振发生了一个偏移+L f ∆。

混频后的中频也发生同样的偏移,成为I f +L f ∆,中频输出加到鉴频器的中心频率I f ,鉴频器就产生了一个误差电压,低通滤波器去控制压控振荡器,使压控振荡器的频率降低从而使中频频率减小,达到稳定中频的目的8.7 比较AFC 和AGC 系统,指出它们之间的异同。

解:二者都属于反馈控制系统,但AFC 是采用鉴频器,将输入的两个信号的频率进行比较,它所输出的误差电压与两个比较的频率源之间的频率差成正比,所以达到最后稳定状态时,两个频率之间存在稳态频率误差。

而AGC 是将输出电压经过处理后反送到某一前端放大器控制该放大器的增益,以达到使输出电压基本不变的目的。

电子线路董尚斌编_课后答案超全

电子线路董尚斌编_课后答案超全

《电子线路(I )》 董尚斌编课后习题(1到7章)第1章1-1 本征半导体与杂质半导体有什么区别?解:本征半导体是纯净的,没有掺杂的半导体,本征半导体的导电性能较差,在温度为0K 时,半导体中没有载流子,它相当于绝缘体。

在室温的情况下,由本征激发产生自由电子—空穴对,并达到某一热平衡值,本征载流子浓度kT E i g e T A n 22300-=与温度有关。

杂质半导体是在本征硅或本征锗中掺入杂质得到的,若掺入5价元素的杂质可得到N 型半导体,N 半导体中的多子为自由电子,少子为空穴,由于掺入微量的杂质其导电性能得到了极大的改善,其电导率是本征半导体的好几个数量级。

在杂质半导体中,多子的浓度取决于杂质的浓度,而少子的浓度与2i n 或正比,即与温度有很大的关系。

若掺入3价元素的杂质可得到P 型半导体。

1-2 试解释空穴的作用,它与正离子有什么不同?解:空穴的导电实际上是价电子导电,在半导体中把它用空穴来表示,它带正电是运载电流的基本粒子,在半导体中,施主杂质电离后,它为半导体提供了一个自由电子,自身带正电,成为正离子,但由于它被固定在晶格中,是不能移动的。

1-3 半导体中的漂移电流与扩散电流的区别是什么?解:漂移电流是在电场力的作用下载流子定向运动而形成的电流,扩散电流是由于浓度差而引起的载流子的定向运动而形成的电流1-4 在PN 结两端加反向偏压时,为什么反向电流几乎与反向电压无关?解:PN 结加反偏电压,外加电场与内电场方向相同,PN 结变宽,外加电压全部降落在PN 结上,而不能作用于P 区和N 区将少数载流子吸引过来。

漂移大于扩散,由于在P 区及N 区中少子的浓度一定,因而反向电流与反偏电压无关。

1-5 将一个二极管看作一个电阻,它和一般由导体构成的电阻有何区别?解:将二极管看作一个电阻,其明显的特点是非线性特性。

而一般由导体构成的电阻,在有限的电压、电流范围内,基本上是线性的。

(1) 二极管的正反向电阻,其数值相差悬殊。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电子线路(I )》董尚斌编 课后习题(1到7章)第1章1-1本征半导体与杂质半导体有什么区别?解:本征半导体是纯净的,没有掺杂的半导体,本征半导体的导电性能较差,在温度为0K 时,半导体中没有载流子,它相当于绝缘体。

在室温的情况下,由本征激发产生自由电子—空穴对,并达到某一热平衡值,本征载流子浓度kTE i g eT A n 22300-=与温度有关。

杂质半导体是在本征硅或本征锗中掺入杂质得到的,若掺入5价元素的杂质可得到N 型半导体,N 半导体中的多子为自由电子,少子为空穴,由于掺入微量的杂质其导电性能得到了极大的改善,其电导率是本征半导体的好几个数量级。

在杂质半导体中,多子的浓度取决于杂质的浓度,而少子的浓度与2i n 或正比,即与温度有很大的关系。

若掺入3价元素的杂质可得到P 型半导体。

1-2试解释空穴的作用,它与正离子有什么不同?解:空穴的导电实际上是价电子导电,在半导体中把它用空穴来表示,它带正电是运载电流的基本粒子,在半导体中,施主杂质电离后,它为半导体提供了一个自由电子,自身带正电,成为正离子,但由于它被固定在晶格中,是不能移动的。

1-3半导体中的漂移电流与扩散电流的区别是什么? 解:漂移电流是在电场力的作用下载流子定向运动而形成的电流,扩散电流是由于浓度差而引起的载流子的定向运动而形成的电流1-4在PN 结两端加反向偏压时,为什么反向电流几乎与反向电压无关?解:PN 结加反偏电压,外加电场与内电场方向相同,PN 结变宽,外加电压全部降落在PN 结上,而不能作用于P 区和N 区将少数载流子吸引过来。

漂移大于扩散,由于在P 区及N 区中少子的浓度一定,因而反向电流与反偏电压无关。

1-5将一个二极管看作一个电阻,它和一般由导体构成的电阻有何区别?解:将二极管看作一个电阻,其明显的特点是非线性特性。

而一般由导体构成的电阻,在有限的电压、电流范围内,基本上是线性的。

(1) 二极管的正反向电阻,其数值相差悬殊。

正向电阻很小,而反向电阻很大。

(2) 二极管具有负温度系数,而导体构成的电阻具有正温度系数。

1-6在用万用表的电阻档测二极管的正向电阻时,发现R ⨯10档测出的阻值小,而用R ⨯100档测出的阻值大,为什么?解:万用表测量电阻时,实际上是将流过电表的电流换算为电阻值刻在表盘上,当流过电表的电流大时,指示的电阻小,测量时,流过电表的电流由万用表的内阻和二极管的等效直流电阻之和联合决定。

通常万用表欧姆档的电池电压为1.5V ,R ×10档时,表头满量程为100μA ,万用表的内阻为SR '=150Ω,R ×100档时万用表的内阻为Ω='=150010S S R R 。

用万用表测二极管所构成的电路如题图1-6(a )所示,图中虚线框内所示电路为万用表的等效电路。

由图可得管子两端的电压V 和电流I 之间有下列关系:R ×10档:SR I V '-=5.1 R ×100档:SS R I IR V '-=-=105.15.1这两个方程式在V-I 坐标系中均为直线,如图(b )所示;从二极管本身的特性看,管子的电压和电流应满足特性曲线所表示的规律。

因此,同时受这两种关系约束的电压和电流必定在特性曲线与直流负载线的交点上。

用R ×10档测量时,交于图中A 点,万用表读数为V 1/I 1;用R ×100档测时,交于图中B 点,万用表读数为V 2/I 2。

显然前者的阻值较小,而后者的阻值大。

1-18在300K 下,一个锗晶体中的施主原子数等于2×1014cm -3,受主原子数等于3×1014cm -3。

(1)试求这块晶体中的自由电子与空穴浓度。

由此判断它是N 型还是P 型锗?它的电功能主要是由电子还是由空穴来体现?[提示]若N a =受主原子(负离子)浓度,N d =施主原子(正离子)浓度,则根据电中性原理,可得p N n N d a +=+又2i n np =(300K 下,锗的n i =2.4×1013cm -3) 由上二式可求出n 、p 之值。

(2)若 N a =N d =1015cm -3,重做上述内容。

(3)若 N d =1016cm -3,N a =1014cm -3,重做上述内容。

解:(1)由2i n np =与n +N a =P +N d 可得0)(22=--+i a d n p N N p 解之得⎥⎦⎤⎢⎣⎡+-±--=224)()(21i a d a d n N N N N p由于p >0,故上式根号前应取“+”号,已知n i =2.4×1013cm -3,N a =3×1014cm -3, N d =2×1014cm -3 代入上式得[]3142132141410055.1)104.2(410)32(10)32(21-⨯=⎥⎦⎤⎢⎣⎡⨯+⨯-+⨯--=cm pn =p +(N d -N a )=1.055×1014+(2-3)×1014=5.5×1012cm-3由此可知 n <p 因而是P 型锗。

(2)由于 N a =N d ,因而由n +N a =p +N d 得n =p =n i =2.4×1013cm -3 这是本征锗。

(3)由于N a <<N d ,因而可得n >>p n ≈N d =1016cm -33101621321076.510)104.2(-⨯=⨯==cm n n p i n >>p ,故为N 型锗。

1-20若在每105个硅原子中掺杂一个施主原子,试计算在T =300K 时自由电子和空穴热平衡浓度值,掺杂前后半导体的电导率之比。

解:T =300K 时,n 0≈N d =(4.96×1022/105)cm -3=4.96×1017cm -3>>n i =1.5×1010cm-3则320201053.4-⨯≈=cm n n p i本征半导体电导率σ本=(μn +μp )n i q =5.04×10-6S/cm 杂质半导体电导率σ杂≈μn n 0q =119S/cm 因此σ杂/σ本=238×105 1-21在室温(300K )情况下,若二极管的反向饱和电流为1nA ,问它的正向电流为0.5mA 时应加多大的电压。

设二极管的指数模型为)1(-=TD m V S D eI i υ,其中m =1,V T =26mV 。

解:将1115.0>> ,,,TDV S D enA I m mA i υ===代入公式得SDT D S D V I i V I i e T D ln=⇒=υυ V I i V SDT D 34.0ln≈=υ 1-25 二极管的正向伏安特性曲线如题图1-25所示,室温下测得二极管中的电流为20mA ,试确定二极管的静态直流电阻R D 和动态电阻r d 的大小。

解:(1-25)从图中可见,I DQ =20mA 、V DQ =0.67V ,所以静态直流电阻R D 为Ω=⨯==-5.33102067.03DQDQ D I V R 从图中可见,mA I D 201030=-=∆,因而在静态工作点处其交流电阻为Ω==∆=3.12026D T d I V r 1-26由理想二极管组成的电路如题图1-26所示,试求图中标注的电压V 和电流I 的大小。

解:在图(a )电路中D 2管优先导通,输出端电压=+3V ,D 1截止,通过1k Ω电阻的电流I=8mA ;题图1-26(b )的变形电路如右图所示,从图中可见:假定D 1截止D 2导通,则输出端的电压()()V 33.310101051010+=-+⨯+--=;由于D 2是理想二极管,则A 点电压也为+3.33V ,显然,假定D 1截止是错误的。

若D 1导通,A 点电压为零,则输出端电压也为零V =0,则通过D 1的电流为()mA I 110100510=---=1-27二极管电路如题图1-27所示,判断图中二极管是导通还是截止状态,并确定输出电压V o 。

设二极管的导通压降为0.7V 。

解:判断二极管在电路中的工作状态,常用的方法是:首先假设将要判断的二极管断开(图中A 、B 两点之间断开),然后求该二极管阳极与阴极之间承受的电压。

如果该电压大于导通电压,则说明该二极管处于正向偏置而导通,两端的实际电压为二极管的导通压降;如果该电压小于导通电压,则二极管处于反向偏置而截止。

在判断过程中,如果电路中出现两个以上二极管承受大小不相等的正向电压,则应判定承受正向电压较大者优先导通,其两端电压为导通电压降,然后再用上述方法判断其余二极管的状态,具体分析如下:①在图题1-27(a )中,首先将二极管D 断开,求二极管两端将承受的电压V AB =V A-V B =-5V -(-10V )=5V 。

显然,二极管接入以后处于正向偏置,工作在导通状态。

如果设二极管是理想器件,正向导通压降V D =0V ,则输出电压V O =V A -V D =-5V 。

若考虑二极管的正向压降V D(on)=0.7V ,则输出电压V O =V A -V (on)D =-5V -0.7V =-5.7V 。

②在图题1-27(b )中,断开二极管V D ,有V AB =V A -V B =-10V -(-5V )=-5V 。

可见,二极管V D 接入以后,将承受反向电压,D 处于截止状态(相当于断开),电路中电流等于零(设反向饱和电流为零),R 上的电压降等于零,故V O =V B =-5V 。

③在图题1-27(c )中,首先将D 1和D 2断开,求两管将承受的电压为: V D1: V B1A =V B1-V A =0V -(-9V )=9VV D2: V B2A =V B2-V A =-12V -(-9V )=-3V 二极管接入以后,V D1因正偏处于导通,则 V O =V A =V B1-V VD1=0V -0.7V =-0.7V而V B2A =-12V -(-0.7V )=-11.3V ,所以,V D2因反偏处于截止状态。

④在图题1-27(d )中,首先将V D1和V D2断开,求得两管将承受的电压。

V D1: V AB1=V A -V B1=15V -0V =15VV D2: V AB2=V A -V B2=15V -(-10V )=25V 二极管接入以后,因V D2承受的正向电压较V D1高,优先导通;使A 点的电位V A =V B2+V D2(on )=-10V +0.7V =-9.3V 。

D 1因承受电压而截止。

故V O =V A =-9.3V1-28题图1-28所示电路中稳压管的稳压值为6V ,稳定电流为10mA ,额定功率为200mW ,试问(1)当电源电压在18V ~ 30V 范围内变化时,输出V o 是多少?稳压管是否安全?(2)若将电源电压改为5V ,电压V o 是多少?(3)要使稳压管起稳压作用,电源电压的大小应满足什么条件?解:由于稳压管的额定功率为200mW ,而V Z 为6V ,则通过稳压管的最大允许电流为mA I Z 3.336200max ==(1)当电源电压在18~30V 范围内变化时,输出电压V o =6,而通过稳压管的电流I Z 为mA I Z 241016303=⨯-=<max Z I ,所以稳压管是安全的。

相关文档
最新文档