八年级下期中测试卷
人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
人教版物理八年级下册 期中综合测试卷(含答案)

期中综合测试卷时间:90分钟满分:100分题号一二三四五总分得分一、选择题(每小题2分,共20分)1. 托起下列物体所用的力约为 1 N 的是 ( )A.一支铅笔B.一张课桌C.两个鸡蛋D.两枚硬币2. 关于弹簧测力计的使用,下列说法中不正确的是 ( )A.使用时,要认清量程和分度值B.不能用来测量超过它的测量范围的力C.测量前要检查指针是否指在零点D.在航天飞机上处于失重状态下的宇航员,能用弹簧测力计测出重力的大小3. 在下列生活和生产实例中,利用连通器原理工作的是 ( )4. 如图所示,人坐在小船上,在用力向前推另一艘小船时,人和自己坐的小船却向后移动.该现象说明了 ( )A.力能使物体发生形变B.物体间力的作用是相互的C.力的作用效果与力的大小有关D.力的作用效果与力的作用点有关5. 西安市进入了高铁时代,高铁列车极大地方便了市民出行,下列有关高铁列车的说法正确的是 ( )A.列车进站时,列车附近气流流速大,压强大B.列车刹车后不能立即停止是因为受到惯性力的作用C.列车启动时速度加快说明列车所受牵引力大于阻力D.列车对铁轨的压力和铁轨对列车的支持力是平衡力6. 如图所示,小明用水平推力推静止在水平地面上的箱子,但箱子却没有运动.下列说法正确的是 ( )A.箱子没有运动,此时箱子所受推力小于箱子所受摩擦力B.箱子所受重力和地面对箱子的支持力是一对相互作用力C.地面对箱子的支持力和箱子对地面的压力是一对平衡力D.箱子此时在水平方向上和竖直方向上受到的合力均为零7. 疫情期间,小丽帮妈妈做家务时,发现生活中处处有物理.下列分析错误的是 ( )A.茶壶的壶嘴和壶身组成连通器B.菜刀的刀刃很锋利,是为了减小压强C.利用大气压把吸盘式挂钩压在平滑的墙壁上D.浴室内的防滑垫表面凹凸不平是为了增大摩擦8. 国家进行了“一带一盔”的专项整治行动,下列说法正确的是 ( )A.汽车安全带都设计得很宽,是为了增大压强B.骑摩托车必须带头盔,头盔的里面都有海绵等软性材料是为了增大压强C.上车必须系安全带,是为了减小惯性D.头盔在发生危险时,硬质的外壳材料变形,是力改变了物体的形状9. 被称为“沙漠之舟”的骆驼,若它的体重与马的体重之比为3:2,而它的脚掌面积是马蹄的3倍,它们站立时,下列说法中错误的是 ( )A.它们所受重力是由于地球的吸引而产生的B.骆驼和马对地面的压强之比是 1:2C.骆驼的脚掌面积大,有利于减小对地面的压强D.马在奔跑时对地面的压强比它站立时小10. 如图所示,把用ρ=1.0×10³kg/m³的复合材料制成边长分别为2m 和3m 的甲、乙两实心均匀正方体放在水平地面上,甲、乙对地面的压强分别为P甲、Pz;把G₁=2×10⁴N的物体放在甲上,G₂=3×10⁴N的物体放在乙上,此时甲、乙对地面的压( )强分别为p、p乙′,则下列结果正确的是甲′A.p甲:p乙=2:3,p甲′:p乙′=3:4B.p甲:p乙=2:3,p甲′:p乙′=4:3C.p甲:p乙=3:2,p甲′:p乙′=3:4D.p甲:p乙=3:2,p甲′:p乙′=4:3二、填空题(每空2分,共28分)11. A物体受到甲、乙两弹簧测力计向相反方向的拉力,当A物体时,它处于平衡状态,如图所示,此时弹簧测力计的示数为 N.12. 用图中机器人免接触送餐,能有效减少人员交叉感染.送餐途中,以携带的食物为参照物,机器人是 (选填“运动”或“静止”)的.机器人匀速直线上坡,其运动状态 (选填“改变”或“不变”).轮胎上的花纹能 (选填“增大”或“减小”)轮胎与地面之间的摩擦力.13. 如图所示,重为50 N的物体静止在水平桌面上,物体受到的支持力和是一对平衡力.当物体受到水平向右、大小为15 N的拉力F时,物体刚好向右做匀速直线运动,此时物体受到的摩擦力为 N;当拉力F为18N时,物体向右做加速运动,此时物体受到的摩擦力为N.14. 质量为0.4kg,底面积为20cm²的茶壶中盛有0.6kg的水,将茶壶放置在水平桌面上,茶壶内水的深度为15 cm,则水的重力是 N,水对茶壶底部的压强是 Pa,茶壶对桌面的压强是 Pa.(g取10 N/ kg)15. 甲、乙、丙三位同学分别做托里拆利实验时,读出的水银柱长度分别为75 cm、75.8cm 和76 cm.已知其中一位同学实验时管内混入了少量空气,另一位同学没有把管放竖直,只有一位同学方法正确,则当时的大气压值跟 cm高的水银柱产生的压强相等.16. 如图所示,甲、乙容器中分别盛有密度为1×10³kg/m³的水和密度为1.2×10³kg/m³的盐水,当在A 处沿水平方向快速吹气时,会发现B、C管中的液面上升到一定高度,原因是A 处空气流速加快,压强.B、C管内外液面高度差之比ℎ₁:ℎ₂=.三、作图题(共10分)17. (2分)如图所示,画出灯笼所受重力的示意图.18. (4分)物体A与弹簧连接,静止在光滑的斜面上,请画出物体A所受弹力的示意图.19. (4分)在车站广场上,常常看见人们将旅行包B平放在拉杆箱A上,如图甲所示.假设作用在箱子上的水平推力F=20N,,A、B一起做匀速直线运动.将旅行包 B 看成一个有质量的推点,如图乙所示.请在图乙中画出运动过程中B的受力示意图.四、实验探究题(共30分)20. (8分)小李在课外探究弹簧的长度跟外力的变化关系时,利用如图实验装置记录了相应的实验数据,如下表所示:(弹簧自身重力可忽略)钩码质量/g050100150指针位置/ cm2345钩码质量/g200250300400指针位置/ cm6788(1)分析实验数据,你可得到结论: .(2)该弹簧原长是 cm,若用该弹簧制作一个弹簧测力计,其量程为 N.(g取10 N/ kg)(3)小李做出了如图所示的三个图象,其中正确的是 .21. (10分)小宇要探究“影响滑动摩擦力大小的因素”,他猜想影响滑动摩擦力大小的因素可能有:A.接触面所受的压力大小B.接触面的粗糙程度C.物体运动的速度接下来小宇通过如图所示的实验操作开展探究.(1)进行甲、乙、丙图实验时,弹簧测力计必须沿水平方向拉着物体做运动.(2)要验证猜想B,需按照 (选填“甲”“乙”或“丙”)两个图进行对比实验.(3)比较甲、乙两图的实验,得到的实验结论是 .(4)在本次实验中运用的研究方法是转换法和 .(5)小颖发现小宇上述实验操作中弹簧测力计的示数并不稳定,于是改进了实验装置,如图丁所示.改进后长木板 (选填“一定”或“不一定”)要做匀速直线运动.22. (12分)某同学用下列器材探究“液体内部的压强”.(1)他向图甲的U形管内注入适量的红墨水,红墨水静止时,U形管两侧液面高度 .(2)图乙压强计通过U形管两侧液面的来反映橡皮膜所受压强的大小,用手指按压橡皮膜发现U形管中的液面升降灵活,说明该装置 (选填“漏气”或“不漏气”).(3)他把探头放入水面下6cm处,探头受到水的压强是 Pa;继续向下移动探头,会看到U形管两侧液面的高度差变大,说明液体内部的压强与液体的有关.(ρ=1.0×水10³kg/m³,g取10 N/ kg)(4)为了检验“液体内部的压强与液体密度有关”这一结论,他用图丙的装置,在容器的左右两侧分别装入深度相同的不同液体,看到橡皮膜向左侧凸起,则 (选填“左”或“右”)侧液体的密度较大.五、计算题(共12分)23. 如图所示,一平底、平口的圆柱形青花瓷笔筒放在水平桌面上,笔筒高度为0.11 m,筒内深度为0.10 m.笔筒开口向上放置时,笔筒对桌面产生的压强为8.1×10²Pa;笔筒开口向下放置时,笔筒对桌面产生的压强为 4.05×10³Pa(g取10 N/ kg).求:(1)笔筒内注满水时,水对笔筒底部产生的压强;(2)笔筒开口向上和开口向下放置时,笔筒与桌面的接触面积之比;(3)青花瓷笔筒材质的密度.期中综合测试卷1. C2. D3. C4. B5. C6. D7. B8. D9. D10. A 【解析】对于实心均匀柱形物体,其压强可以借用 p =ρgh 计算,因为材料的密度不度,高度之比是2:3,所以Pφ: p 乙=2:3;由 G =mg =ρa³g 可得,甲、乙两物体的重力分别是 8×10⁴N 和 2.7×10⁵N,因此放上 G₁、G₂后甲、乙两物体对地面的压力分别是 1×10⁵N 和 3×10⁵N,甲、乙两物体的底面积分别为 S 甲=4m 2,S 乙=9m 2,则 p 甲′:p 乙′=3:4,故选A.11. 静止(或做匀速直线运动) 1.812. 静止 不变 增大 13. 重力 15 1514. 6 1500 5000 15. 75.8 16. 变小 6:517. 如图所示 18. 如图所示 19. 如图所示20. (1)在弹性限度内,弹簧受到的拉力越大,弹簧的长度就越大(2)2 0~3 (3)B21. (1)匀速直线 (2)甲、丙(3)接触面粗糙程度相同时,压力越大,滑动摩擦力越大(4)控制变量法(5)不一定22. (1)相平 (2)高度差 不漏气 (3)600 深度 (4)右23. 解:(1)注满水时,水对笔筒底部产生的压强 p =ρ水gℎ1=1.0×10³kg/m³×10N/kg ×0.10m =1×10³Pa;(2)由 p =F S 得,笔筒开口向上放置时,笔筒与桌面的接触面积 S 1=F p 1=G p 1=G8.1×102Pa ,笔筒开口向下放置时,笔筒与桌面的接触面积 S 2=F p 2=G p 2=G 4.05×103Pa ,接触面积之比(3)笔筒的体积 V 筒=S₁(ℎ₂−ℎ₁)+S₂ℎ₁=5S₂(0.11m− 0.10m)+S₂×0.10m =0.15S₂,笔筒的质量 m 筒=G g =F g =p 1S 1g =8.1×102Pa 10N/kg S 1=81S 1,笔筒材料的密度 ρ=m 简V 简= 81S 10.15S 2=81×5S 20.15S 2=2.7×103kg/m3.。
人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
2023年八年级语文(下册期中)试卷及答案(必考题)

2023年八年级语文(下册期中)试卷及答案(必考题)满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字的读音全部正确的一项是()A.歼.灭(jiān)炽.热(zhì)要塞.(sài)坠.毁(zhuì)B.仲.裁(zhòng)匿.名(nì)滞.留(zhì)沿溯.(sù)C.悄.然(qiǎo)畸.形(jī)鬈.发(juǎn)篡.改(cuàn)D.颔.首(hàn)窒.息(zhì)禁锢.(gù)殷.红(yīn)3、下列各句中加点成语使用错误的一项是()A.人的一生,有艰难困苦的逆境,也有峰回路转....的风景。
B.小王同学在学校辩论会上引经据典、断章取义....赢得了大家的阵阵掌声。
C.他们两人的爱好、处事方法迥然不同....,谁也没法理解谁,谁也没法改变谁。
D.我市掀起“创卫”高潮,经过外墙粉刷、路面平整等系列改造,城市面貌焕.然一新...。
4、下列句子有语病的一项是()A.孩子无不希望得到父母的褒奖,这对其自尊心的培养具有至关重要的作用。
B.今年判阅语文微写作的老师要求必须读过《红楼梦》《老人与海》等原著。
C.南方科技大学校园开放日16日举行,来自多个省市的近千名考生和家长冒雨前来。
D.英国的莎士比亚、狄更斯等世界级文豪对中国文坛有着深远的影响。
5、下列修辞手法判断错误的一项是()A.为什么我的眼里常含泪水?因为我对这土地爱得深沉……(反问)B.读书使人充实,讨论使人机智,作文使人准确。
(排比)C.老树是通灵的,它预知被伐,将自己的灾祸先告诉体内的寄生虫。
(拟人)D.壁立千仞,无欲则刚;海纳百川,有容乃大。
(对偶)6、给下列句子排序最恰当的一项是()①这部小说采用日记体形式,讲述一个叫恩利科的小男孩成长的故事,记录了他一年之内在学校、家庭、社会的所见所闻。
②在意大利,《爱的教育》一直是孩子们的必读书。
八年级语文下册期中测试卷(及参考答案)

八年级语文下册期中测试卷(及参考答案)满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字读音完全正确的一项是()A.镌.刻(juàn)遗嘱.(zhǔ)咆哮.(xiào)水皆缥.碧(piǎo)B.桅.杆(wéi)翘首(qiáo)刹.那(chà)凛冽.(liè)C.要塞.(sè)悄.然(qiǎo)溃.退(kuì)殚.精竭虑(dān)D.承载.(zǎi)娴.熟(xián)澎湃.(pài)屏.息敛声(bǐng)3、下列句子中加点的成语使用不正确的一项是()A.今年十一假期,前来秦始皇陵兵马俑游玩的人络绎不绝....。
B.小草虽然是微不足道....的角色,它却以顽强的生命力为世人所钦佩和赞颂。
C.列夫·托尔斯泰的小说,情节起伏跌宕,抑扬顿挫....。
D.上海一人工湖惊现巨幅“中国地图”,这一巧妙设计可谓独具匠心。
.....4、下列句子没有语病的一项是()A.散文通常写自然风物、社会风云的一角,写名士凡人的片段事迹,抒写一缕情思,传达某种趣味。
B.政府不断继续加大公共服务事业,如关注教育均衡、食品安全等问题,这些都与老百姓的生活密切相关。
C.我们常说的知识改变命运,实则是知识改变了你对整个世界的认知,从而对每一件事的态度。
D.在第26届“汤姆斯杯”羽毛球锦标赛上,中国男队折戟沉沙,其原因是队伍青黄不接的缘故。
5、对下列句子使用修辞手法的判断正确的一项是()A.山河睡了而风景醒着,春天睡了而种子醒着。
(洛夫《湖南大雪——赠长沙李元洛》)(排比)B.风声在云外呼唤着,远山也在送青了。
(张晓风《到山中去》)(反复)C.五十岁上下的女人站在我面前,两手搭在髀间,没有系裙,张着两脚,正像一个画图仪器里细脚伶仃的圆规。
(鲁迅《故乡》)(比喻)D.在我们面前,天边远处仿佛有一片紫色的阴影从海里钻出来。
八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .20 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM BN=,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是________.6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:22169211x x xx x⎛⎫-++-÷⎪+-⎝⎭,其中2x=.3.已知222111x x xAx x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、C5、D6、D7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、60°或120°4、145、36、1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、13xx-+;15.3、(1)11x-;(2)14、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。
2023年八年级语文下册期中测试卷【含答案】

2023年八年级语文下册期中测试卷【含答案】满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列各组词语中,加点字的读音全都正确的一组是()A.压榨.(zhá)羡慕.(mù)折.扣(zhé)言行相顾.(gù)B.禅.师(chán)冠冕.(miǎn)骈.进(pián)红装素裹.(guǒ)C.佛.门(fó)掺.杂(cān)勾.当(gōu)舍.身求法(shě)D.嗤.笑(chī)褴褛.(nǚ)嗔.怒(chēn)仓皇逃窜.(chuàn)3、下列语句中加点成语使用有误的一项是()A.五一期间,织金洞游人如织,摩肩接踵....。
B.蜀锦的传统技艺让许多现代工厂生产出来的锦缎黯然失色....。
C.韩国政府自出心裁....地部署“萨德”,引起周边国家的强烈不满。
D.网络是柄双刃剑,它虽然可以为我们提供丰富的学习资料,但是也会藏污纳...垢.。
4、下列句子没有语病的一项是()A.随着中国对洋垃圾实施进口禁令,使西方国家陷入集体焦虑。
B.风靡一时的电影《解忧杂货店》改编自日本作家东野圭吾的同名小说。
C.中国慕课数量已经稳居世界第一,在线学习的人数也是全世界最多的国家。
D.基层干部既要想干敢干,又要能干会干,切忌不可蛮干。
5、下列句子的说法正确的一项是()A.他从内心深处不是很喜欢《奔跑吧,兄弟》《非诚勿扰》《快乐大本营》等电视节目。
解说:这个句子中“从内心深处”充当定语。
B.翩然归来冰雪融化次第开放草木萌发。
解说:这四个短语结构各不相同。
C.多水的江南是易碎的玻璃,在那儿,打不得这样的腰鼓。
解说:这句话运用了比喻的修辞手法。
D.歌曲“最炫民族风”具有浓郁的生活气息和民族特色,深受广大青少年喜爱。
解说:这句话中的标点符号使用正确。
6、将下列句子组成一段话,排序正确的是()①“柴门闻犬吠,风雪夜归人”,是江南雪夜,更深人静后的景况。
八年级数学下册期中测试卷(完整)

八年级数学下册期中测试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .10C .8或10D .63.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .124.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .156.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2109.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm=,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x=,则x=__________2.计算1273-=___________.3.使x2-有意义的x的取值范围是________.4.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________.5.如图,在ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,ABCD的周长为40,则S ABCD 四边形为________.6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中a=(3-5)0+-113⎛⎫ ⎪⎝⎭-2(-1).3.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知13(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.5.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、B7、D8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、8333、x 2≥4、67°.5、486、120三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、-33a +,;12-.3、﹣1≤x <2.4、(1)(0,3);(2)112y x =-. 5、(1)略(2)菱形6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1
期中模拟试卷
一、填空题(每小题2分,共26分) 1、函数y=
3
22-x x
的自变量x 的取值范围是 .
2、面积是S (c m 2)的正方形地板砖边长为a(cm),则S 与a 的关系式是_______,其中自变量是__________,___________是_________的函数.
3、已知函数y=x 2
-2x +3,当x=-2时,函数值为_________
4、若一次函数y=3x+b 经过点A (1,7),则b=•_______,•该函数图像经过点B (•4,______)和点C (_____,0).
5、.若关于x 的函数2
)1(-+=m x
n y 是一次函数,则m = ,n .
6、正比例函数y=(3m+5)x ,当m 时,y 随x 的增大而减小
7、式子2x -3y=4,若把y 看成x 的函数,则可以表示为_______________
8、厂家为了宣传某种品牌的彩电几年的出厂价在逐年降低,你认为厂家用 统计图来表示数据最恰当。
9、. 在某扇形统计图中,其中某一部分扇形面积所对的圆心角是0
45,那么它所代表的部分占总体的_________
10、小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,
最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表. 11、如图,⊿ABC ≌⊿DEC ,则CA 和 是对应边; =∠ACD 。
=∠B 。
12、△ABC 和△A ′B ′C ′,已知AB=A ′B ′,BC=B ′C ′,•
则增加条件_______或________后,△ABC ≌△A ′B ′C ′.
13、已知△ABC ≌△A ′B ′C ′,A 与A ′,B 与B ′是对应顶点,△ABC 的周长为12cm ,•AB=3cm ,BC=4cm ,则A ′B ′=______cm ,B ′C ′=______cm ,A ′C ′=_____cm . 二、选择题(每小题3分,共15分) 1、一次函数53+-=x y 的图象经过( )
(A )第一、三、四象限 (B )第二、三、四象限 (C )第一、二、三象限 (D )第一、二、四象限
2、下列条件:①AB=A ′B ′,BC=B ′C ′,AC=A ′C ′;②∠A=∠A ′,∠B=•∠B ′,∠C=∠C ′;③AB=A ′B ′,BC=B ′C ′,∠C=∠C ′;④AB=A ′B ′,∠B=•∠B ′,∠C=∠C ′其中不能说明△ABC 和△A ′B ′C ′全等的有( ) A .1个 B .2个 C .3个 D .4个
3、有两所中学A 和B ,A 校的男生占全校总人数的50%,B 校的女生占全校总人数的50%,则两校男生人数( )
校多于B 校 校少于B 校 校与B 校一样多 D.无法确定
4、一天,王老师从学校坐车去开会,由于途中塞车,他只好步行赶到会场,•开完会后,他直接回到学校,下图中能体现他离学校的距离y (千米)与时间x (•时)的关系的图象是( )
A B C D
E
-2
A
O
x(时)
y(千米)
B
O
x(时)
y(千米)C
O
x(时)
y(千米)O
D
x(时)
y(千米)
5、如图1,D 、E 是△ABC 中AC 、AB 上的点,△ADB ≌△EDB ,△BDE ≌△CDE ,则下列结论:①AD=DE ;②BC=2AB ;③∠1=∠2=∠3;④∠4=∠5=∠6.其中正确的有( )
A .4个
B .3个
C .2个
D .1个 三、解下列各题 1、如图,AD 是△ABC 的中线,C
E ⊥AD 于E ,B
F ⊥AD 交AD•的延长线于F ,求证:CE=BF 。
(6分)
E
C
B
A F
D
2、已知一次函数b kx y +=的图象经过点A (-2,-3)及点B (1,6). (1)求此一次函数的解析式,并画出函数图象。
(2)求此函数图象与坐标轴围成的三角形的面积。
(8分)
3、某校七年(1)班参加兴趣小组的人数统计图如图所示.(8分) (1)该班共有多少人参加?
(2)哪小组的人最多?哪小组的人最少?
(3)根据上面的数据做统计表.
(4)由统计表做扇形统计图.
6
C A
D 23
51
4绘画
计算机
书法
围棋
小提琴
812
20
-3
4、近期,海峡两岸关系的气氛大为改善。
大陆相关部门于2005年8月1日起对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售。
某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系: 每千克售价(元) 38 37 36 35 … 20 每天销量(千克) 50 52 54 56 … 86 设当单价从38元/千克下调了x 元时,销售量为y 千克;(8分) (1)写出y 与x 间的函数关系式;
(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,问这天的销售利润是多少?
5、如图所示,∠ACB=∠ADB=90°,AC=AD ,E 在AB 上,试说明:(1)点A•在∠CBD 的平分线上.(2)CD=DE .(6分)
D
A
C
B
E
6.(图表题)明湖区一中对初二年级女生仰卧起坐的测试成绩进行统计分析,•将数据整理后,画出如下频数分布直方图,如图,已知图中从左到右的第一、第二、•第三、第四、第六小组的频率依次是,,,,,第五小组的频数是36,根据所给的图填空:
(1)第五小组的频率是_______,请补全这个频数分布图.并画出频数折线图。
(2)参加这次测试的女生人数是______;若次数在24(含24次)以上为达标(此标准为中考体育标准),则该校初二年级女生的达标率为________.
(3)请你用统计知识,以中考体育标准对明湖区12所中学初二学生仰卧起坐成绩的达标率作一个估计.(8分)
-4
次数频树/人数
41.5
35.5
29.5
23.5
17.5
11.5
5.5
7、如图,已知AC=AB,AE=AD,∠EAB=∠DAC,问BD与EC相等吗?说明理由.(7分)
8、如图信息,l1为走私船,l2为我公安快艇,航行时路程与
时间的函数图象,问
(1)在刚出发时我公安快艇距走私船多少㎞?
(2)计算走私船与公安快艇的速度分别是多少?(3)写出l1 , l2的解析式
(4)猜想,公安快艇能否追上走私船,若能追上,那么在几分钟追上?(8分)
) 6
E D
B
A。