污泥浓度与脱氮关系

合集下载

脱氮除磷活性污泥法计算

脱氮除磷活性污泥法计算

3247.6 m3/h 10 m/s
管径d= 4 Q v
0.339 m
取DN=
350 mm
10、缺氧池设备选 择 缺氧池分三格串 联,每格内设一台 机械搅拌器。所需 功率按
每个缺氧池有效容 积V单缺=
混合全池污水所需 功率N= 11、污泥回流设备 选择 污泥回流比R=
污泥回流量QR=
设回流污泥泵房1 座,内设
座缺氧 池,每 2 座容积V 单= V/n=
8、进出水口设计
(1)进水管。两
组反应池合建,进
水与回流污泥进入
进水竖井,经混合
后经配水渠、
进水潜孔进入缺氧
池。
单组反应池进水管
设计流量Q1=
(
mb
q
2g
)
2
/
3
进水管设计流速
v1=
0.347 m3/s 0.8 m/s
3725.96 m3
4m 931.49 m2

混合液悬浮固体浓 度X(MLSS)=
污泥回流比R=X/ (XR-X)=
(2)混合液回流 比R内计算
总氮率ηN=(进水 TN-出水TN)/进水
TN=
混合液回流比R内=
η/(1η)=
6、剩余污泥量 (1)生物污泥产 量
8000
mg/L(r为考虑污泥在沉淀池中停留时间、池深、污 泥厚度等因素的系数,取
1.2
4000 mg/L
100%
(一般取50 ~100%)
62.50% 167%
PX
YQ(S0 S) 1 Kdc
(2)非生物污泥量PS
PS=Q(X1-Xe)=
(3)剩余污泥量ΔX
ΔX=PX+PS=

硝化反硝化脱氮机理及影响因素研究 (1)

硝化反硝化脱氮机理及影响因素研究 (1)

同步硝化反硝化脱氮机理及影响因素研究贾艳萍*贾心倩马姣(东北电力大学化学工程学院,吉林吉林132012)摘要:本文结合国内外研究,从宏观环境理论、微环境理论以及微生物学理论三方面阐明了同步硝化反硝化的脱氮机理,并对同步硝化反硝化的影响因素进行了综述,提出了该技术今后的研究方向。

关键词:同步硝化反硝化;脱氮机理;影响因素引言氮、磷等物质排入江河易导致水体的富营养化,传统脱氮理论认为,废水中氨氮必须经硝化反应和反硝化反应过程,才能够达到脱氮目的,这是因为硝化和反硝化过程中微生物生长的环境有很大差异,硝化反应需要有氧气存在的环境,而反硝化则需在厌氧或缺氧环境中进行。

近年来,国内外学者通过大量的试验对工程实践中遇到的现象和问题进行了研究,以传统的生物法脱氮理论作基础,发现硝化反应和反硝化反应可以在同一操作条件下同一反应器内进行,即同步硝化反硝化(简称SND),它使传统工艺中分离的硝化和反硝化两个过程合并在同一个反应器中,避免了亚硝酸盐氧化成硝酸盐及硝酸盐再还原成亚硝酸盐这两个多余的反应,从而可节省约25%的氧气和40%以上的有机碳,在反应过程中不需要添加碱度和外加碳源。

与传统工艺相同处理效果情况下减少了20%的反应池体积,需要更低的溶解氧浓度(1.0mg/L左右),无混合液的回流以及反硝化搅拌设施[1,2]。

因此,SND简化了生物脱氮工艺流程,减少了运行成本。

它突破了传统的生物脱氮理论,简化了脱氮反应发生的条件和顺序,强化了生物脱氮过程,使传统的生物脱氮理论发生了质的飞跃。

1 同步硝化反硝化作用机理SND的脱氮机理可以从宏观环境理论、微环境理论和微生物学理论三个方面加以解释1.1宏观环境理论一般来说,反应中所需的DO都是通过曝气来供给,不同的曝气装置会导致反应器内DO的分布状态不同。

但是在好氧条件下的活性污泥脱氮系统中,无论哪种曝气装置都无法保证反应器中的DO在废水中分布均匀,例如:在SBR反应器中,曝气并不能保证整个反应器中DO完全处于均匀的混合状态,缺氧区域的存在就为该反应器中成功实现SND提供了可能。

传统活性污泥脱氮除磷限度

传统活性污泥脱氮除磷限度

传统活性污泥工艺运行方式的改进来源:中国论文下载中心更新时间:08-9-1 14:29 作者: 黄甦刘瑾1 传统工艺低负荷运行除磷脱氮的限度由于传统工艺运行的污水厂没有深度净化功能,也没有更多资金新建大规模污水处理厂,因此对老厂原工艺进行改进,使其成为AO或连续流间隙曝气工艺是十分必要的。

常规的活性污泥法采用的污泥负荷为0.2~0.3kgBOD5/(kgMLSS·d),曝气池活性污泥浓度控制在2~3g/L之间,泥龄维持在4~5d以内。

由于泥龄短,活性污泥中硝化菌的增殖速率小于其随剩余污泥排出的速率,因而常规活性污泥法在满负荷的条件下,氨氮去除率低,一般仅为20%~30%。

为使按常规法设计的污水厂获得满意的硝化效果,必须减小污泥负荷,提高污泥泥龄。

在不增加曝气池容积的前提下,可采用的办法就是提高曝气池污泥浓度。

为了达到这一目标,要保证做到以下两点:一是活性污泥具有良好的沉降性能;二是曝气系统具有足够的供氧能力。

为了改善污泥的沉降性能,可采用超越初沉池的办法,这样进水中悬浮颗粒可能成为细菌絮凝的核心。

某污水处理厂采用超越初沉池的低负荷活性污泥法,严格控制曝气池溶解氧(前段1.1mg/L,中段1.6mg/L,后段2.8mg/L),运行结果表明,BOD5的去除很好,出水平均值<10mg/L,去除率达95.4%;NH3-N硝化相当完全,出水为0.1mg/L,硝化率为99.6%;氮磷的去除情况见表1。

超越初沉池,提高曝气池污泥浓度的运行结果表明,硝化的效果相当好,氨氮去除率达99%,但出水的总氮在20mg/L以上,去除效果还不是很理想。

某污水厂设计处理能力27 000 m3/d,实际水量为15 000m3/d,进水中很大部分为工业废水。

超越初沉池低负荷活性污泥法运行数据表明,在平均水温为26.6 ℃,MLSS为4.98 g/L,SVI为50.5 mL/g时,COD、BOD5的去除率达90%以上,出水NH3-N为3.0mg/L,硝化率为85.3%,当BOD5/TN为4.4时,总氮去除率为48.5%。

生物脱氮原理及6大参数

生物脱氮原理及6大参数

生物脱氮原理及6大参数高氨氮废水是我们经常会遇到的一种废水,想要将污水中的氨氮去除,除了要了解各种脱氮原理,还要从经济有效的角度来考虑选用哪种工艺,而生物脱氮技术恰恰符合以上条件,成为污水脱氮中最常见的工艺之一。

今天我们就来聊一聊生物脱氮原理和主要控制参数。

污水中的氮主要以氨氮和有机氮的形式存在,通常没有或只有少量亚硝酸盐和硝酸盐形式的氮。

只有不到20%——40%的氮在传统的二级处理中被去除。

污水生物处理脱氮主要是靠一些专性细菌实现氨形式的转化,经过氨化、硝化、反硝化过程,含氮有机化合物最终转化为无害的氮气,从污水中去除,其过程如图所示:1、工艺原理及过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物--亚硝酸盐菌和硝酸盐菌。

这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。

第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。

这两个反应过程都释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。

反硝化过程是反硝化菌异化硝酸盐的过程,即由硝化菌产生的硝酸盐和亚硝酸盐在反硝化菌的作用下,被还原为氮气后从水中溢出的过程。

反硝化过程也分为两步进行,第一步由硝酸盐转化为亚硝酸盐,第二步由亚硝酸盐转化为一氧化氮、氧化二氮和氮气。

同时,反硝化菌利用含碳有机物和部分分硝酸盐转化为氨氮用于细胞合成,该碳源既可以是污水中的有机碳或细胞体内碳源,也可以外部投加。

2、生物脱氮的工艺控制(1)消化过程(硝化菌)的影响因素1.温度:硝化反应的最适宜温度范围是30一35℃,温度不但影响硝化菌的比增长速率,而且影响硝化菌的活性。

温度低于5℃,硝化细菌的生命活动几乎完全停止:在5一35℃的范围内,硝化反应速率随温度的升高而加快;但达到30℃后,蛋白质的变性会降低硝化菌的活性,硝化反应增加的幅度变小。

AO脱氮工艺参数设计计算

AO脱氮工艺参数设计计算
打造全网一站式需求
欢迎您的下载,资料仅供参考
已知参数
Q=100m3/h=2400m3/dCOD=10000mg/l ss=000mg/lNH3-NJ进=500mg/l
经A/O工艺处理后的水质达到:COD<1400(本工程按平均1000算)NH3-N出<25 mg/l(本工程按平均15mg/l算)
容积负荷
本工艺按2.0公斤计算
Nv=2.0 kgCOD/(m3.d)
有机物氧化需氧量O1
O1=aQ(Co-Ce)
a--去除1kgCOD需氧量
a=0.45kgO2/kgCOD
O1=0.45×2400×(10-1)=9720 kg/d
硝化反应需氧量O2
O2=bENQ(NH3-NJ进- NH3-N出)
b—硝化1kg氨氮需氧量
b=4.57 kgO2/kgNH3-N
O2=4.57×0.97×(500-15)×2400×10-3=5160 kg/d
RC=EN/(1-EN)
0.97/ (1-0.97)
3200%
消化液回流量
Qc= RCQ
32×2400
76800 m3/d
A/O池尺寸主要计算
反应池的有效容积V1
V1=Q(Co-Ce)/ Nv
Q-进水流量
Co-进水COD浓度kg/m3
Ce-出水COD浓度kg/m3
Nv-容积负荷
V1=2400×(10-1)/2
微生物自身氧化需氧量O3
O3=cXVo
c—微生物自身氧化系数
X—污泥浓度 Vo—好氧池容积
c=0.12kgO2/kgMLSS
O3=0.12×6×8100=5832kg/d
维持好氧池一定溶解氧需氧量O4

活性污泥法的各种指标及相互关系

活性污泥法的各种指标及相互关系

活性污泥法的各种指标及相互关系:MLVSS /MLSS一般0.75左右,SVI =混合液30min 静沉后污泥溶积/污泥干重=SV%×10/MLSS(100ML 量筒)影响活性污泥处理效果的因素:①溶解氧2mg/l左右为宜②营养物BOD:N:P=100:5:1③PH值6.5-9.0④水温:20-30度⑤有毒物质:重金属、H2S等无机物质和氰、酚等有机物质。

会破坏细菌细胞某些必要的生理结构,或抑制细菌的代谢过程。

衡量曝气效果的指标及适用围:动力效率(Ep)、氧转移效率(EA)对鼓风曝气而言即氧利用率、充氧能力(对机械曝气而言)活性污泥法常见的问题及处理方法:①污泥膨胀:防止办法:加强操作管理,经常检测污水水质、溶解氧、污泥沉降比、污泥指数等。

解决办法:缺氧、水温高可加大曝气量或降低进水量以减轻负荷或适当降低MLSS,使需氧量减少。

如污泥负荷率过高,可适当提高MLSS值,以调整负荷。

如PH值过低,可投加石灰调整PH。

若污泥大量流失,则可投氯化铁,帮助凝聚。

②污泥解体:污水中存在有毒物质,鉴别是运行方面的问题则对污水量、回流污泥量、空气量和排泥状态以及SV%、MLSS、DO、Ns等进行检查,加以调整;如是混入有毒物质,需查明来源,采取相应对策。

③污泥脱氮:呈块状上浮,由于硝化进程较高,在沉淀池产生反硝化,氮脱出附于污泥上,从而使污泥比重降低,整块上浮。

解决办法:增加污泥回流量或及时排除剩余污泥,在脱氮之前将污泥排除;或降低混合液污泥浓度,缩短污泥岭和降低溶解氧等,使之不进行到硝化阶段。

④污泥腐化:污泥长期滞留而进行厌氧发酵生成气体,从而大块污泥上浮的现象。

防止措施:a、安设不使污泥外溢的浮渣清除设备;b、消除沉淀池的死角区;c、加大池底坡度或改进池底刮泥设备,不使污泥滞留于池底。

⑤泡沫:原因污水中存在大量合成洗涤剂或其他起泡物质。

措施:分段注水以提高混合液浓度;进行喷水或投加除泡剂等。

生物滤池:是以土壤自净原理为依据,有过滤田和灌溉田逐步发展来的。

AO(脱氮)设计计算书

AO(脱氮)设计计算书

惰性物质及沉淀池固体流失 去除1kgBOD产生干污泥量
625 m3/h
流道面积 A
管径 D
2
回流混合 液量Q
流道面积 A
管径 D
=
0.25 m2
按v=0.7m/s设计
=
562 mm
=
1042 m3/h
=
0.36 m2
按v=0.8m/s设计
=
679 mm
(一)设计需氧量 碳化需氧 量 D1 硝化需氧 量 D2 反硝化脱 氮产生的 氧量 D3 总需氧量 AOR 单位BOD 需氧量 最大需氧 量
生物除氮工艺P120
(一)设计需氧量 1
2
3 4
8 进水氨氮 NH3-N =
9 出水氨氮 NH3-N =
10 VSS/TSS
=
11 进水碱度 SALK
=
12 pH
=
13 水温
=
14 混合液 MLSS =
30 mg/L 8 mg/L 0.7 280 mg/L 7.2 14 ℃
4000 mg/L
(二)标准需氧量 1
A/O工艺设计计算(动力学计算法) 原始条件:(生物除氮)
1 设计流量 Q
=
15000 m3/d
2 进水BOD S0
=
160 mg/L
3 出水BOD Se
=
20 mg/L
4 进水TSS X0
=
180 mg/L
5 出水TSS Xe
=
20 mg/L
6 进水总氮 TN
=
7 出水总氮 TN
=
40 mg/L 15 mg/L
2
计算结果:
(一)好氧区容积计算
1 出水溶解性BOD

污泥回流的一些知识

污泥回流的一些知识

污泥回流的一些知识在生物处理系统中必须保持足够且恒定的生物群体,因此在二沉池中所沉淀的生物固体(污泥)一部分必须返回到曝气池,另一部分从二沉池中排放掉。

返回到曝气池的生物量,是用来维持系统所要求的污泥浓度,降解进入系统中的有机物质。

有机物越多,需要的生物量越大,要想维持系统所要求的污泥浓度,就必须保证回流污泥的量。

在生物系统物料平衡中有如下关系式存在:X= X r•R/(1+R)式中:R ---污泥回流比%;X r---回流污泥浓度kg/m3;X ---混合液污泥浓度MLSS kg/m3由此式可看出:(1)想要得到预期的X(MLSS)值,就必须保证有一定的回流污泥浓度和回流污泥量;(2)X&lt;X r。

回流污泥量,一般用回流比控制。

对于平流式和辐流式二沉池一般采用R≤1.5;竖流式沉淀池R≤2.0,因为较大的回流比会加大二沉池分离区紊动程度,而影响沉淀过程。

浓缩区的高度和停留时间与下列因素有关:固体负荷;二沉池进、配水方式;刮泥机种类与性能;污泥回流量及二沉池的池型等。

在我国一般认为,混合液在量筒中沉淀30min后形成的污泥浓度基本上可代表混合液在二沉池所形成的污泥浓度,也即为回流污泥浓度。

回流污泥浓度(X r)与SVI之间有下列关系:Xr=r•106/SVI(mg/l)式中的r是考虑污泥在二沉池中的停留时间、池深、污泥层厚度等因素有关的系数,一般取1.2左右。

污泥浓缩时间越长,底流污泥浓度则越高,回流污泥浓度越高,回流比R则可越小;另一方面活性污泥在二沉池浓缩区和刮泥区的停留时间应尽可能短,以免二沉池内污泥中的磷再次释放以及因脱氮(反硝化)而造成的污泥上浮现象。

但是要精确的确定最佳浓缩时间和影响系数,还要做大量的研究工作。

常见的疑问:问:你说回流比可以有较大的变化,难道运行中就不用控制了答:没错!要控制的是回流污泥量,我认为回流比是设计参数而不是工艺运行参数,在设计上有用,如污泥污泥管的通量和回流污泥泵的配制等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脱氮除磷工艺中污泥浓度与脱氮的关系生物脱氮过程中,硝化作用的程度往往是生物脱氮的前提,其控制相对简单;反硝化作用是生物脱氮的关键,其受诸多因素影响较大,同时反硝化效果也很大程度上影响系统除磷。

一、污泥浓度对硝化影响
影响硝化反应的环境因素有很多,包括PH、温度、SRT、DO、BOD/TKN、污泥浓度、有毒物质等。

实际上,污水处理厂在工艺的运行中只能对SRT、DO、BOD/TKN、污泥浓度等参数进行控制。

1.在好氧消化过程中的污泥浓度较高,其硝化细菌的浓度相对较高,因此好氧硝化反应的速率在高污泥浓度条件下较高。

2.一定污泥泥龄是保证生物污泥中硝化细菌存在的条件,同时创造良好的硝化细菌生存条件更能提高其在微生物菌群中所占比例,从而提高硝化细菌浓度。

高污泥浓度下,在厌氧阶段会有更多的BOD被消耗,进入好氧阶段,其BOD/TKN就相对更低。

一些研究表明活性污泥中硝化细菌所占的比例,与BOD/TKN成反比关系。

由于硝化菌是一类自养菌,有机基质的浓度并不是它的生长限制因素,但若有机基质浓度过高,会使生长速率较高的异氧菌迅速繁衍,争夺溶解氧,从而使自养菌的生长缓慢且好养的消化菌得不到优势,结果降低消化速率。

值一般是污水处理厂硝化阶段的重要指标,一般情况下DO值在2mg/L 以上。

在大多数氧化沟工艺中其沟内平均DO值都很难达到2mg/L,一般维持在1mg/L,或更低水平,但硝化效果仍然良好,原因就是氧化沟特有的相
对较高污泥浓度,虽然其沟内DO值较低,但其它有利于硝化的因素增强。

污泥浓度增高,增大生物处理池的有效容积,同时降低了负荷等。

从另一角度分析提高污泥浓度其微生物好氧量也相应增加,在同等曝气量条件下,溶解氧仪显现出来的数值也应该较低。

以上几点说明提高污泥浓度,生物池中的DO值可适当降低硝化效果仍可维持良好水平。

4.为保证活性污泥中硝化细菌的正常生长繁殖,泥龄一般应控制在8天以上。

但为了使硝化细菌与其他异氧细菌有相对平衡的生存竞争力,应在污泥不发生严重老化的前提下提高泥龄,相应也就是增大生物系统的污泥浓度。

二、污泥浓度对反硝化影响
1.生物反硝化作用即在缺氧条件下反硝化细菌利用硝酸盐中的离子氧分解有机物的过程,硝酸盐被还原为N2,完成脱氮过程。

反硝化过程中的反硝化细菌是大量存在于污水处理系统中的异氧型兼性细菌,在有氧存在条件下,反硝化细菌利用氧进行呼吸、氧化分解有机物。

在无分子氧的条件下,同时存在硝酸和亚硝酸离子时,它们能用这些离子中的氧进行呼吸,使有机质氧化分解。

反硝化细菌能够利用各种各样的有机基质作为反硝化过程中的电子供体,其中包括碳水化合物、有机酸类、醇类及烷烃类、苯酸盐类和苯衍生物。

影响反硝化速率的因素较多,包括PH、温度、DO、碳氮比、污泥浓度等,污水处理厂在工艺的运行中只能对DO、污泥浓度等参数进行控制。

碳氮比虽然是反硝化反应中最重要的影响因素,但其和来水水质有很大关系,一般实际运行中很难控制。

反硝化反应过程中要求在无分子氧存在的条件下反硝化细菌才能利用
硝酸盐及亚硝酸盐中的离子氧分解有机物。

之前提到,高污泥浓度的生物系统在硝化过程中可适当降低溶解氧值,同时保持硝化效果,因此使硝化末端降低溶解氧可以有效地减少硝酸盐回流液中所携带的溶解氧含量,降低分子氧在缺氧区对反硝化进程的影响,提高反硝化菌利用碳源的反硝化能力。

同时高污泥浓度自身内源代谢好氧量也相对较强,可以进一步消耗回流及缺氧段中的溶解氧。

而且非常高的污泥浓度会改变混合液的黏滞性,增大扩散阻力,从而也使回流携带的溶解氧降低,在一些实用明渠作为回流通道的处理工艺中可以减小回流跌落的充氧量。

总之高污泥浓度对于降低实际工艺运行中反硝化阶段的DO值有较大作用。

2.由于反硝化细菌是异氧型兼性细菌,在污水处理系统中大量存在,提高系统中的污泥浓度可有效地提高反硝化细菌的浓度。

反硝化反应速度与硝酸盐、亚硝酸盐浓度基本无关,而与反硝化细菌的浓度呈一级反应。

因此在实际工艺运行中高污泥浓度可以缩短反硝化的时间,减小缺氧段的有效容积。

在缺氧段有效容积一定的条件下,高污泥浓度的反硝化反应可以更好地利用有机基质中相对较难降解的有机物作为碳源。

这一点对于脱氮除磷工艺,尤其C源不足的情况尤为重要。

3.高污泥浓度其微生物菌胶团直径相对较大,在硝化反应过程中受溶解氧低的影响,养的压力梯度较小,菌胶团内部容易形成缺氧环境从而发生反硝化反应,所以高污泥浓度可以促进同程反硝化。

相关文档
最新文档