2021届湖南省长沙市雅礼中学高三上学期第五次月考数学试题 PDF版

合集下载

湖南省长沙市雅礼中学2021届高三上学期第5次月考化学试题(含答案)

湖南省长沙市雅礼中学2021届高三上学期第5次月考化学试题(含答案)

雅礼中学2021届高三月考试卷(五)化学命题人:黄铁明 审题人:吴建新考生须知:1.本试卷共20小题,满分为100分,考试时量75分钟。

2.请将第Ⅰ卷的选择题答案用2B 铅笔填写在机读答题卡上,将第Ⅱ卷的答案填写在答卷上。

本卷答案必须做在答题卡或答卷的相应位置上,做在试卷上无效。

3.本卷可能用到的相对原子质量:H -1 C -12 N -14 O -16 Na -23 Mg -24 Al -27 S -32 C -35.5 K -39 Fe -56 Cu -64 Mo -96 I -127第Ⅰ卷 选择题(共40分)一、单选题(本题共10小题,每小题2分,共20分。

每小题只有一个选项符合题意) 1.化学与生活密切相关,下列说法正确的是( )A 福尔马林可用于新冠病毒环境消毒和鱼肉等食品的防腐保鲜B 华为5G 手机芯片的主要成分是硅C.嫦娥五号外壳为钛合金,因它可防电离辐射D.用谷物酿造出酒和醋,酿造过程中只发生了氧化反应2.《本草衍义》中对精制砒霜过程有如下叙述:“取砒之法,将生砒就置火上,以器覆之,令砒烟上飞着覆器,遂凝结累然下垂如乳,尖长者为胜,平短者次之。

”砒霜的化学式是23As O ,是我国最古老的毒物之一,氧化性比Ag +弱,下列说法正确的是( ) A.文中涉及的操作方法是蒸馏B.砒霜是最古老的毒物之一,有特殊的臭味C.砒霜是冶炼砷合金和制造半导体的原料D.银针探毒的方法在我国古代断案中被广为采用,是因为三氧化二砷可以与银反应 3.A N 为阿伏加德罗常数的值,下列说法正确的是( ) A.0.1mol 氨基(2NH —)含有的电子数为0.9A NB 用电解粗铜的方法精炼铜,当电路中通过的电子数为2A N 时,阳极应有64g Cu 转化为2Cu +C.将0.2mol 2Cl 通入足量水中,转移的电子数为0.2A ND.将一定量的2Cl 通入2FeBr 溶液中,当有2mol Br -转化为2Br 时,转移的电子数一定为3A N4.相同条件下,四个等体积的干燥圆底烧瓶中分别充满气体进行喷泉实验,经充分反应后,瓶内溶液的物质的量浓度关系正确的是( )A.===①②③④B.>>>①③②④C.=>=①②③④D.>>=①②③④5.常温下,下列各组离子可能在指定溶液中大量共存的是 A.0.11mol L -⋅KI 溶液中:Na +、K +,ClO -、OH -B.能使甲基橙变红的溶液中:Na +、4NH +、24SO -、3HCO -C.与Al 反应能放出2H 的溶液中:2Fe +、K +、3NO -、24SO -D.水电离的()121H110mol L c +--=⨯⋅的溶液中:K +、Na +、2AlO -、223S O -6.下列实验操作和现象及所得到的结论均正确的是( )7.根据陈述的知识,类推得出的结论正确的是( )A.锂在空气中燃烧生成的氧化物是2Li O ,则钠在空气中燃烧生成的氧化物是2Na O B 链状烷烃的结构和性质都相似,则分子组成不同的链状烷烃一定互为同系物 C.晶体硅熔点高、硬度大,则可用于制作半导体材料 D.金刚石的硬度大,则60C 的硬度也大8.某同学用23Na CO 和3NaHCO 溶液进行如图所示实验。

湖南省长沙市雅礼中学2024届高三上学期月考(一)数学试题及答案

湖南省长沙市雅礼中学2024届高三上学期月考(一)数学试题及答案

大联考雅礼中学2024届高三月考试卷(一)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4Mx x =<,{}|21N x x =≥,则M N ∩=()A.{}08x x ≤< B. 182xx≤<C.{}216x x ≤< D. 1162xx≤<2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( )A.3B.2C.-2D.-33.已知1z ,2z 是关于x 的方程2220x x +=−的两个根.若11i z =+,则2z =( )A.B.1C.D.24.函数sin exx xy =的图象大致为()A. B.C. D.5.已知220x kx m +−<的解集为()(),11t t −<−,则k m +的值为( )A 1B.2C.-1D.-2.6. 古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为( )(cos10°≈0.985)A. 45.25mB. 50.76mC. 56.74mD. 58.60m7. 已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++−=,()1f x +为偶函数,()11f =,则()2023f =( )A. 1B. -1C. 2D. -38. 如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为,则模型中九个球的表面积和为( )A 6πB. 9πC.31π4D. 21π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( ) A. 若2sin 23α=,则21cos 46πα +=B. 函数()2sin 23f x x π=+的图象向右平移6π个单位长度得到函数()2sin 26g x x π=+的图象.C. 函数()2sin cos cos 26f x x x x π=+−单调递增区间为(),36k k k Z ππππ−++∈D. ()22tan 1tan xf x x =−的最小正周期为2π 10. 如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A −组成,12AB BC AC AA ====,则下列说法正确的是( )A. 若AD AC ⊥,则1AD A C ⊥B. 若平面11A C D 与平面ACD 的交线为l ,则AC //lC. 三棱柱111ABC A B C -的外接球的表面积为143πD. 当该几何体有外接球时,点D 到平面11ACC A11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b −=+(其中a ,b 是非零常数,无理数e 2.71828⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存极值点.12. 设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a −⋅−<,则下列选项正确的是( )的在A. {}n a 为递减数列B. 202220231S S +<C. 2022T 是数列{}Tn 中的最大项D. 40451T >第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 已知(2,),(3,1)a b λ=−=,若()a b b +⊥ ,则a = ______ .14. 已知函数51,2()24,2xx f x x x −≤ =−>,则函数()()g x f x =的零点个数为______. 15. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.16. 如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y ′′,则20n n n y y =′=∑______.(参考数据:取221.18.14=.)四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 如图,在直三棱柱111ABC A B C -中,2CACB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ; (2)求点A 到平面1B CM 的距离.18. 记锐角ABC 的内角,,A B C 的对边分别为,,a b c �已知sin()sin()cos cos A B A C B C−−=.(1)求证:B C =; (2)若sin 1a C =,求2211a b+的最大值. 19. 甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1−分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响. (1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望; (2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率. 20. 已知数列{}n a 中,10a =,()12n n a a n n N∗+=+∈.(1)令11n n n b a a +=−+,求证:数列{}n b 是等比数列; (2)令3nn n a c =,当n c 取得最大值时,求n 的值.21. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ). (1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.22. 设函数()()2cos 102x f x x x =−+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 图象上有一点列()*11,1,2,...,,22i i i A g i n n =∈N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =−,证明:1217 (6)n k k k n −+++>−.的大联考雅礼中学2024届高三月考试卷(一)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合{}2|log 4Mx x =<,{}|21N x x =≥,则M N ∩=( )A. {}08x x ≤< B. 182xx≤<C. {}216x x ≤<D. 1162xx≤<【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.详解】{}{}2|log 4|016Mx x x x =<=<<,1|2N x x=≥ ,则1162M N x x ∩=≤<.故选:D.2. 记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( ) A. 3 B. 2C. -2D. -3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d = += 即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7, 设等差数列的公差为d ,所以11+27516a d a d = += ,解之得3d =.故选:A.3. 已知1z ,2z 是关于x 的方程2220x x +=−的两个根.若11i z =+,则2z =( )【A.B. 1C.D. 2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=−的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=−的两个根,得122z z +=, 所以()21221i 1i z z =−=−+=−,所以21i z =−=法二:由1z ,2z 是关于x 的方程2220x x +=−的两个根,得122z z ⋅=, 所以21221i z z ==+,所以2221i 1i z ===++.故选:C . 4. 函数sin exx xy =的图象大致为( ) A. B.C. D.【答案】D 【解析】【分析】分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x −−−−===,所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy >,排除C 选项. 故选:D.5. 已知220x kx m +−<的解集为()(),11t t −<−,则k m +的值为( ) A. 1 B. 2C. -1D. -2【答案】B 【解析】【分析】由题知=1x −为方程220x kx m +−=的一个根,由韦达定理即可得出答案. 【详解】因为220x kx m +−<的解集为()(),11t t −<−, 所以=1x −为方程220x kx m +−=的一个根, 所以2k m +=. 故选:B .6. 古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为( )(cos10°≈0.985)A. 45.25mB. 50.76mC. 56.74mD. 58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R ABAC=,100tan10RBC =−=− , 25250.760.985RR ==, 故选:B.7. 已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++−=,()1f x +为偶函数,()11f =,则()2023f =( )A. 1B. -1C. 2D. -3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==−=−. 【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x −,又由()()40f x f x ++−=,得()()4f x f x +=−−,所以()()()846f x f x f x +=−−−=−+,所以()()2f x f x +=−,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==−=−.故选:B .8. 如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为( )A. 6πB. 9πC.31π4D. 21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE,则CE BE ==,AE DE ==,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF=4AF =,点O 为最大球球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE , 设最大球的半径为R ,则OF OM R ==, 因为Rt AOM △∽Rt AEF ,所以AO OMAE EF==1R =, 即1OM OF ==,则413AO =−=,故1sin 3OM EAF AO ∠== 设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G , 连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =−=−, 又JK a b =+,所以33b a a b −=+,解得2b a =,又33OK R b AO AK b =+=−=−,故432b R =−=,解得12b =, 所以14a =, 模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +×+×=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( ) A. 若2sin 23α=,则21cos 46πα +=B. 函数()2sin 23f x x π=+的图象向右平移6π个单位长度得到函数()2sin 26g x x π=+的图象 C. 函数()2sin cos cos 26f x x x x π=+−的单调递增区间为(),36k k k Z ππππ−++∈D. ()22tan 1tan xf x x =−的最小正周期为2π 【答案】ACD 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα+,知A 正确; 根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确; 利用二倍角公式化简得到()f x ,由正切型函数的周期性可求得结果知D 正确.【详解】对于A ,21cos 21sin 212cos 4226παπαα++−+===,A 正确; 对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π−=,即()2sin 2g x x =,B 错误;对于C ,()13sin 22sin 2sin 222226f x x x x x x x π=+=++, 则由222262k x k πππππ−+≤+≤+,Z k ∈得:36k x k ππππ−+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ−++∈,C 正确; 对于D ,()22tan tan 21tan xf x x x ==−,tan 2y x ∴=的最小正周期为2π,D 正确.故选:ACD.10. 如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A −组成,12AB BC AC AA ====,则下列说法正确的是( )A. 若AD AC ⊥,则1AD A C ⊥B. 若平面11A C D 与平面ACD 的交线为l ,则AC //lC. 三棱柱111ABC A B C -的外接球的表面积为143πD. 当该几何体有外接球时,点D 到平面11ACC A【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解. 【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC , 但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11A C D , 平面11AC D ∩平面ACD l =,所以//AC l ,所以B 正确; 对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO中点为该三棱柱外接球的球心,所以外接球的半径R , 所以外接球的表面积为22843R ππ=,所以C 不正确; 对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A的点D 到平面11ACC A 的最大距离为R ,所以D 正确. 故选:BD11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b −=+(其中a ,b 是非零常数,无理数e 2.71828⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存在极值点. 【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x −−=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x −−,故()()0e e x xa b b a −−+−=, 即()()2e =xa b a b −−,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误; 对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b −+−+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b −+−+++,因为e 0x >,e 0x −>,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb −−′,因为0ab <,若0,0a b ><,则()e e0=xxa xb f −−>′恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f −−<′恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==ex xxxa ba b f x −−−′, 令()=0f x ′得1=ln 2bx a,又0ab >, 若0,0a b >>,当1,ln 2b x a∈−∞,()0f x ′<,函数()f x 为单调递减. 当1ln ,2b x a∈+∞,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值. 若0,0a b <<, 当1ln2b x a∈−∞,,()0f x ¢>,函数()f x 为单调递增. 当1ln ,2b x a∈+∞,()0f x ′<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值. 所以函数存在极值点,故D 正确. 故答案为:BCD.12. 设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a −⋅−<,则下列选项正确的是( )A. {}n a 为递减数列B. 202220231S S +<C. 2022T 是数列{}Tn 中的最大项D. 40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为n T 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a −⋅−<可得:20221a −和20231a −异号,即202220231010a a −> −< 或202220231010a a −<−> . 而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1. 对于A :公比202320221a q a =<,因为11a >,所以11n n a a q −=为减函数,所以{}n a 为递减数列.故A 正确; 对于B :因为20231a <,所以2023202320221a S S =−<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确; 对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ×= ()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 已知(2,),(3,1)a b λ=−=,若()a b b +⊥ ,则a = ______ .【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+ ,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=−=,可得(1,1)a bλ+=+ , 又因为()a b b +⊥,可得()(1,1)(3,1)310b ba λλ=+⋅=++=⋅+ ,解得4λ=−, 所以(2,4)a =−−,所以a =故答案为:14. 已知函数51,2()24,2xx f x x x −≤ =−>,则函数()()g x f x =零点个数为______. 【答案】3 【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =的大致图象如下:由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点, 故答案为:3.15. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.的【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D −中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边,所以其面积为26S .16. 如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y ′′,则20n n n y y =′=∑______.(参考数据:取221.18.14=.)【答案】914 【解析】【分析】根据题意可得1, 1.1n n n y n y ′=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y ′=+=,则()20201192000011.111.121.1201.1211.1n n n n n y y n =′=+=×+×++×+×∑∑L , 可得2012202101.111.121.1201.1211.1nn n yy =′×=×+×++×+×∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =−′−×=+++−×=−×−∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1−+××++====−−−−, 所以20914nn n yy =′=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 如图,在直三棱柱111ABC A B C -中,2CACB ==,AB =13AA =,M 为AB 中点.(1)证明:1//AC 平面1B CM ; (2)求点A 到平面1B CM 的距离. 【答案】(1)证明见解析 (2【解析】【分析】(1)利用线面平行的判定定理证明; (2)利用等体积法求解.的【小问1详解】连接1BC 交1B C 于点N ,连接MN , 则有N 为1BC 的中点,M 为AB 的中点, 所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM , 所以1//AC 平面1B CM . 【小问2详解】连接1AB ,因为2CACB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ∩=,所以CM ⊥平面11ABB A , 又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC 是等腰直角三角形,112CM AB MB ====,所以1112CMB S CM MB =⋅=△1111222ACM ACB S S CA CB ==×⋅=△△, 设点A 到平面1B CM 的距离为d , 因为11A B CM B ACM V V −−=,所以111133B CM ACM S d S AA ××=×× ,所以11ACM B CMS AA dS ×= .18. 记锐角ABC 的内角,,A B C 的对边分别为,,a b c �已知sin()sin()cos cos A B A C B C−−=.(1)求证:B C =; (2)若sin 1a C =,求2211a b+的最大值. 【答案】(1)见解析; (2)2516. 【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12ba C R Ab A R === ,然后等量代换出2211a b +,再运用降次公式化简,结合内角取值范围即可求解. 【小问1详解】 证明:由题知sin()sin()cos cos A B A C B C−−=,所以sin()cos sin()cos A B C A C B −=−, 所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B −=−, 所以cos sin cos cos sin cos A B C A C B = 因为A 为锐角,即cos 0A ≠ , 所以sin cos sin cos B C C B =, 所以tan tan =B C , 所以B C =. 【小问2详解】 由(1)知:B C =, 所以sin sin B C =, 因为sin 1a C =, 所以1sin C a=, 因为由正弦定理得:2sin ,sin 2b aR A B R=, 所以sin 2sin sin 12b a C R A b A R=== ,所以1sin A b =, 因为2A B C C ππ=−−=− ,所以1sin sin 2A C b==, 所以222211sin sin 2a bC C++ 221cos 2(1cos 2)213cos 2cos 222CC C C −+−=−−+因为ABC 是锐角三角形,且B C =, 所以42C ππ<<,所以22C ππ<<,所以1cos 20C −<<, 当1cos 24C =−时,2211a b +取最大值为2516, 所以2211a b +最大值为:2516. 19. 甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1−分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响. (1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望; (2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率. 【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算. 【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立, 由题意得:()1111233P A =×−= ,()1111224P B =×−= , 甲的得分X 的可能取值为1,0,1−,()()()()11111346P X P AB P A P B =−===−×= ,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ==+=+=×+−×−=()()()()11111344P X P AB P A P B ====×−= ,所以X 的分布列为:()1711101612412E X =−×+×+×=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1−分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ==, 甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P =×=, 甲3轮中有2轮各得1分,1轮得1−分的概率为2233111C 4632P =×= , 甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P =××=, 所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20. 已知数列{}n a 中,10a =,()12n n a a n n N∗+=+∈.(1)令11n n n b a a +=−+,求证:数列{}n b 是等比数列; (2)令3nn n a c =,当n c 取得最大值时,求n 的值. 【答案】(1)证明见解析;(2)3n =. 【解析】 【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +−+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c −−=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=, 11n n n b a a +=−+ ,则12112b a a −+,则()()()111112211212n n n n n n n n b a a a n a n a a b ++−−=−+=+−+−+=−+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b −=×=;(2)由(1)可知,2n n b =即121nn n a a +−=−,可得2123211212121n n n a a a a a a −−−=− −=−−=− , 累加得()()()()1211212222112112n n n n a a n n n −−−−=+++−−=−−=−−− ,21n n a n ∴=−−.213n n n n c −−∴=,()111112112233n n n n n n n c +++++−+−−−==, 11112221212333n n nn n n n n n n n c c ++++−−−−+−∴−=−=, 令()212nf n n =+−,则()11232n f n n ++=+−,所以,()()122nf n f n +−=−.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =−<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> . 所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +−=或11n n a a q −=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n −= = −≥ 进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S −与1n a −的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n −−=,即第n 项与第n 1−项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a −=,即第n 项与第n 1−项的商是个有规律的数列,就可以利用这种方法;(6)构造法:�一次函数法:在数列{}n a 中,1n n a ka b −=+(k 、b 均为常数,且1k ≠,0k ≠). 一般化方法:设()1n n a m k a m −+=+,得到()1b k m =−,1b m k =−,可得出数列1n b a k+ −是以k的等比数列,可求出n a ;�取倒数法:这种方法适用于()112,n n n ka a n n N ma p∗−−=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b −=+的式子; �1nn n a ba c +=+(b 、c 为常数且不为零,n N ∗∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用�中的方法求解即可. 21. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ). (1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由. 【答案】(1)221169x y −= (2)直线CD 过定点,定点坐标为(8,0). 【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值. 【小问1详解】法一.由222225,64271,a b ab += −=解得2216,9a b ==,�双曲线E 的标准方程为221169x y −=. 法二.左右焦点为()()125,0,5,0F F −,125,28c a MF MF ∴==−=,22294,a b c a ∴===−,�双曲线E 的标准方程为221169x y −=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+, 联立221169x my t x y =+−= 消去x 得()()2222916189144=0,9160m y mty t m −++−−≠, 12218916mt y y m −∴+=−,21229144916t y y m −=−,12y y −±,AC 的方程为11(4)4y yx x ++,令2x =,得1164p y y x =+, BD 的方程为22(4)4y yx x −−,令2x =,得2224p y y x −=−,1221112212623124044y y x y y x y y x x −∴=⇔−++=+− ()()21112231240my t y y my t y y ⇔+−+++=()()1212431240my y t y t y ⇔+−++= ()()()()12121242480my y t y y t y y ⇔+−++−−=()22249144(24)180916916m t t mt m m −−⇔−±=−−3(8)(0m t t ⇔−±−=(8)30t m ⇔−= ,解得8t =3m =±,即8t =或4t =(舍去)或4t =−(舍去), �CD 的方程为8x my =+,�直线CD 过定点,定点坐标为(8,0). 方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+, 联立22,1,169x my t x y =+ −= ,消去x 得()2229161891440m y mty t −++−=, 2121222189144,916916mt t y y y y m m −−∴+==−−, AC 的方程为(4)6nyx =+,BD 的方程为(4)2ny x −−, ,C D 分别在AC 和BD 上,()()11224,462n ny x y x ∴=+=−−, 两式相除消去n 得()211211223462444x y y y x x x y −−−=⇔+=+−, 又22111169x y −=,()()211194416x x y ∴+−=.将()2112344x y x y −−+=代入上式,得()()1212274416x x y y −−−=⇔()()1212274416my t my t y y −+−+−=()()221212271627(4)27(4)0m y y t m y y t ⇔++−++−=⇔()22222914418271627(4)27(4)0916916t mtm t m t m m −−++−+−=−−.整理得212320t t +=−,解得8t =或4t =(舍去). �CD 的方程为8x my =+,�直线CD 过定点,定点坐标为(8,0). 【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22. 设函数()()2cos 102x f x x x =−+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i ii A g i n n =∈N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =−,证明:1217 (6)n k k k n −+++>−. 【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值. (2)见解析 【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥−≥,结合二倍角的正弦可证:2271162i i k +>−×,结合等比数列的求和公式可证题设中的不等式. 【小问1详解】()sin f x x x ′=−+,设()sin s x x x =−+,则()cos 10s x x ′=−+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数, 故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值. 【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥−≥,证明:设()3sin ,06x u x x x x =−+≥,则()2cos 1()02x u x x f x ′=−+=≥(不恒为零),故()u x 在[)0,∞+上为增函数, 故()()00u x u ≥=即3sin (0)6x x x x ≥−≥恒成立. 当*N i ∈时,11111111222sin sin 112222i i i i i i i ig g k ++++ − ==− − 11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++=−=×−由(1)可得()2cos 102x x x ≥−>,故12311cos 1022i i ++≥−>, 故111112311112sin2cos 12sin 2112222i i i i i i ++++++ ×−≥×−−1112213322111112sin121222622i i i i i i i +++++++  ×−≥−−  × 2222224422117111711111622626262i i i i i +++++ =−−=−×+×>−×  × , 故1214627111...16222n nk k k n −+++>−−+++41111771112411166123414n n n n −− =−−×=−−×−× −771797172184726n n n n =−−+×>−>−. 【点睛】思路点睛:导数背景下数列不等式的证明,需根据题设中函数的特征构成对应的函数不等式,从而得到相应的数列不等式,再结合不等式的性质结合数列的求和公式、求和方法等去证明目标不等式.。

湖南省长沙市雅礼中学2024-2025学年高三上学期入学考试数学试题解析版

湖南省长沙市雅礼中学2024-2025学年高三上学期入学考试数学试题解析版

雅礼中学2025届高三上学期入学考试试卷数 学时量:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、 已知集合{}240A x x =-≤,则A =N ( )A .{}0B .{}0,1C .{}0,1,2D .{}1,22、 )A B C D3、 (暑假作业原题)若正数x ,y 满足 ²20x xy -+=,则x y +的最小值是( )A .B .C .4D .6【答案】C【分析】根据已知条件及基本不等式即可求解.4、过椭圆22:1169x yC+=的中心作直线l交椭圆于,P Q两点,F是C的一个焦点,则PFQ△周长的最小值为()A.16 B.14 C.12 D.10所以PFQ△的周长为PF当线段PQ为椭圆短轴时,故选:B5、已知圆C的方程为22(2)x y a+-=,则“2a>”是“函数y x=的图象与圆C有四个公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B6、 (暑假作业原题)如图是一块高尔顿板的示意图,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落的过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中.记格子从左到右的编号分别为0,1,2,⋯,10,用X 表示小球最后落入格子的号码,若0()()P X k P X k == ,则0(k = )A .4B .5C .6D .7【分析】小球在下落过程中,共10次等可能向左或向右落下,则小球落入格子的号码X 服从二项分布,且落入格子的号码即向右次数,即1~(10,)2X B ,则10101()()(02kP X k C k ===,1,2...,10),然后由二项式系数对称性即可得解.【解答】解:小球在下落过程中,共10次等可能向左或向右落下, 则小球落入格子的号码X 服从二项分布, 且落入格子的号码即向右次数,即1~(10,2X B ,所以10101010111()()(1()(0222k k k kP X k C C k -==-==,1,2...,10),由二项式系数对称性知,当5k =时,10kC 最大,故05k =. 故选:B .【点评】本题考查了二项分布及二项式系数的性质的应用,属于中档题.7、 (教材原题)以正方体的顶点为顶点的三棱锥的个数是( ) A .70B .64C .60D .58【分析】从8个顶点中选4个,共有48C 种结果,在这些结果中,有四点共面的情况,6个表面有6个四点共面,6个对角面有6个四点共面,用所有的结果减去不合题意的结果,得到结论.【解答】解:首先从8个顶点中选4个,共有48C 种结果,在这些结果中,有四点共面的情况,6个表面有6个四点共面,6个对角面有6个四点共面, ∴满足条件的结果有4488661258C C --=-=.故选:D .【点评】本题是一个排列问题同立体几何问题结合的题目,是一个综合题,这种问题实际上是以排列为载体考查正方体的结构特征.8、 (暑假作业原题)已知定义域为R 的函数()f x ,其导函数为()f x ',且满足()2()0f x f x '-<,(0)1f =,则( )A .2(1)1e f -<B .()21f e >C .1(2f e >D .1(1)(2f ef <【分析】构造函数2()()xf xg x e =,由()2()0f x f x '-<得()0g x '<,进而判断函数()g x 的单调性,判断各选项不等式.【解答】解:2()()x f x g x e=,则22222()2()()2()()()x x x x f x e f x e f x f x g x e e '⋅-'-'==, 因为()2()0f x f x '-<在R 上恒成立,所以()0g x '<在R 上恒成立,故()g x 在R 上单调递减, 所以220(1)(0)(1)(0),(1)1f f g g e f e e --->=->=,故A 不正确; 所以g (1)(0)g <,即20(1)(0)f f e e<,即f (1)22(0)e f e <=,故B 不正确;1()(0)2g g <,即101()(0)21f f e e <=,即1(2f e <,故C 不正确; 1()(1)2g g >,即121()(1)2f f e e >,即1(1)()2f ef <,故D 正确.故选:D .【点评】本题考查了利用导数研究函数的单调性,考查了函数思想,属中档题.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9、 已知复数12,z z ,下列说法正确的是( )A .若12=z z ,则2212z z =B .1212z z z z =C .1212z z z z -≤+D .1212z z z z +≤+10、 已知函数()ππ)02,22f x x ωϕωϕ⎛⎫=+<≤-<< ⎪⎝⎭,函数()()12g x f x =+的部分图象如图所示,则下列说法中正确的是( )A .()f x 的表达式可以写成()24f x x π⎛⎫=- ⎪⎝⎭B .()f x 的图象向右平移3π8个单位长度后得到的新函数是奇函数 C .()()1h x f x =+的对称中心ππ,182k ⎛⎫-+⎪⎝⎭,Z k ∈ D .若方程()1f x =在()0,m 上有且只有6个根,则5π13π,24m ⎛⎫∈ ⎪⎝⎭11、 如图,过点(C a ,0)(0)a >的直线AB 交抛物线22(0)y px p =>于A ,B 两点,连接AO 、BO ,并延长,分别交直线x a =-于M ,N 两点,则下列结论中一定成立的有( )A .//BM ANB .以AB 为直径的圆与直线x a =-相切C .AOB MON S S ∆∆=D .24MCN ANC BCM S S S ∆∆∆=⋅【分析】设出直线与抛物线联立,利用韦达定理及斜率公式,结合三角形的面积公式及直线与圆的位置关系的判断方法即可求解.【解答】解:对于A ,令直线:AB x my a =+,1(A x ,1)y ,2(B x ,2)y , 联立22x my a y px=+⎧⎨=⎩,消x 可得2220y pmy pa --=,则△2(2)80pm pa =+>,122y y pa =-,122y y pm +=, 则21212()222x x m y y a pm a +=++=+, 则1111,:OA y y k OA y x x x ==则直线,∴11(,)ayM a x --,故12211122212220()BMay pay y x y y y pak x a x a y x a +++====+++, 同理0AN k =,//BM AN ∴,故A 正确; 对于B ,如图,设AB 中点1212(,22x x y y Q ++,即2(Q pm a +,)pa -,则Q 到直线x a =-的距离22d pm a =+, 以AB为直径的圆的半径12||||2AB y y =-=,所以222||(2)(2)4AB d p a a p m -=+-, 当2p a =时相切,当2pa ≠时不相切,故B 错误;对于C ,设x a =-与x 轴交于P ,PON AOC S S ∆∆=,MOP BOC S S ∆∆=, 则PON MOP AOC BOC S S S S ∆∆∆∆+=+,则AOB MON S S ∆∆=,故C 正确; 对于D ,112211(),()22ANC BCM S x a y S x a y ∆∆=+=-+,则1212121211()()(2)(2)44ANC BCM S S x a x a y y my a my a y y ∆∆⋅=-++=-++221212121[2()4]4m y y am y y a y y =-+++22221[(2)2(2)4](2)(2)4m pa am pm a pa pa pm a =--++-=+,而121212||||2MCN MPC NPC S S S a y y a y y ∆∆∆=+=⋅-=-, 所以2222222121212()[()4]4(2)4MCN ANC BCM S a y y a y y y y pa pm a S S ∆∆∆=-=+-=+=⋅,故D 正确.故选:ACD .【点评】本题考查了已知两点求斜率,由斜率判断两条直线平行,判断直线与圆的位置关系,根据韦达定理求参数,属于中档题.三、填空题:本题共3小题,每小题5分,共15分.12、 已知随机变量X 服从正态分布()25,N σ,若(56)0.27P X <≤=,则(4)P X <= .13、 已知向量()sin ,cos a θθ=,()3,1b =,若a b ∥,则2sin sin 2θθ+的值为 .14、 设0k >,若存在正实数x ,使得不等式14log 20kx x k --⋅≥成立,则k 的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.15、 (13分)平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C -是否为一个定值?若是,求出这个定值;若否,说明理由.(2)记ABD △与BCD △的面积分别为1S 和2S ,请求出2212S S +的最大值.【答案】cos A C -为定值,定值为1 (2)14【详解】(1)法一:在ABD △中,由余弦定理222cos 2+-=⋅AD AB BD A AD AB,得cos A =2168BD A -=①,同理,在BCD △中,22222cos 222BD C +-=⨯⨯,即28cos 8BD C -=②,①-②cos 1A C -=,所以当BD cos A C -为定值,定值为1; 法二:在ABD △中,由余弦定理2222cos BD AD AB AD AB A =+-⋅得222222cos BD A =+-⨯⨯,即216BD A =-, 同理,在BCD △中,2222cos 88cos BD CD CB CD CB C C =+-⋅=-,所以1688cos A C -=-1cos A C -=cos 1A C -=,所以当BD cos A C -为定值,定值为1;(2)222222221211sin sin 44S S AB AD A BC CD C +=⋅⋅+⋅⋅ 222212sin 4sin 12sin 44cos A C A C =+=+-2212sin 41)A A =+--224cos 12A A =-++,令()cos ,1,1A t t =∈-,所以2224122414y t t ⎛=-++=-+ ⎝⎭,所以t =cos A = 2212S S +有最大值为14.16、 (15分)(暑假作业原题)函数()e 4sin 2xf x x λλ=-+-的图象在0x =处的切线为3,y ax a a =--∈R .(1)求λ的值;(2)求()f x 在(0,)+∞上零点的个数. 解析【小问1详解】因为()e 4sin 2,()e 4cos x x f x x f x x λλλλ'=-+-=-, 所以(0)4f λ'=-,所以切线斜率为4λ-,即4a λ=-, 所切线方程为()41y x λλ=--+又(0)1f λ=-,所以切点坐标为(0,1)λ-,代入得则11λλ-=-+,解得1λ=.【小问2详解】由(1)得()e 4sin 1,()e 4cos x x f x x f x x '=--=-, 令()()e 4cos xg x f x x ==-',则()e 4sin xg x x =+',当πx ≥时,()e 4cos 0x f x x '=->恒成立,所以()f x 在[)π,+∞上递增, 所以ππ()(π)e 4sin 1e 50f x f x ≥=--≥->, 因此()f x 在[π,)+∞无零点;当0πx <<时,()e 4sin 0xg x x '=+>恒成立,所以()f x '单调递增,又π(0)30,(π)e 40f f ''=-<=+>, 所以()f x '在(0,π)上存在唯一的零点0x , 当()00,,()0,()∈<'x x f x f x 单调递减;当()0,π,()0,()x x f x f x '∈>单调递增;又()0(0)0,(0)0f f x f =<=,π(π)e 10f =->, 因此()f x 在(0,π)上仅有1个零点; 综上,()f x 在(0,)+∞上仅有1个零点.17、 (15分)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【详解】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥; 在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥; 又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED , 因为AC 平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小. 因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,BE =AD CD ⊥,所以112DE AC ==, 在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -, 则()()()1,0,0,,0,0,1A B D ,所以()()1,0,1,AD AB =-=-,设平面ABD 的一个法向量为(),,n x y z = ,则0n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取y =()n =,又因为()31,0,0,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以34CF ⎛⎫= ⎪ ⎪⎝⎭ ,所以cos ,n CF n CF n CF⋅===, 设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== CF 与平面ABD(1)求C 的方程;(2)记双曲线C 的左右顶点分别为1A ,2A ,直线1A M ,2A N 的斜率分别为1k ,2k ,求12k k 的值. (3)探究圆E :224410x y x y +---=上是否存在点S ,使得过S 作双曲线的两条切线1l ,2l 互相垂直.【答案】(1)22143x y -=; (2)13-; (3)存在.【详解】(1)由对称性知,双曲线C 过点(4,3),则221691b a a b ⎧=⎪⎪⎨⎪-=⎪⎩,解得2a b =⎧⎪⎨=⎪⎩,所以双曲线C 的方程为22143x y -=. (2)由(1)得12(2,0),(2,0)A A -,设()()1122,,,M x y N x y , 显然直线MN 不垂直于y 轴,设直线MN 的方程为4x my =+, 由2243412x my x y =+⎧⎨-=⎩消去x 得220(34)2436m y my -++=, 显然22340,144(4)0m m -≠∆=+>,1212222436,3434m y y y y m m -+==--, 则121223m y y y y +=-,即()121232my y y y =-+, 所以()()()()11212112212222222262y y x y my k x y k x y y my x -++===++-()()1211211221223221236362y y y my y y my y y y y y -+++===-+-++.(3)圆22:4410E x y x y +---=上存在点S ,使得过S 作双曲线的两条切线互相垂直. 若双曲线的两条切线有交点,则两条切线的斜率存在且不为0, 设双曲线的两条切线分别为1122,y k x n y k x n =+=+,将y kx n =+代入22143x y -=消去y 得:22(3484120)k knx n ----=,由0'∆=得()()2222644344120k n k n +-+=,解得2243n k =-,因此2222112243,43n k n k =-=-,设两条切线的交点坐标为()00,x y ,则01010202y k x n y k x n -=⎧⎨-=⎩,即有()22010143y k x k -=-,且()22020243y k x k-=-,即()()2222220100100200204230,4230x k x y k y x k x y k y --++=--++=, 于是12,k k 是方程()22200004230x k x y k y --++=的两根,而121k k =-,则2020314y x +=--,即22001x y +=,从而两条切线们交点的轨迹为圆221x y +=, 而221x y +=的圆心为(0,0)O ,半径为1,圆222:(2)(2)3E x y -+-=的圆心(2,2)E ,半径为3,显然||OE ==,满足31||31OE -<<+,即圆O 与圆E 相交, 所以圆22:4410E x y x y +---=上存在点S ,使得过S 作双曲线的两条切线互相垂直.19、 (17分)对于数列{}n a ,如果存在等差数列{}n b 和等比数列{}n c ,使得()n n n a b c n *=+∈N ,则称数列{}n a 是“优分解”的.(1)证明:如果{}n a 是等差数列,则{}n a 是“优分解”的.(2)记()2*11ΔΔΔΔn n n n n n a a a a a a n ++=-=-∈N ,,证明:如果数列{}n a 是“优分解”的,则()2*Δ0n a n =∈N 或数列{}2Δn a 是等比数列.(3)设数列{}n a 的前n 项和为n S ,如果{}n a 和{}n S 都是“优分解”的,并且123346a a a ===,,,求{}n a 的通项公式.【答案】(1)证明见解析 (2)证明见解析 (3)122n n a -=+【详解】(1){}n a 是等差数列,∴设()()111111n a a n d a n d ⎡⎤=+-=-+-+⎣⎦, 令()111,1n n b a n d c =-+-=,则{}n b 是等差数列,{}n c 是等比数列,所以数列{}n a 是“优分解”的.(2)因为数列{}n a 是“优分解”的,设()*n n n a b c n =+∈N ,其中()()11111,0,0n n n b b n d c c q c q -=+-=≠≠,则()12121111Δ1,ΔΔΔ(1)n n n n n n n n a a a d c q q a a a c q q --++=-=+-=-=-. 当1q =时,()2*Δ0n a n =∈N ;当1q ≠时,{}2Δn a 是首项为21(1)c q -,公比为q 的等比数列. (3)一方面, 数列{}n S 是“优分解”的,设()*n n n S B C n =+∈N ,其中()()11111,0,0n n n B B n D C C Q C Q -=+-=≠≠,由(2)知2121Δ(1)n n S C Q Q -=-因为12122323Δ4,Δ6S S S a S S S a =-===-==,所以2121ΔΔΔ2S S S =-=.{}221(1)2,1,Δn C Q Q S ∴-=∴≠∴是首项为2,公比为()1Q Q ≠的等比数列.另一方面,因为{}n a 是“优分解”的,设()*n n n a b c n =+∈N ,其中()()11111,0,0n n n b b n d c c q c q -=+-=≠≠,()2111211Δ,ΔΔΔ1n n n n n n n n n n S S S a S S S a a d c q q +++++=-==-=-=+- {}2Δn S 是首项为2,公比为()1Q Q ≠的等比数列, 0,1q q ∴≠≠,且()()()2222213ΔΔΔS S S =⋅,()()()223111111d c q q d c q q d c q q ⎡⎤⎡⎤⎡⎤∴+-=+-⋅+-⎣⎦⎣⎦⎣⎦化简得()311111(1)0,0,0,1,0,Δ1n n n n c dq q c q q d a a a c q q -+-=≠≠≠∴=∴=-=- ,即数列{}Δn a 是首项121Δ1a a a =-=,公比为q 的等比数列. 又232Δ2,2a a a q =-=∴= ,又()211Δ2,12,0,2,S d c q q d q =∴+-===∴ 解得11111,312c b a c =∴=-=-=,综上所述,()1111122n n n a b n d c q --=+-+=+.。

2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(9月份)(含答案)

2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(9月份)(含答案)

2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(9月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设集合A ={x|(x +1)(x−4)<0},B ={x|2x +a <0},且A ∩B ={x|−1<x <3},则a =( )A. 6B. 4C. −4D. −62.已知z 1+i =1−1i ,则|−z |=( )A.2B.22C. 2D. 13.已知f(x)=sin (ωx−π3)(ω∈N)的图象与直线y =a 在区间[0,π]上存在两个交点,则当ω最大时,曲线y =f(x)的对称轴为( )A. x =π24+kπ4,k ∈Z B. x =π30+kπ5,k ∈Z C. x =5π24+kπ4,k ∈Z D. x =π6+kπ5,k ∈Z4.函数f(x)=2x +2−xln( x 2+1−x)的图象大致为( )A. B.C. D.5.若平面单位向量a ,b ,c 满足〈a ,b〉=π6,b ⋅c =0,a ⋅c <0,则|b 2c ||a +c |( )A.5B.3C.153D.536.石雕、木雕、砖雕被称为建筑三雕.源远流长的砖雕,由东周瓦当、汉代画像砖等发展而来,明清时代进入巅峰,形成北京、天津、山西、徽州、广东、临夏以及苏派砖雕七大主要流派.苏派砖雕被称为“南方之秀”,是南方地区砖雕艺术的典型代表,被广泛运用到墙壁、门窗、檐廊、栏槛等建筑中.图(1)是一个梅花砖雕,其正面是一个扇环ABCD ,如图(2),砖雕厚度为6cm ,AD =80cm ,CD =3AB ,CD 所对的圆心角为直角,则该梅花砖雕的表面积为(单位:cm 2)( )A. 3200πB. 480π+960C. 6880π+960D. 3680π+9607.已知过抛物线C :y 2=2px(p >0)的焦点F 的直线与C 交于A ,B 两点,线段AB 的中点为M(x 0,y 0),且|AB|=2x 0+1,Q(t,−2−t),若点P 在抛物线C 上,则|PQ|的最小值为( )A.3 24B.3 22C.3 34D.328.已知数列{a n }满足a 1=3,a n +1−a n =2,4b n =(−1)n +1(1a n +1a n +1),若数列{b n }的前n 项和为T n ,不等式3T n <λ(3−5λ)(n ∈N ∗)恒成立,则λ的取值范围为( )A. (110,+∞)B. (15,+∞)C. (110,12)D. (15,25)二、多选题:本题共3小题,共18分。

2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(一)(含答案)

2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(一)(含答案)

2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(一)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x |log 2x >1},B ={x |0<x <4},则A ∩B =( )A. {x |2<x <4}B. {x |2⩽x <4}C. {x |0<x⩽2}D. {x |x⩽2}2.已知复数z 满足(1―i )z =2i ,且z +ai (a ∈R )为实数,则a =( )A. 1B. 2C. ―1D. ―23.设向量a =(1,0),b =(12,12),则下列结论中正确的是( )A. |a |=|b | B. a ⋅b = 22 C. a ―b 与b 垂直 D. a //b4.已知a 是函数f (x )=2x ―log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A. f (x 0)=0B. f (x 0)>0C. f (x 0)<0D. f (x 0)的符号不确定5.若sinx +cosx =13,x ∈(0,π),则sinx ―cosx 的值为( )A. ± 173 B. ― 173 C. 13 D. 1736.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A. 8B. 24C. 48D. 1207.函数y =f (x )的图象如图①所示,则如图②所示的函数图象所对应的函数解析式可能为( )A. y =f (1―12x )B. y =―f (1―12x )C. y =f (4―2x )D. y =―f (4―2x )8.刍曹是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某屋顶可视为五面体ABCDEF ,四边形ABFE 和CDEF 是全等的等腰梯形,△ADE 和△BCF 是全等的等腰三角形.若AB =25m ,BC =AD =10m ,且等腰梯形所在的面、等腰三角形所在的面与底面夹角的正切值均为145.为这个模型的轮廓安装灯带(不计损耗),则所需灯带的长度为( )A. 102mB. 112mC. 117mD. 125m二、多选题:本题共3小题,共18分。

2023届湖南省长沙市雅礼中学高三年级上册学期月考(五)数学试题【含答案】

2023届湖南省长沙市雅礼中学高三年级上册学期月考(五)数学试题【含答案】

2023届湖南省长沙市雅礼中学高三上学期月考(五)数学试题一、单选题1.已知全集R U =,集合{(1)(2)0}M xx x =-+≥∣,{13}N x x =-≤≤∣,则()U M N ⋂=( ) A .[1,1)- B .[1,2]- C .[2,1]-- D .[1,2]【答案】A【分析】先由一元二次不等式的解法求得集合M ,再由集合的补集、交集运算求得答案.【详解】解:由题意可得:由(1)(2)0x x -+≥得1x ≥或2x ≤-,所以(][)21M =-∞-+∞,,,则 :()C 2,1U M =-,又{13}N xx =-≤≤∣,所以()U M N ⋂= [)1,1-. 故选:A .2.若复数z 满足()()11i 22i z -+=-,则z =( ) A .5 B .3 C .5 D .2【答案】A【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得z 的值. 【详解】由复数的四则运算可得()()()()()2221i 21i 111i 112i 1i 1i 1i z --=+=+=-+=-++-, 因此,()22125z =+-=. 故选:A.3.如图,在ABC 中,点D 是边BC 的中点,2AG GD =,则用向量,AB AC 表示BG 为( )A .2133BG AB AC =-+B .1233BG AB AC =-+C .2133BG AB AC =- D .2133BG AB AC =+ 【答案】A【解析】先根据题意,得到()12AD AB AC =+,23AG AD =,再由向量的加减运算,即可得出结果. 【详解】因为点D 是边BC 的中点,所以()12AD AB AC =+, 又2AG GD =,所以23AG AD =, 因此()21123333BG AG AB AD AB AB AC AB AC AB =-=-=+-=-. 故选:A.【点睛】本题主要考查用基底表示向量,熟记平面向量基本定理即可,属于常考题型.4.在普通高中新课程改革中,某地实施”3+1+2“选课方案,该方案中的“2”该指的是政治、地理、化学、生物4门学科中任选2门,假设每门学科被选中的可能性相等,那么政治和地理至少有一门被选中的概率是( ) A .16B .12C .23D .56【答案】D【分析】分别查出4门科目任选2门总共结果数,再选出政治和地理至少有一门的结果数,然后根据古典概率计算概率即可.【详解】在政治、地理、化学、生物4门科目中任选2门共有6种情况,分别为:政治+地理、政治+化学、政治+生物、地理+化学、地理+生物、化学+生物. 其中政治和地理至少有一门的情况包含5种,分别为:政治+地理、政治+化学、政治+生物、地理+化学、地理+生物. 故政治和地理至少选一门的概率为56P =.故选:D5.已知三棱台111ABC A B C 中,三棱锥111A A B C -的体积为4,三棱锥1A ABC -的体积为8,则该三棱台的体积为( )A .12+B .12+C .12+D .12+【答案】B 【分析】设11112,ABCA B C SSS S ==,棱台高为h ,由已知得212S h=,124S h=,根据棱台的体积公式可得三棱台的体积V .【详解】设11112,ABCA B C SSS S ==,棱台高为h ,由已知1112143A A B C V S h -==,得212S h=,11183A ABC V S h -==,得124S h =,三棱台111ABC A B C 的体积为()221121224122412113423V h S h h h h S S S ⎛⎫⨯++=+ ⎪ ⎪=⎭+⎝+=, 故选:B.【点睛】关键点点睛:本题考查了三棱台、三棱锥的体积的求法,解题的关键点是利用底面积与高的转化.6.将函数sin 64y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移8π个单位,所得函数图象的一个对称中心是( ). A .,016π⎛⎫⎪⎝⎭B .,09π⎛⎫ ⎪⎝⎭C .,04π⎛⎫ ⎪⎝⎭D .,02π⎛⎫ ⎪⎝⎭【答案】D【分析】先利用三角函数的图像变换,可以得到变换后的函数解析式sin 2y x =,再由正弦函数的对称性代入计算即可.【详解】函数sin 64y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),则得到:sin 24y x π⎛⎫=+ ⎪⎝⎭,再向右平移8π个单位,则得到:sin 2sin 284y x x ππ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭,令2x k =π即,2k x k Z π=∈ 故选:D【点睛】本题考查了三角函数图像的变换以及三角函数的对称性,属于一般题.7.设0.70.820232020,2021,log 2022a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .b<c<aD .c<a<b【答案】D【分析】根据指数函数、幂函数和对数函数的单调性可得出0.70.8120202021<<,2023log 20221<,然后即可得出a ,b ,c 的大小关系【详解】00.70.80.812020202020202021=<<<,20232023log 2022log 20231<=,c a b ∴<<.故选:D .8.边长为2的正方形,经如图所示的方式裁剪后,可围成一个正四棱锥,则此正四棱锥的外接球的表面积的最小值为( )A .23π9B .43π9C .()843π- D .(823)π-【答案】B【分析】设底面边长为2x ,可求得此四棱锥的高为12x -,根据外接球与正四棱锥的关系,利用勾股定理可求出外接球半径,再利用导数求得半径的最小值即可. 【详解】如图所示,设围成的四棱柱为P ABCD -,PF 为正四棱锥P ABCD -的高,作FE BC ⊥交BC 于E ,连接PE ,设FE x =,则1PE x =-,在直角三角形PFE 中由勾股定理得2212PF PE FE x -- 又因为正四棱锥P ABCD -的外接球球心在它的高PF 上, 记球心为O ,半径为R ,连接,OB FB ,则2FB x , 则在直角三角形OFB 中()22222OB OF FB PF OP FB =+=-+,即()()222122R x Rx =--+,解得22221(12)1212412x x x R x x-+-+==--,令12x t -=(01)t <<,则414t R t +=,4212416t R t -'=,令0R '=解得233t =,所以R 在4103⎛⎫ ⎪⎝⎭,上单调递减,在4113⎛⎫ ⎪⎝⎭,上单调递增, 所以当233t =时R 取最小值,所以242min 1349t R t ⎛⎫+== ⎪⎝⎭, 所以该四棱锥外接球的表面积的最小值为2min 43π4π9R =, 故选:B二、多选题9.如图,在棱长为1的正四面体ABCD 中,点M ,N 分别为棱BC ,AD 的中点.则( )A .12MN =B .AB CD ⊥C 3D .直线AM 与CN 所成角的余弦值为13【答案】BC【分析】把,,,MN AM NC CD 分别用,,AB AC AD 表示,再根据数量积的运算律计算分析,即可判断ABD ,连接DM ,在DM 上取点O ,使得2OD OM =,连接OA ,则OA ⊥平面BCD ,解ADM △即可判断C.【详解】解:由正四面体ABCD ,可得π3BAC BAD DAC ∠=∠=∠=, 对于A ,()()1122MN AN AM AN AB AC AD AB AC =-=-+=--,则()212MN AD AB AC ⎡⎤=--⎢⎥222222AD AB AC AB AC ABAD AD AC =+++⋅-⋅-⋅ ==A 错误; 对于B ,CD AD AC =-,则()11022AB CD AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅=-=, 所以AB CD ⊥,故B 正确; 对于D ,111,222AM AB AC NC AC AN AC AD =+=-=-, 则32AM NC ==111222AM NC AB AC AC AD ⎛⎫⎛⎫⋅=+⋅- ⎪ ⎪⎝⎭⎝⎭211112424AB AC AB AD AC AD AC =⋅-⋅+-⋅ 1111148282=-+-=, 设直线AM 与CN 所成角为θ,则12cos cos ,33AM NC AM NC AM NCθ⋅====, 所以直线AM 与CN 所成角的余弦值为23,故D 错误;对于C ,连接DM ,在DM 上取点O ,使得2OD OM =,连接OA , 则OA ⊥平面BCD ,则ADM ∠即为直线AD与平面BCD 所成角的平面角, 在ADM △中,1AM DM AD ===,则331cos ADM +-∠=由正四面体的结构特征可得,直线,,AB AC AD 与平面BCD 所成角的相等, C 正确 故选:BC10.已知函数()ln f x x x =,若120x x <<,则下列选项正确的是( ) A .()()1122x f x x f x +<+ B .()()2112x f x x f x <C .当211ex x >>时,()()()()11222112x f x x f x x f x x f x +>+D .若方程()f x a =有一个根,则1a e=-【答案】BC【分析】构造函数()()ln g x f x x x x x =+=+,利用导数判断函数的单调性,可判断A 选项;由函数ln y x =的单调性可判断B 选项;利用函数()y f x =在区间 1,e ⎛⎫+∞ ⎪⎝⎭上的单调性可判断C 选项;取特例可判断D 选项.【详解】对于A 选项,构造函数()()ln g x f x x x x x =+=+,定义域为(0)+∞,,()ln 2g x x '=+, 当 210e<<x 时,()0g x '<;当 21e x > 时,()0g x '>. 所以,函数()ln g x x x x =+的单调递减区间为 210,e ⎛⎫⎪⎝⎭,单调递增区间为 21,e ⎛⎫+∞ ⎪⎝⎭当 12210e x x <<< 时,()()12g x g x >,即()()1122x f x x f x +>+,A 选项错误;对于B 选项,()ln f x x x= ,由于函数ln y x =在(0)+∞,上单调递增, 当120x x <<时,12ln ln x x <,即 1212()()f x f x x x < ,所以()()2112x f x x f x <,B 选项正确; 对于C 选项,函数()ln f x x x =,定义域为()0,∞+,()ln 1f x x '=+ 令()0f x '<,则10ex <<;令0fx,可得 1ex >所以,函数()ln f x x x =的单调递减区间为10,e ⎛⎫⎪⎝⎭,单调递增区间为1,e ⎛⎫+∞ ⎪⎝⎭.当 211ex x >> 时,()()12f x f x <,则()()()()121122x x f x x x f x ->-,即()()()()11222112x f x x f x x f x x f x +>+,C 选项正确;对于D 选项,当0a =时,若方程()0f x =也只有一个根1x =,D 选项错误. 故选:BC11.设F 是抛物线C :24y x =的焦点,直线l 过点F ,且与抛物线C 交于A ,B 两点,O 为坐标原点,则下列结论正确的是( ) A .||4AB ≥ B .||||8OA OB +>C .若点(2,2)P ,则||||PA AF +的最小值是3D .OAB 的面积的最小值是2 【答案】ACD【解析】讨论直线l 是否有斜率,分别计算|AB |和△OAB 的面积或其范围,判断A ,D ,举特例判断B 错误,根据抛物线性质和三点共线判断C . 【详解】解:F (1,0),不妨设A 在第一象限, (1)若直线l 无斜率,则A (1,2),B (1,−2),则|AB |=4,|OA |+|OB |=2|OA |=14122OABS=⨯⨯=,显然B 错误; (2)若直线l 存在斜率,设直线l 斜率为k ,则直线l 的方程为:y =k (x −1),显然k ≠0,联立方程组()214y k x y x ⎧=-⎨=⎩,消元得:()2222240k x k x k -++=,设()()1122,,,A x y B x y ,则212222442k x x k k++==+, ∴|AB |=12x x ++2=4+24k>4,原点O 到直线l 的距离d =∴21144222OABSAB d k ⎛⎫=⨯⨯=⨯+= ⎪⎝⎭, 综上,|AB |≥4,OABS ≥2,故A 正确,D 正确,过点A 向准线作垂线,垂足为N ,则|P A |+|AF |=|P A |+|AN |,又P (2,2)在抛物线右侧,故当P ,A ,N 三点共线时,|P A |+|AF |取得最小值3,故C 正确. 故选:ACD .【点睛】本题考查直线与抛物线的位置关系,考查抛物线的简单性质,属于中档题. 12.已知函数1()3x p f x -=,2()3x p g x -=,12p p ≠,则下列四个结论中正确的是( ). A .()y f x =的图象可由()y g x =的图象平移得到 B .函数()()f x g x +的图象关于直线122p p x +=对称 C .函数()()f x g x -的图象关于点12,02p p +⎛⎫⎪⎝⎭对称 D .不等式()()f x g x >的解集是12,2p p +⎛⎫+∞ ⎪⎝⎭【答案】ABC【分析】由()()1213x p g x p f x p -+-==可知A 正确;设()()()F x f x g x =+,证明()()12F x p F p x +=-即可判断B ;设()()()H x f x g x =-,证明()()120H x p H x p ++-+=即可判断C ;利用指数函数的单调性解不等式,分类讨论不等式的解,即可判断D. 【详解】对于A ,因为()()1213x p g x p f x p -+-==,所以()y f x =的图象可由()y g x =的图象平移得到,所以A 正确;对于B ,设()()()F x f x g x =+,则()12||133x p p x F x p +-+=+,()2211||||23333x p p x p p x x F x p -+-+---+=+=+,因为()()12F x p F p x +=-,所以()()f x g x +的图象关于直线122p p x +=对称,B 正确; 对于C ,设()()()H x f x g x =-,则()12||133x p p x H x p +-+=-,()2112||||23333x p p x p p x x H x p -+-+---+=--=-,因为()()120H x p H x p ++-+=,所以()H x 的图象关于点12,02p p +⎛⎫⎪⎝⎭对称,所以C 正确; 对于D ,由()()f x g x >,得12x p x p ->-,化为2212x p x p ->-,()2221212p p x p p ->-,若12p >p ,则212p p x +>;若21p p <,则212p p x +<,所以D 错误. 故选:ABC【点睛】本题考查指数与指数函数、函数的基本性质,属于中档题.三、填空题13.在()5(1)21x x -+的展开式中,3x 项的系数为______.【答案】10【分析】利用二项定理展开5(1)x -,再利用多项式乘法法则求出3x 项即可作答.【详解】依题意,52345(1)1510105x x x x x x -=-+-+-,因此5(1)(21)x x -+展开式中3x 项为23310210110x x x x ⋅-⋅=,所以3x 项的系数为10. 故答案为:1014.已知圆22:2O x y +=,M 是直线l :40x y -+=上的动点,过点M 作圆O 的两条切线,切点分别为A ,B ,则MA MB ⋅的最小值为______. 【答案】3【分析】画出图形,设2AMB θ∠=,利用数量积公式将MA MB ⋅转化为求2||cos 2MA θ的最小值,从而分析图形可知当 OM l ⊥ 时, 这时2||cos 2MA θ最小,即MA MB ⋅ 最小. 【详解】设2AMB θ∠=, 则 2||||cos 2||cos 2MA MB MA MB MA ⋅==θθ,可知当 OM l ⊥ 时, ||MA 最小且 2θ 最大, cos2θ 最小, 这时 MA MB ⋅ 最小.设点 O 到直线 l 的距离为 d , 则 d =因为圆 O 的半径为, 所以当 OM l ⊥ 时, 1sin 2θ=, 可得 21cos 2,||2MA =θ 226d =-=, 所以 MA MB ⋅ 的最小值为3. 故答案为:3 .15.已知曲线()ln f x x =在点()()1,1P f 处的切线也是曲线()e x g x a =的一条切线,则=a ____________.【答案】2e -##21e 【分析】首先利用导数的几何意义得到切线为1y x =-,设()e x g x a =的切点为()00,e xB x a ,从而得到01lnx a =,代入切线得到切点为()2,1B ,再结合01ln x a=即可得到答案. 【详解】()ln f x x =,()10f =,所以切点()1,0.()1f x x'=,()11k f '==,切线()011y x -=⋅-,即1y x =-. 设()e x g x a =的切点为()00,e xB x a ,()e x g x a '=,()001e x k g x a '===,所以01lnx a=. 所以切点为()0,1B x ,将B 点代入切线1y x =-得:02x =, 又因为01lnx a=,解得:=a 2e -. 故答案为:2e -.16.已知椭圆222:1x C y a+=的一个焦点为F ,若过焦点F 的弦AB 与以椭圆短轴为直径的圆相切,且2AB =,则该椭圆的离心率为______.3132【分析】根据直线AB 与单位圆相切、2AB =列方程,求得,a c ,从而求得椭圆的离心率. 【详解】椭圆1b =,焦距为c,以椭圆短轴为直径的圆为221x y +=,圆心为原点,半径为1. 由于过焦点F 的弦AB 与以椭圆短轴为直径的圆相切,所以直线AB 与x 轴不平行,设直线AB 的方程为,0x my c x my c =+--=,原点到直线AB221,1c m ==+①,由2221x my c x y a =+⎧⎪⎨+=⎪⎩消去x 并化简得()222210m a y mcy ++-=, ()2222440m c m a ∆=++>,设()()1122,,,A x y B x y ,则1222122221mc y y m a y y m a ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,所以ABc =2222ac m a =+ 222221ac c a==-+,()()()22221,111ac c a a c a a =+--=+-, 由于1a >,所以2221,11,20c a a a a a =+-=+--=, 解得2a =(负根舍去),则2213,c c =+==所以椭圆的离心率为c a =四、解答题17.已知函数()()()()πsin πf x x x x -∈R 的所有正的零点构成递增数列{}()*n a n ∈N .(1)求数列{}n a 的通项公式;(2)设1223nn n b a ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,求数列{}n b 的前n 项和n T .【答案】(1)()*23n a n n =-∈N (2)222n nn T +=-【分析】(1)首先利用辅助角公式化简()f x ,再求出所有正的零点,利用等差数列即可求解通项. (2)首先求出n b ,再利用错位相减法求解即可.【详解】(1)()()()πsin π2cos π6f x x x x π⎛⎫=-=+ ⎪⎝⎭,由题意令()ππππ62x k k +=+∈Z ,解得()13x k k =+∈Z . 又函数()f x 的所有正的零点构成递增数列{}n a ,所以当0k =时,{}n a 是首项113a =,公差1d =的等差数列,因此()()*121133n a n n n =-⨯+=-∈N .(2)由(1)知121232n nn n b a n ⎛⎫⎛⎫⎛⎫=+=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()123111111123122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-⋅+⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,①()23411111111231222222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-⋅+⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,②由①-②得()12311111111111221212222222212n n n n n n n n T n +++⎛⎫- ⎪⎛⎫⎝⎭=++++-=-=-+⋅ ⎪⎝⎭-,所以222n nn T +=-. 18.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD .其中AB =3百米,AD =5百米,且△BCD 是以D 为直角顶点的等腰直角三角形.拟修建两条小路AC ,BD (路的宽度忽略不计),设∠BAD =θ,θ∈(2π,π).(1)当cos θ=5AC 的长度; (2)当草坪ABCD 的面积最大时,求此时小路BD 的长度. 【答案】(1)37AC =;(2)26BD 【分析】(1)在△ABD 中,由余弦定理可求BD 的值,利用同角三角函数基本关系式可求sinθ,根据正弦定理可求sin ∠ADB 35=,进而可求cos ∠ADC 的值,在△ACD 中,利用余弦定理可求AC 的值.(2)由(1)得:BD 2=14﹣5,根据三角形面积公式,三角函数恒等变换的应用可求.SABCD=7152+sin (θ﹣φ),结合题意当θ﹣φ2π=时,四边形ABCD 的面积最大,即θ=φ2π+,此时cosφ=sinφ=,从而可求BD 的值.【详解】(1)在ABD ∆中,由2222cos BD AB AD AB AD θ=+-⋅,得214BD θ=-,又cos θ=∴BD =∵,2πθπ⎛⎫∈ ⎪⎝⎭ ∴sin θ=由sin sin BD AB BAD ADB =∠∠3sinADB =∠,解得:3sin 5ADB ∠=,∵BCD ∆是以D 为直角顶点的等腰直角三角形 ∴2CDB π∠=且CD BD ==∴3cos cos sin 25ADC ADB ADB π⎛⎫∠=∠+=-∠=- ⎪⎝⎭在ACD ∆中,2222cos AC AD DC AD DC ADC =+-⋅∠ (2232375⎛⎫=+--= ⎪⎝⎭,解得:AC =(2)由(1)得:214BD θ=-,2113sin 22ABCD ABD BCD S S S BD θ∆∆=+=⨯+⨯ 7sin θθ=-)()157sin 2cos 7sin2θθθφ=-=+-,此时sin φ=cos φ=0,2πφ⎛⎫∈ ⎪⎝⎭当2πθφ-=时,四边形ABCD 的面积最大,即2πθφ=+,此时sin θ=cos θ=∴2141426BD θ⎛=-=-= ⎝,即BD =答:当cos θ=小路AC 草坪ABCD 的面积最大时,小路BD 百米.【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,三角形面积公式,三角函数恒等变换的应用以及正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.图1是直角梯形ABCD ,ABCD ,90D ∠=,2AB =,3DC =,AD =,2CE ED =,以BE 为折痕将BCE 折起,使点C 到达1C 的位置,且1AC 2.(1)求点D 到平面1BC E 的距离;(2)若113DP DC =,求二面角P BE A --的大小.【答案】(1)详见解析; (2)4π【分析】(1)连接AC ,交BE 于F ,易得四边形ABCE 是菱形,得到AC BE ⊥,再由2221AC AF CF =+,得到1C F AF ⊥,从而有1C F ⊥平面ABED ,然后利用11C DBE D C BE V V --=求解;(2)由(1)建立空间直角坐标系,求得平面BEP 的一个法向量为(),,m x y z =,易知平面BEA 的一个法向量为()0,0,1n =,由cos ,m n m n m n⋅=⋅求解.【详解】(1)解:如图所示:,连接AC ,交BE 于F ,因为90D ∠=,2AB =,3DC =,3AD =2CE ED =, 所以AE =2, 又ABCD ,所以四边形ABCE 是菱形, 所以AC BE ⊥,在ACD 中,2223AC AD CD +=所以3AF CF ==16AC =2221AC AF CF =+,所以1C F AF ⊥,又AF BE F ⋂=, 所以1C F ⊥平面ABED , 设点D 到平面1BC E 的距离为h , 因为1113233,13222C BEDBESS =⨯⨯==⨯⨯=, 且11C DBE D C BE V V --=,所以111133C BEDBEh SC F S ⨯⨯=⨯⨯,解得32h =; (2)由(1)建立如图所示空间直角坐标系:则(()()()133,0,3,0,1,0,0,1,0,3,0,02D C B E A⎫--⎪⎪⎝⎭,所以()()3,1,0,0,2,0BA BE =-=-,因为113DP DC =,所以13313BP BD BD DP DC ⎛=++=- =⎝⎭, 设平面BEP 的一个法向量为(),,m x y z =, 则00m BE m BP ⎧⋅=⎪⎨⋅=⎪⎩,即203320y x y z -=⎧⎪⎨-=⎪, 令1x =,得()1,0,1m =-,易知平面BEA 的一个法向量为()0,0,1n =, 所以2cos ,2m n m n m n⋅==-⋅则3,4m n π=, 易知二面角P BE A --的平面角是锐角, 所以二面角P BE A --的大小为4π. 20.法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包.该面包店的面包师声称自己所出售的面包的平均质量是1000g ,上下浮动不超过50g .这句话用数学语言来表达就是:每个面包的质量服从期望为1000g ,标准差为50g 的正态分布. (1)已知如下结论:若()2,XN μσ,从X 的取值中随机抽取()*,2k k N k ∈≥个数据,记这k 个数据的平均值为Y ,则随机变量2,Y N k σμ⎛⎫~ ⎪⎝⎭.利用该结论解决下面问题.(i )假设面包师的说法是真实的,随机购买25个面包,记随机购买25个面包的平均值为Y ,求()980P Y ≤;(ii )庞加莱每天都会将买来的面包称重并记录,25天后,得到的数据都落在()950,1050上,并经计算25个面包质量的平均值为978.72g .庞加莱通过分析举报了该面包师,从概率角度说明庞加莱举报该面包师的理由;(2)假设有两箱面包(面包除颜色外,其他都一样),已知第一箱中共装有6个面包,其中黑色面包有2个;第二箱中共装有8个面包,其中黑色面包有3个.现随机挑选一箱,然后从该箱中随机取出2个面包.求取出黑色面包个数的分布列及数学期望. 附:①随机变量η服从正态分布()2,N μσ,则()0.6827P μσημσ-≤≤+=,()()220.9545,330.9973P P μσημσμσημσ-≤≤+=-≤≤+=;②通常把发生概率小于0.05的事件称为小概率事件,小概率事件基本不会发生. 【答案】(1)(i )0.02275;(ii )理由见解析. (2)()119188E ξ=【分析】(1)(i )由正太分布的对称性及3σ原则进行求解;(ii )结合第一问求解的概率及小概率事件进行说明;(2)设取出黑色面包个数为随机变量ξ,则ξ的可能取值为0,1,2,求出相应的概率,进而求出分布列及数学期望.【详解】(1)(i )因为25010025=,所以()21000,10Y N ,因为()220.9545P μσημσ-≤≤+=,所以()10.954520.022752P ημσ-≤-==,因为9801000210=-⨯,所以()()98020.02275P Y P Y μσ≤=≤-=;(ii )由第一问知()()98020.02275P Y P Y μσ≤=≤-=,庞加莱计算25个面包质量的平均值为978.72g ,978.72980<,而0.022750.05<,为小概率事件,小概率事件基本不会发生,这就是庞加莱举报该面包师的理由;(2)设取出黑色面包个数为随机变量ξ,则ξ的可能取值为0,1,2,则()143154530265287140p ξ==⨯⨯+⨯⨯=;()124135449122265287840p ξ==⨯⨯⨯+⨯⨯⨯=,()121132732265287840p ξ==⨯⨯+⨯⨯=,故分布列为:ξ 01 2 p53140 44984073840其中数学期望()5344973119012140840840188E ξ=⨯+⨯+⨯= 21.如图,已知椭圆22122:1(0)x y C a b a b+=>>与等轴双曲线2C 共顶点(22,0)±,过椭圆1C 上一点P(2,-1)作两直线与椭圆1C 相交于相异的两点A ,B ,直线P A 、PB 的倾斜角互补,直线AB 与x ,y 轴正半轴相交,分别记交点为M ,N .(1)求直线AB 的斜率;(2)若直线AB 与双曲线2C 的左,右两支分别交于Q ,R ,求NQNR的取值范围. 【答案】(1)12-(2)【分析】(1)先求出椭圆方程,联立直线与椭圆方程,利用韦达定理求解A ,B 坐标,直接计算直线AB 斜率即可.(2)联立直线与双曲线的方程,利用求根公式表示出Q ,R 的坐标,化简NQ NR 的表达式,整理求出NQNR的取值范围即可得出结果.【详解】(1)由题椭圆22122:1(0)x y C a b a b+=>>,顶点(±,可得a =又因为点(2,1)P -在椭圆1C 上,即24118b +=,得22b =,所以椭圆方程为22182x y +=,设等轴双曲线2C :222x y m -=,0m >, 由题意等轴双曲线2C的顶点为(±,可得2=8m ,所以双曲线2C 的方程为:228x y -=, 因为直线P A 、PB 的倾斜角互补,且A ,B 是不同的点,所以直线P A 、PB 都必须有斜率,设直线PA 方程为(2)1y k x =--,联立22(2)1182y k x x y =--⎧⎪⎨+=⎪⎩,整理得2222(14)(168)161640k x k k x k k +-+++-=,A 和P 点横坐标即为方程两个根,可得221681+4A P k k x x k ++=,因为=2P x ,所以22882=14A k k x k +-+,代入直线PA 可得2244114A k k y k --=+,即 2222882441(,)1414k k k k A k k +---++,又因为直线P A 、PB 的倾斜角互补,将k 换成k -,可得2222882441(,)1414k k k k B k k --+-++,两点求斜率可得出12AB k =-所以直线AB 的斜率为12-(2)由(1)可设直线AB 的方程:12y x n =-+,又因为直线AB 与x ,y 轴正半轴相交,则0n >,联立方程组2212182y x n x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,整理得2224480x nx n -+-=,22Δ168(48)0n n =-->,解得02n <<. 联立直线AB 和双曲线方程221(02)28y x n n x y ⎧=-+<<⎪⎨⎪-=⎩,消去y 得22344320x nx n +--=,利用求根公式可得x =,由题意可知Q NQ x =,R NR x =,所以1Q R x NQ NR x ===, 又因为204n <<,所以2632n >,则11>,即0<<1NQ NR << 所以NQ NR的取值范围为 【点睛】方法点睛:(1)解答直线与圆锥曲线题目时,时常把两个曲线的方程联立,消去一个未知数建立一元二次方程, 然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率不存在的特殊情况. 22.已知函数()2sin ,R f x x ax a =-∈.(1)当1a =时,求()()ln(1)g x f x x =-+在区间π0,6⎡⎤⎢⎥⎣⎦上的最小值;(2)证明:11111sin sin sin sinln (12342n n n +++++>>且*n ∈N ). 【答案】(1)0 (2)证明详见解析【分析】(1)利用导数判断出()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上的单调性,从而求得最小值.(2)先证得()sin ln 1x x >+在区间10,2⎡⎤⎢⎥⎣⎦上恒成立,进而证得要证明的不等式成立.【详解】(1)()()π2sin ln 106g x x x x x ⎛⎫=--+≤≤ ⎪⎝⎭,()12cos 11g x x x '=--+,()00g '=,令()()()()21π12cos 10,2sin ,01161u x x x u x x u x x ⎛⎫''=--≤≤=-+= ⎪+⎝⎭+, 令()()()()231π22sin 0,2cos 0611v x x x v x x x x ⎛⎫'=-+≤≤=--< ⎪⎝⎭++, 所以()v x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递减,即()u x '在区间π0,6⎡⎤⎢⎥⎣⎦上单调递减. ()2π1π10,0066π16u u u ⎛⎫⎛⎫'''=-+<⋅< ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭, 故存在0π0,6x ⎛⎫∈ ⎪⎝⎭使()00u x '=, 所以()u x 在区间()00,x 单调递增,在区间0π,6x ⎛⎫ ⎪⎝⎭单调递减,π110π616g ⎛⎫'-> ⎪⎝⎭+,所以在区间π0,6⎛⎫ ⎪⎝⎭,()0g x '>, 所以()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上递增,最小值为()00g =. (2)由(1)可知()()()2sin ln 100g x x x x g =--+≥=在区间10,2⎡⎤⎢⎥⎣⎦上恒成立(1π26<), 所以()2sin ln 1x x x -≥+,对于函数()()1ln 102h x x x x ⎛⎫=-+≤≤ ⎪⎝⎭,()()100,1011x h h x x x '==-=>++, 所以()h x 在区间10,2⎡⎤⎢⎥⎣⎦上单调递增, 所以当102x <<时,()0h x >,即()()ln 10,ln 1x x x x -+>>+, 所以()()()2sin ln 1ln 1ln 1x x x x x ≥++>+++,即()sin ln 1x x >+在区间10,2⎡⎤⎢⎥⎣⎦上恒成立, 所以1111sin sin sin sin 234n ++++ 3413411ln ln ln ln ln 23232n n n n n +++⎛⎫>+++=⋅⋅⋅= ⎪⎝⎭. 【点睛】关键点点睛:不等式证明的可考虑综合法以及分析法,本题第2小问是分析法.在导数运用的题目中,第一问的结论可能会用到第二问.特殊不等式(常见不等式)()ln 1x x >+等,可以在平时做题中积累,解答过程中需要利用导数进行简单的证明.当一次求导无法求得函数的单调性时,可考虑利用多次求导来进行求解.。

雅礼中学2021届高三上学期第五次月考 数学试题(含解析)

雅礼中学2021届高三上学期第五次月考 数学试题(含解析)

雅礼中学2021届高三上学期第五次月考数学试题第Ⅰ卷一、单项选择题:本大题共8小题,每小题5分,共40分.1.已知集合{24}A x x =-<∣,{53}B x x =-<∣,则A B ⋂=( )A .{54}x x -<<∣B .{52}x x -<-∣C .{23}x x -∣D .{34}x x <∣ 2.设134z i =-,223z i =-+,则12z z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.从5名同学中选若干名分别到图书馆食堂做志愿者,若每个地方至少去2名,则不同的安排方法共有( ) A.20种 B .50种 C .80种 D .100种4.党的十九大报告中指出:从2020年到2035年,在全面建成小康社会的基础上,再奋斗15年,基本实现社会主义现代化.若到2035年底我国人口数量增长至14.4亿,由2013年到2019年的统计数据可得国内生产总值(GDP )y (单位:万亿元)关于年份代号x 的回归方程为 6.6050.36(1,2,3,4,5,6,7)y x x =+=,由回归方程预测我国在2035年底人均国内生产总值(单位:万元)约为( ) A .14.04万元 B .202.16万元 C .13.58万元 D .14.50万元5.随着网络技术的发达,电子支付变得愈发流行,若电子支付只包含微信支付和支付宝支付两种.某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.76.牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体的初始温度为0T ,则经过一定时间t 后的温度T 将满足()012ta a T T T T ⎛⎫⎪⎭⋅-=- ⎝,其中a T 是环境温度,h 称为半衰期.现有一杯85℃的热茶,放置在25℃的房间中,如果热茶降温到55℃,需要10分钟,则欲降温到45℃,大约需要多少分钟?(lg 20.3010≈,1g 30.4771≈)( )A .12B .14C .16D .18 7.在直角三角形ABC 中,90A ︒∠=,2AB =,4AC =,P 在ABC 斜边BC 的中线AD 上,则()AP PB PC ⋅+的最大值为( )A .258 B .52 C .254 D .2528.已知()f x 是定义在R 上的函数,且对任意x R ∈都有(2)(2)4(2)f x f x f +=-+,若函数(1)y f x =+的图象关于点(1,0)-对称,且(1)3f =,则(2021)f =( )A .6B .3C .0D .3-二、多项选择题:本大题共4小题.每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.如果a 、b 、c 满足c b a <<,且0ac <,那么下列选项成立的是( )A .ab ac >B .22cb ab < C .()0c b a -> D .()0ac a c -< 10.已知方程2225 3102x y ax ay a a +++++-=,若方程表示圆,则a 的值可能为( ) A .2- B .0 C .1 D .3 11..在棱长为1的正方体1111ABCD A B C D -中,下列结论正确的是( )A .异面直线1BD 与1BC 所成的角大小为90° B .四面体1D DBC 的每个面都是直角三角形 C .二面角11D BC B --的大小为30°D .正方体1111ABCD A B C D -12.在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受得到.而信号处理背后的“功臣”就是正弦型函数.函数41sin[(21)]()21i i x f x i =-=-∑的图象就可以近似地模拟某种信号的波形,则( )A .函数()f x 为周期函数,且最小正周期为πB .函数()f x 的图象关于点(2,0)π对称C .函数()f x 的图象关于直线2x π=对称 D .函数()f x 的导函数()f x '的最大值为4 第Ⅱ卷三、填空题:本大题共4小题每小题5分,共20分.13.已知抛物线2:2(0)C y px p =>,直线:2l y x b =+经过抛物线C 的焦点,且与C 相交于A 、B 两点.若||5AB =,则p =________.14.数列1,2-,2,3-,3,3-,4,4-,4,4-,5,5-,5,5-,5,…的项正负交替,且项的绝对值为1的有1个,2的有2个,…,n 的有n 个,则该数列第2021项是________.15.筒车是我国古代发明的一种水利灌溉工具因其经济又环保,至今还在农业生产中得到使用,如左下图.假定在水流量稳定的情况下,半径为3m 的筒车上的每一个盛水桶都按逆时针方向作角速度为rad /min 3π的匀速圆周运动,平面示意图如右下图,已知筒车中心O 到水面BC 的距距离为2m ,初始时刻其中一个盛水筒位于点0P 处,且0(// ) 6POA OA BC π∠=,则8min 后该盛水筒到水面的距离为________m .16.正方体1111ABCD A B C D -的长为1,E ,F 分别为BC ,1CC 的中点.则平面AEF 截正方体所得的截面面积为________;以点E 11ACC A 的交线长为________. 四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在①sin 2B B +=,②cos220B B +-=,③222b ac -=这三个条件中任选一个,补充在下面的问题中,并进行解答.问题:已知ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,若4a =,c =,________,求ABC的面积.18.(本小题满分12分)已知数列{}n a 满足()2*12323n a a a na n n N ++++=∈.(1)求数列{}n a 的通项公式;(2)设()1(1)n n n n b a a +=-+,求数列{}n b 的前2020项和2020S .19.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,1PA AB ==,D= 2BC C =,//AB CD ,2ADC π∠=.(1)求证:PD AB ⊥;(2)求直线AC 与平面PBC 所成角的正弦值.20.(本小題满分12分)在2019年女排世界杯中,中国女子排球队以11连胜的优异战绩成功夺冠,为祖国母亲七十华诞献上了一份厚礼.排球比赛采用5局3胜制,前4局比赛采用25分制,每个队只有赢得至少25分,并同时超过对方2分时,才胜1局;在决胜局(第五局)采用15分制,每个队只有赢得至少15分,并领先对方2分为胜,在每局比赛中,发球方贏得此球后可得1分,并获得下一球的发球权,否则交换发球权,并且对方得1分.现有甲、乙两队进行排球比赛:(1)若前三局比赛中甲已经赢两局,乙赢一局接下来两队赢得每局比赛的概率均为12,求甲队最后赢得整场比赛的概率;(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各 14分,且甲已获得下一发球权.若甲发球时甲赢1分的概率为25,乙发球时甲赢1分的概率为35,得分者 获得下一个球的发球权.设两队打了(6)x x 个球后甲赢得整场比赛,求x 的值及相应的概率()p x .21.(本小题满分12分)如图,点A 为椭圆221:21C x y +=的左顶点,过A 的直线1l 交抛物线22:2(0)C y px p =>于B ,C 两点,点C 是AB 的中点.(1)若点A 在抛物线2C 的准线上,求抛物线2C 的标准方程;(2)若直线2l 过点C ,且倾斜角和直线1l 的倾斜角互补,交椭圆1C 于M ,N 两点. (i )证明:点C 的横坐标是定值,并求出该定值; (ii )当BMN 的面积最大时,求p 的值.22.(本小题满分12分)已知函数()21xf x ae x =+-,(其中常数 2.71828e =,是自然对数的底数)(1)讨论函数()f x 的单调性;(2)证明:对任意的1a ,当0x >时, ()()f x x ae x +.参考答案一、单项选择题:本大题共8小题,每小题5分,共40分.2.D 【解析】由题134z i =-,223z i =-+,则121z z i +=-,对应点为(1,1)-.3.B 【解析】当去4个人时,安排方法有4254C C 30=种,当去5个人时,安排方法有3152C C 20=种.综上,不同的安排方法共有50种.故选B .4.A 【解析】到2035年底对应的年份代号为23,由回归方程ˆ 6.6050.36yx =+得,我国国内生产总值约为6.602350.36202.16⨯+=(万亿元),又202.1614.0414.4≈,所以到2035年底我国人均国内生产总值约为14.04万元.故选A .5.B 【解析】设事件A 为只用现金支付,事件B 为只用非现金支付,则()()()()P A B P A P B P AB ⋃=++.因为()0.45P A =,()0.15P AB =,所以()0.4P B =.故选B .6.C 【解析】根据题意有:1015525(8525)102hh ⎛⎫-=-⇒=⎪⎝⎭, ∴101211lg30.47714525(8525)log 101015.852103lg 20.3010t t t ⎛⎫-=-⇒=⇒=⨯=⨯≈⎪⎝⎭,故选C . 7.B 【解析】以A 为坐标原点,以AB ,AC 方向分别为x 轴,y 轴正方向建立平面直角坐标系,则(2,0)B ,(0,4)C ,中点(1,2)D ,设(,2)P x x ,所以(,2)AP x x =,(1,22)PD x x =--,()2()(2)2[(1)2(22)]10AP PB PC AP PD x x x x x x ⋅+=⋅=-+-=--, 12x =时,最大值为52.故选B . 8.D 【解析】令0x =,得(2)(2)4(2)f f f =+,即(2)0f =,(2)(2)f x f x +=-, 因为函数(1)y f x =+的图象关于点(1,0)-对称, 所以函数()y f x =的图象关于点(0,0)对称, 即()()f x f x -=-,所以(2)(2)(2)f x f x f x +=-=--,即(4)()f x f x +=-,(8)()f x f x +=,则(2021)(25383)(3)(1)3f f f f =⨯-=-=-=-,故选D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.由,0c b ca ab a <⎧⇒<⎨>⎩,所以A 选项正确. 当0b =时,22cb ab =,所以B 选项错误.0,()00b a c b a c -<⎧⇒->⎨<⎩,所以C 选项正确. 0,()00a c ac a c ac ->⎧⇒-<⎨<⎩,所以D 选项正确.故选ACD . 10.AB 【解析】因为方程22253102x y ax ay a a +++++-=表示圆, 所以2225(3)4102a a a a ⎛⎫+-+-> ⎪⎝⎭, 解得1a <,所以满足条件的只有2-与0. 故选AB .11.ABD 【解析】连接1BC ,易知11BC B C ⊥,又正方体中11C D ⊥平面11BCC B , 从而有111C D B C ⊥,1111C D BC C ⋂=,1B C ⊥平面11BD C ,从而得11B C BD ⊥,异面直线1BD 与1B C 所成的角大小为90°,A 正确; 正方体中1DD ⊥平面ABCD ,则1DD BD ⊥,1DD CD ⊥, 同理BC CD ⊥,1BC CD ⊥,∴四面体1D DBC 的四个面都是直角三角形,B 正确;由1BC CD ⊥,1BC CC ⊥,知11D CC ∠是二面角11D BC B --的平面角, 为45°,即二面角11D BC B --为45°,C 错误; 易知1BD 的中点是正方体外接球和内切球的球心,12,,D 正确. 故选ABD .12.BCD 【解析】∵sin3sin5sin7()sin 357x x xf x x =+++, sin[3()]sin[5()]sin[7()]()sin()357x x x f x x πππππ++++=++++sin3sin5sin7sin ()()357x x xx f x f x =----=-≠, 所以,π不是函数()y f x =的最小正周期,A 选项错误; ∵sin(3)sin(5)sin(7)sin3sin5sin7()sin()sin 357357x x x x x xf x x x ----=-+++=----, sin[3(4)]sin[5(4)]sin[7(4)](4)sin(4)357x x x f x x πππππ++++=++++sin3sin5sin7sin ()357x x xx f x =+++=, 所以,函数()y f x =的图象关于直线2x π=对称,C 选项正确; ()cos cos3cos5cos7f x x x x x '=+++,∵1cos 1x -,1cos31x -,1cos51x -,1cos71x -,则()cos cos3cos5cos74f x x x x x '=+++,又 (0)4f '=,所以函数()y f x '=的最大值为4,D 选项确.故选BCD .三、填空题:本大题共4小题,每小题5分,共20分.13.2【解析】法1:由题意知,直线:2l y x b =+,即 22b y x ⎛⎫=+ ⎪⎝⎭. ∵直线l 经过抛物线2:2(0)C y px p =>的焦点, ∴22b p-=,即b p =-. ∴直线l 的方程为2y x p =-.设()11,A x y 、()22,B x y ,联立22,2,y x p y px =-⎧⎨=⎩,消去y 整理可得22460x px p -+=,由韦达定理得1232px x +=,又||5AB =, ∴12552x x p p ++==,则2p =. 法2:设直线的倾斜角为θ,则tan 2k θ==,得sin θ=,∴2222||5sin p pAB θ===,得2p =. 14.64【解析】将绝对值相同的数字分为一组,则每组数字个数构成等差数列n a n =, 因为(1)6364202163201622n n n +⨯⇒⇒=,前2021项共包含63个完整组,且第63组最后一个数字为第2016项, 故2021项为第64组第5个数字,由奇偶项正负交替规律,其为64. 15.72【解析】根据题意可得,8分钟后盛水桶所转过的角为8833ππ⨯=,而除去一圈,82233πππ-=,所以转8分钟之后0P 所转到的位置P 满足25366POA πππ∠=+=, 所以点P 到水面的距离5723sinm 62d π=+=. 16.98【解析】如图,连接1AD ,则11////EF BC AD , ∴等腰梯形1AEFD 为平面AEF 截正方体所得截面图形, 由正方体棱长为1,得1AD =,EF =,AE ==,则E 到1AD 的距离为4=,∴1192248AEFD S ⎛=+⨯= ⎝. ∵平面11AA C C ⊥平面ABCD ,且平面11AA C C ⋂平面ABCD AC =, 过E 作EH AC ⊥于H ,则EH ⊥平面11ACC A ,∵E 为BC 中点,∴144EH AC ==,以点E 11ACC A 的交线为圆弧,2=,由4CH =, 2HN =,得 3NHC π∠=,∴23MHN π∠=,所求交线为劣弧MN ,长度为2323π⨯=.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.【解析】选①:由sin 2B B +=得:sin 13B π⎛⎫+= ⎪⎝⎭,又 (0,)B π∈, 所以6B π=. 3分选②:由cos220B B +-=得:22cos 30B B +-=,解得cos B =,又 (0,)B π∈,所以6B π=. 3分选③:由222b ac -=-得:222c a b +-=,得222cos 2a c b B ac +-===,又 (0,)B π∈,所以6B π=. 3分又因为sin sin C cB b==1sin 2C B ===由(0,)C π∈,所以3C π=或23C π=. 6分 当3C π=时,2A π=,又因为4a =,所以2b =,c =.所以面积122S =⨯⨯=. 8分当23C π=时,6A π=,所以A B =. 又因为4a =,所以4b =.所以面积1442S =⨯⨯= 10分 18.【解析】(1)由()2*12323n a a a na n n N ++++=∈,可得2123123(1)(1)n a a a n a n -++++-=-,所以22(1)21n na n n n =--=-, 3分 即()*122,n a n n N n=-∈,当1n =,11a =也满足, 所以()*12n a n N n=-∈. 6分 (2)2020122020S b b b =+++111111112222222212232019202020202021⎛⎫⎛⎫⎛⎫⎛⎫=--+-+-+-+--+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12020120212021=-=. 12分 19.【解析】(1)由PA ⊥平面ABCD ,得PA AB ⊥, 由2ADC π∠=,得AD CD ⊥, 2分 ∵//AB CD ,∴AD AB ⊥, 3分∵AD PA A ⋂=,∴AB ⊥平面PAD ,∵PD ⊂平面PAD ,∴PDAB ⊥. 5分(2)以射线AB ,AD ,AP 为x ,y ,z 轴的正半轴,建立空间直角坐标系. 则(0,0,0)A ,(1,0,0)B ,D ,(0,0,1)P ,C ,AC =,(1,0,1)PB =-,1)PC =-. 7分设平面PBC 的法向量(,,)n x y z =.则由0,0,n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩即0,20.x z x z -=⎧⎪⎨+-=⎪⎩ 9分取31,n ⎛⎫=-⎪⎝⎭,则||3|cos ,|7||||AC n AC n AC n ⋅〈〉==⋅. 11分故直线AC与平面PBC12分20.【解析】(1)甲队最后贏得整场比赛的情况为第四局贏或第四局输第五局赢,所以甲队最后赢得整场比赛的概率为11132224+⨯=.4分(2)根据比赛规则,x的取值只能为2,4或6,对应比分为16:14,17:15,18:16.两队打了2个球后甲赢得整场比赛,即打第一个球甲发球甲得分,打第二个球甲发球甲得分,此时概率为224(2)5525p=⨯=;6分两队打了4个球后甲赢得整场比赛,即打第一个球甲发球甲得分,打第二个球甲发球甲失分,打第三个球乙球甲发球甲得分,打第四个球甲发球甲得分,此时概率为2332332272 (4)55555555625p=⨯⨯⨯+⨯⨯⨯=.8分两队打了6个球后甲赢得整场比赛,6个球的胜负情况如图(胜者用√表示),(6)55555555555555555555555515625 p=⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=.12分21.【解析】(1)由题意得(1,0)A-,1分点A在抛物线2C的准线上,则12p=,即2p =, 2分 所以抛物线2C 的标准方程为24y x =. 3分 (2)(i )证明:因为过A 的直线1l 和抛物线交于两点, 所以1l 的斜率存在且不为0,设1l 的方程为1x my =-,其中m 是斜率的倒数, 4分 设()11,B x y ,()22,C x y , 联立方程组21,2,x my y px =-⎧⎨=⎩ 整理得2220y pmy p -+=,0∆>且12122,2,y y pm y y p +=⎧⎨=⎩ 5分因为C 是AB 的中点,所以122y y =, 所以223pm y =,294m p =,2222111332pm p x m m =⋅-=-=, 所以点C 的橫坐标为定值. 6分(ⅱ)因为直线2l 的倾斜角和直线1l 的倾斜角互补, 所以2l 的斜率和1l 的斜率互为相反数. 设直线2l 的方程为2132pm x m y ⎛⎫=--+ ⎪⎝⎭,(),M M M x y ,(),N N N x y , 即2x my =-+, 联立方程组222,210,x my x y =-+⎧⎨+-=⎩整理得()222430m y my +-+=, ()222(4)1224240m m m ∆=-+=->,所以26m >,242M N m y y m +=+,232M Ny y m =+. 8分 因为点C 是AB 中点,所以BMNAMNS S=,因为(1,0)A -到MN的距离d =,M N MN y =-,所以1||2AMNSMN d =⋅= 10分令26t m =-,则13288AMNS===⨯+,当且仅当8t =,214m =时等号成立, 所以9144p=, 956p =. 12分 22.【解析】(1)()2xf x ae '=+.①当0a 时,()0f x '>,函数()f x 在R 上单调递增; 2分 ②当0a <时,由()0f x '>解得2ln x a ⎛⎫<- ⎪⎝⎭,由()0f x '<解得2ln x a ⎛⎫>- ⎪⎝⎭.故()f x 在2,ln a ⎛⎫⎛⎫-∞-⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭单调递减. 4分 综上所述,当0a 时,()f x 在R 上单调递增; 当0a <时,()f x 在2,ln a ⎛⎫⎛⎫-∞-⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. (2)证法一:原不等式等价于120x e x e x a ax a--+-. 6分 令12()x e x g x e x a ax a =--+-,则()2(1)e 1()xx a x g x ax'---=. 当1a 时,11x x ae x e x ----, 8分令()1xh x e x =--,则当0x >时,()10xh x e '=->, ∴当0x >时,()h x 单调递增,即()(0)0h x h >=, 9分∴当01x <<时,()0g x '<;当1x =时,()0g x '=;当1x >时,()0g x '>, ∴()(1)0g x g =. 11分即120x e x e x a ax a--+-,故()()f x x ae x +. 12分 证法二:原不等式等价于()2(1)xa e exx --.令()x g x e ex =-,则()xg x e e '=-.当1x <时,()0g x '<;当1x >时,()0g x '>.∴()(1)0g x g =,即0x e ex -,当且仅当1x =时等号成立. 6分 当1x =时,()2(1)xa e exx --显然成立;当0x >且1x ≠时,0x e ex -. 欲证对任意的1a ,()2(1)xa e exx --成立,只需证2(1)x e ex x --. 8分思路1:∵0x >,∴不等式2(1)xe ex x --可化为120x e x e x x---+, 令1()2x e h x x e x x =---+,则()2(1)1()xx e x h x x'---=, 10分 易证当0x >时,10xe x -->,∴当01x <<时,()0h x '<,当1x >时,()0h x '>, ∴函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增, ∴min ()(1)0h x h ==,∴()0h x ,即120x e x e x x---+, 从而,对任意的1a ,当0x >时,()(e)f x x a x +. 12分思路2:令2(1)()x x ex x e ϕ-+=,则(1)(3)()xx x e x e ϕ'--+-=.()031x e x ϕ'>⇒-<<,()01x x ϕ'<⇒>或03x e <<-, 10分∴()x ϕ在(0,3)e -上单调递减,在(3,1)e -上单调递增,在(1,)+∞上单调递减. ∵(0)(1)1ϕϕ==,∴2(1)()1xx ex x eϕ-+=,即2 (1)xx e ex --. 从而,对任意的1a ,当0x >时,()()f x x ae x +. 12分 证法三:原不等式等价于2210x ae x x aex +---.令2()(2)1xg x ae x ae x =----,()2(2)xg x ae x ae '=---. 令()2(2)xh x ae x ae =---,则()2xh x ae '=-,其中0x >. 6分 ①当2a 时,()0h x '>,()h x 在(0,)+∞上单调递增.注意到(1)0h =,故当(0,1)x ∈时,()()0g x h x '=<;当(1,)x ∈+∞时,()()0g x h x '=>.∴()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. ∴min ()(1)0g x g ==,即 ()()f x x ae x +. 8分 ②当12a <时,20ln 1a ⎛⎫<< ⎪⎝⎭. 当20ln x a ⎛⎫<< ⎪⎝⎭时,()0h x '<,()h x 单调递减;当2ln x a ⎛⎫> ⎪⎝⎭时,()0h x '>,()h x 单调递增.(i )若221a e <-,则(0)(1e)20h a =-+.∵2ln(1)0h h a ⎛⎫<= ⎪⎝⎭, ∴当(0,1)x ∈时,()()0g x h x '=<;当(1,)x ∈+∞时,()()0g x h x '=>. 与①同,不等式成立. 10分 (ⅱ)若211a e <-,则(0)(1)20h a e =-+>, ∵2ln(1)0h h a ⎛⎫<= ⎪⎝⎭, ∴020,ln x a ⎛⎫⎛⎫∃∈⎪ ⎪⎝⎭⎝⎭,使得()00h x =,且当()00,x x ∈时,()()0g x h x '=>; 当()0,1x x ∈时,()()0g x h x '=<;当(1,)x ∈+∞时,()()0g x h x '=>. ∴()g x 在()00,x 上单调递增,在()0,1x 上单调递减,在(1,)+∞上单调递增. ∵(0)10g a =-,(1)0g =, 此时,()0g x ,即()()f x x ae x +. 综上所述,结论得证. 12分。

湖南省长沙市雅礼中学2019届高三上学期月考(五)理科数学试题 PDF版含答案

湖南省长沙市雅礼中学2019届高三上学期月考(五)理科数学试题 PDF版含答案

$ $ " "! # 解析' 由等差数列的性质可得$ % % % % 则$ % + ! -!& $ $ $ ( $ ' $ 7 $ # $ & ( $ ' 7 $ # *0 $ $ * 0 # %1 " "1 " (0 " "0 " "0 (0 #0 #0 "0 #! " " ! # " ( 5 " # % % 故选 -! 0 $ & " ( $ *0 " & ' " (0 "1 #
# # " % 整个密闭区域的面积为 # 解析' 如图% 圆的方程为 ( % % " % # % ! /!& 1 0# #! ,! " " #% 槡 +
#! +!
$
# 槡
" +槡 #% #" 满足条件的区域面积为# ! 0 ( !( ( 0#5 8 $ ( $ " " " # " ( "% # 故选 ( 槡 由几何概型知所求概率为 0 % 0 /! (! ( ' # ( ( $ +槡 # " ( 则 解析' 以 , 为原点建立如图所示的坐标系% " $ ! .!& -, -, % " % % " % % " % % " % % " % 设 /! % " % #! -! .! .0 ! !" !# # /0 ! 2 3 4 4 9 : ! # ! # # $ # ! " $ 2 3 4 4 9 : 1#
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.(本小题满分 12 分)
如图,点 A 为椭圆 C1 : x2 2 y2 1 的左顶点,过 A 的直线 l1 交抛物线 C2 : y2 2 px( p 0) 于 B ,C 两点, 点 C 是 AB 的中点.
(1)若点 A 在抛物线 C2 的准线上,求抛物线 C2 的标准方程;
(2)若直线 l2 过点 C ,且倾斜角和直线 l1 的倾斜角互补,交椭圆 C1 于 M , N 两点.
( lg 2 0.3010 ,1g 3 0.4771 )( )
A.12
B.14
C.16
D.18
7.在直角三角形 ABC 中, A 90 , AB 2 , AC 4 , P 在 VABC 斜边 BC 的中线 AD 上,则 uuur uuur uuur AP (PB PC) 的最大值为( )
A. 25 8
B. 5 2
C. 25 4
D. 25 2
8 . 已 知 f ( x) 是 定 义 在 R 上 的 函 数 , 且 对 任 意 x R 都 有 f ( x 2 ) f ( 2 x ) 4f ( 2,)若 函 数
y f (x 1) 的图象关于点 (1,0) 对称,且 f (1) 3 ,则 f (2021) ( )
17.(本小题满分 10 分)
在① sin B 3 cos B 2 ,② cos2 B 3cos 2B 0 ,③ b2 a2 c2 ac3 这三个条件中任选一个,
补充在下面的问题中,并进行解答.
问题:已知 VABC 的三边 a ,b ,c 所对的角分别为 A ,B ,C ,若 a 4 ,c 3b ,________,求VABC
5.B【解析】设事件 A 为只用现金支付,事件 B 为只用非现金支付,则 P( A B) P( A) P(B) P( AB) .因
为 P( A) 0.45 , P( AB) 0.15 ,所以 P(B) 0.4 .故选 B.
10
6.C【解析】根据题意有: 55
25
1 2
h
(85
25)
由回归方程预测我国在 2035 年底人均国内生产总值(单位:万元)约为( )
A.14.04 万元
B.202.16 万元
C.13.58 万元
D.14.50 万元
5.随着网络技术的发达,电子支付变得愈发流行,若电子支付只包含微信支付和支付宝支付两种.某群体
中的成员只用现金支付的概率为 0.45,既用现金支付也用非现金支付的概率为 0.15,则不用现金支付的概
率为( )
A.0.3
B.0.4
C.0.6
D.0.7
6.牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体的初始温度为 T0 ,则经过一定时间 t 后
的温度 T
将满足 T
Ta
1
t
2
T0
Ta ,其中 Ta 是环境温度,h
称为半衰期.现有一杯
85℃的热茶,放
置在 25℃的房间中,如果热茶降温到 55℃,需要 10 分钟,则欲降温到 45℃,大约需要多少分钟?
信号处理背后的“功臣”就是正弦型函数.函数 f ( x) 4 sin[(2i 1)x] 的图象就可以近似地模拟某种信 i1 2i 1
号的波形,则( )
A.函数 f ( x) 为周期函数,且最小正周期为 B.函数 f ( x) 的图象关于点 (2 ,0) 对称
C.函数 f ( x) 的图象关于直线 x 对称 2
4.A【解析】到 2035 年底对应的年份代号为 23,由回归方程 yˆ 6.60x 50.36 得,我国国内生产总值约
为 6.60 23 50.36 202.16 (万亿元),又 202.16 14.04 ,所以到 2035 年底我国人均国内生产总值约 14.4
为 14.04 万元.故选 A.
A.异面直线 BD1 与 B1C 所成的角大小为 90° B.四面体 D1DBC 的每个面都是直角三角形 C.二面角 D1 BC B1 的大小为 30°
D.正方体 ABCD A1B1C1D1 的内切球上一点与接球上一点的距离的最小值为
3 1 2
12.在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受得到.而
点.若 | AB | 5 ,则 p ________.
14.数列 1, 2 ,2, 3 ,3, 3 ,4, 4 ,4, 4 ,5, 5 ,5, 5 ,5,…的项正负交替,且项的绝 对值为 1 的有 1 个,2 的有 2 个,…, n 的有 n 个,则该数列第 2021 项是________.
15.筒车是我国古代发明的一种水利灌溉工具因其经济又环保,至今还在农业生产中得到使用,如左下图.假
16.正方体 ABCD A1B1C1D1 的长为 1, E , F 分别为 BC , CC1 的中点.则平面 AEF 截正方体所得的
截面面积为________;以点 E 为球心,
10 4
为半径的球面与对角面
ACC1 A1
的交线长为________.
四、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.
h
10 ,
t

45
25
1 2
10
(85
25)
t 10
log 1
2
1 3
t
10
lg 3 lg 2
10
0.4771 0.3010
15.85
,故选
C.
7.B【解析】以 A 为坐标原点,以 AB ,AC 方向分别为 x 轴,y 轴正方向建立平面直角坐标系,则 B(2,0) ,
C(0, 4) ,中点 D(1, 2) ,
A.{x∣ 5 x 4} B.{x∣ 5 x„ 2} C.{x∣ 2剟x 3} D.{x∣3„ x 4}
2.设 z1 3 4i , z2A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.从 5 名同学中选若干名分别到图书馆食堂做志愿者,若每个地方至少去 2 名,则不同的安排方法共有( )
的面积. 18.(本小题满分 12 分)
已知数列an 满足 a1 2a2 3a3 L nan n2 n N * .
(1)求数列an 的通项公式; (2)设 bn (1)n an an1 ,求数列bn 的前 2020 项和 S2020 .
19.(本小题满分 12 分)
如图,在四棱锥 P ABCD 中,PA 平面 ABCD ,PA AB 1,BC CD= 2 ,AB / /CD ,ADC . 2
2
2
8.D【解析】令 x 0 ,得 f (2) f (2) 4 f (2) ,即 f (2) 0 , f (x 2) f (2 x) ,
因为函数 y f (x 1) 的图象关于点 (1,0) 对称,
所以函数 y f (x) 的图象关于点 (0,0) 对称,
即 f (x) f (x),
D.函数 f ( x) 的导函数 f (x) 的最大值为 4
选择题答题卡
题号 1
2
3
4
5
6
7
8
9
10 11 12 得分
答案
第Ⅱ卷
三、填空题:本大题共 4 小题每小题 5 分,共 20 分.
13.已知抛物线 C : y2 2 px( p 0) ,直线 l : y 2x b 经过抛物线 C 的焦点,且与 C 相交于 A 、 B 两
uuur
uuur
设 P(x,2x) ,所以 AP (x,2x) , PD (1 x,2 2x) ,
uuur uuur uuur uuur uuur
AP (PB PC) AP (2PD) 2[x(1 x) 2x(2 2x)] 10 x2 x ,
x 1 时,最大值为 5 .故选 B.
A.20 种
B.50 种
C.80 种
D.100 种
4.党的十九大报告中指出:从 2020 年到 2035 年,在全面建成小康社会的基础上,再奋斗 15 年,基本实
现社会主义现代化.若到 2035 年底我国人口数量增长至 14.4 亿,由 2013 年到 2019 年的统计数据可得国内
生产总值(GDP)y(单位:万亿元)关于年份代号 x 的回归方程为 y 6.60x 50.36(x 1,2,3,4,5,6,7) ,
定在水流量稳定的情况下,半径为 3m 的筒车上的每一个盛水桶都按逆时针方向作角速度为 rad / min 的 3
匀速圆周运动,平面示意图如右下图,已知筒车中心 O 到水面 BC 的距距离为 2m ,初始时刻其中一个盛水
筒位于点
P0
处,且
P0OA
6
(OA
/
/
BC
)
,则 8 min 后该盛水筒到水面的距离为________ m .
(i)证明:点 C 的横坐标是定值,并求出该定值;
(ii)当 VBMN 的面积最大时,求 p 的值.
22.(本小题满分 12 分)
已知函数 f (x) aex 2x 1,(其中常数 e 2.71828L ,是自然对数的底数)
(1)讨论函数 f ( x) 的单调性;
(2)证明:对任意的 a…1,当 x 0 时, f (x)…(x ae)x .
雅礼中学 2021 届高三月考试卷(五) 数学
得分:________ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 8 页.时量 120 分钟.满分 150 分.
第Ⅰ卷 一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只 有一项是符合题目要求的. 1.已知集合 A {x∣ 2„ x 4}, B {x∣ 5 x„ 3},则 A B ( )
2.D【解析】由题 z1 3 4i , z2 2 3i ,则 z1 z2 1 i ,对应点为 (1, 1) . 3.B【解析】当去 4 个人时,安排方法有 C54C24 30 种,当去 5 个人时,安排方法有 C53C12 20 种.综上,
相关文档
最新文档