聚丙烯改性
聚丙烯改性的主要的几种方法

聚丙烯改性的主要的几种方法聚丙烯(PP)是一种重要的塑料,具有较高的力学性能、耐化学腐蚀性和隔热性能,广泛应用于包装、电器、纺织、建筑等领域。
然而,PP在一些方面的性能仍然有待改善,这就要求对PP进行适当的改性。
以下是聚丙烯改性的几种主要方法。
1.添加剂改性:添加剂改性是通过向聚丙烯中添加各种添加剂,如增塑剂、抗氧剂、阻燃剂、光稳定剂等,来改善聚丙烯的性能。
添加剂可以提高聚丙烯的柔软度、耐热性、阻燃性等,从而扩展了聚丙烯的应用范围。
2.共混改性:共混改性是将聚丙烯与其他聚合物进行物理混合,在共混体系中形成相容相并形成新的材料。
常用的共混改性体系包括聚丙烯/聚乙烯、聚丙烯/ABS共混体系等。
共混改性可以综合利用不同聚合物的优点,改善聚丙烯的力学性能、热稳定性、耐冲击性等。
3.界面改性:界面改性是通过在聚丙烯和填充剂之间插入界面剂,来增强聚丙烯与填充剂之间的相容性。
常用的界面改性剂有硅烷偶联剂、聚合物接枝剂等。
界面改性可以改善聚丙烯的强度、韧性、耐冲击性和耐热性等性能。
4.离子辐射改性:离子辐射改性是通过辐射聚丙烯,引入交联结构或引发化学反应,改善聚丙烯的性能。
辐射改性可以显著提高聚丙烯的强度、热稳定性、抗老化性能等。
5.高分子改性:高分子改性是将聚丙烯与其他高分子化合物进行共聚或接枝反应,形成新的共聚物或共聚物接枝聚合物。
常用的高分子改性剂有聚苯乙烯、聚氨酯、聚酯等。
高分子改性可以改善聚丙烯的强度、韧性、耐热性和低温性能。
总之,聚丙烯改性的方法有很多种,可以通过添加剂、共混、界面、辐射和高分子改性等不同途径来改善聚丙烯的性能。
这些改性方法可以提高聚丙烯的力学性能、耐热性、耐化学腐蚀性和耐冲击性等,从而满足不同应用领域对材料性能的需求。
聚丙烯化学改性方法

聚丙烯化学改性方法
聚丙烯化学改性是一种通过化学方法,使聚丙烯改性,其性能大幅改变的工艺。
改性后的聚丙烯具有更优异的力学性能,耐热性和耐化学性,并可以提高材料的分散稳定性、外观质量和耐候性等,在21世纪以来,聚丙烯改性受到越来越多的关注。
1、聚丙烯改性原理
聚丙烯是一种特殊的增韧塑料,改性原理是为了改变原材料的力学性能而引入有机活性基团。
当把有机活性基团嵌入聚丙烯链条中后,能使聚丙烯的玻璃转变温度,拉伸率,弯曲弹性模量和动态力学特性,耐化学性能以及热稳定性得到极大改善。
2、聚丙烯改性方法
(1)物化改性。
物化改性通常将无机物引入聚丙烯材料,进而改善其力学性能和
动态力学特性。
目前常用的物化改性方法有热变形、拉伸处理和磷化、氯化等。
3、聚丙烯改性应用
由于聚丙烯改性材料具有更加优异的力学和高温性能,因此它得到了广泛的应用。
如用来改性汽车部件,能使汽车耐磨性提高,使汽车更耐久;也可以用来生产建筑材料,使墙壁更耐火,更不易发霉;还可以用来生产电线电缆,使电缆更耐火、抗拉性更加优异。
同时,改性的聚丙烯还可以用于工业制品的生产,比如汽车零件、电子元器件等,而且具有耐泡和耐开裂性能。
总之,聚丙烯改性手段多样、性能优异,它的应用非常广泛,可以改变很多建筑、工业制品、汽车零部件等材料的物理性能,使其具备更优异的力学性能,耐热性和耐化学性能,有助于提高现代工业产品的性能和使用寿命,是可持续发展的重要手段。
PP改性工艺全解析(含配方)

PP改性工艺全解析(含配方)
本文档旨在解析聚丙烯(PP)改性工艺的全过程,并提供相关配方。
以下是详细内容:
1. 聚丙烯(PP)改性概述
聚丙烯是一种常用的高分子材料,具有良好的物理和化学性能。
为了进一步改善其性能,人们开发了多种改性工艺。
2. 常见的聚丙烯改性方式
以下是常见的聚丙烯改性方式:
2.1 增韧改性
增韧改性是指通过添加韧性剂或填充剂来提高聚丙烯的韧性。
常用的增韧剂包括乙烯丙烯橡胶(EPR)、塑料增韧剂等。
填充剂可
以选择碳酸钙、碳酸镁等。
2.2 抗静电改性
抗静电改性主要是为了改善聚丙烯的导电性能,以防止静电积聚。
常用的抗静电剂包括导电纤维、导电粉末等。
2.3 耐热改性
耐热改性是指通过添加耐热剂来提高聚丙烯的耐高温性能。
耐热剂可以选择氧化镁、氧化铝等。
3. 示例配方
以下是一种常见的聚丙烯改性配方示例:
- 聚丙烯:80%
- 乙烯丙烯橡胶(EPR):15%
- 碳酸钙:5%
4. 结论
通过上述分析,我们了解了聚丙烯改性的概述、常见方式及示例配方。
这可以帮助我们在聚丙烯的改性过程中做出正确的决策。
以上是对PP改性工艺的全解析,内容简洁明了。
聚丙烯改性

专业:08高分子1班学号:08206020135 姓名:金从伟聚丙烯改性引言:聚丙烯因其具有良好的加工性能和物理、力学、化学性能而获得广泛应用。
是目前增长速度最快的通用型热塑性塑料。
聚丙烯的主要应用领域为学向拉丝制品,膜片制品及包装容器制品。
但近年来将普通聚丙烯经过填充、增强、共混改性再作为原料制作汽车,电器.仪表等工业配套零部件也已成为其主要的应用领域。
关键词:聚丙烯;改性1.物理改性物理改性由于工艺过程简单,生产周期短。
所制得材料性能优良。
近年来已成为高分子材料一个新的研究热点。
常用的改性方法主要有共混改性、填充改性、增强改性等。
1.1 共混改性共混改性是将聚丙烯与橡胶或其它热塑性树脂的弹性体共混制备共混物。
最古老和最简单的方法是机械掺合法。
共混改性可明显改进低温脆性、冲击强度和耐寒性等。
如聚丙烯与乙丙橡胶顺丁橡胶、聚异丁烯等共混,可提高冲击强度3~7倍,提高耐寒性8~ l0倍。
聚丙烯除了二元共混体外,还采用了三元共混体系。
如玻璃纤维增强聚丙烯和橡胶共混,不但改善了冲击韧性和耐寒性,同时刚性和抗蟠变性能也得到保证,其制品的力学性能可与ABs相媲美。
1.2填充改性为了开拓聚丙烯在工程塑料应用领域中的用途,需要提高聚丙烯的刚性和耐热性,可以添加填充材料,如滑石粉、碳酸钙硫酸钡、云母、石膏、石棉、术粉、炭黑、硅藻粉和高岭土等。
填充性主要是提高聚丙烯的刚性、耐热性和尺寸稳定性,并可降低成本1.3增强改性用玻璃纤维和碳纤维作为增强材料,其最大特点是基体树脂聚丙烯的化学稳定性强,可提高抗张、抗弯曲和冲击强度,降低成型收缩率。
经增强后的聚丙烯,其性能与尼龙、聚甲醛、聚碳酸脂等工程塑料相当。
玻璃纤维增强聚丙烯既保持了聚丙烯成本低的特点,且在玻璃纤维增强热塑性塑料中,其比重最小,困而在重量和秽_格上占有优势,且具有流动性大、成型条件幅脚宽、耐水性和耐化学侵蚀性好的特点。
所以,聚丙烯中添加玻璃纤维后,其耐热刚性、尺寸稳定性、耐蠕变性和机械强度等都有很大的提高,可作为工程塑料而广泛应用。
聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用
聚丙烯塑料是一种常见的塑料,它的主要优点包括稳定性高、机械性能好、成本低廉等。
然而,在实际应用中,聚丙烯塑料的一些性能可能无法满足特定需求,因此需要进行改性。
聚丙烯塑料的改性方法有很多种,其中较为常见的包括共混改性、填充改性、交联改性等。
共混改性指的是将聚丙烯与其他树脂混合在一起,以获取其它树脂的特性,从而改善聚丙烯的性能。
填充改性则是在聚丙烯中添加一些填充物,例如纤维素、碳酸钙等,以改善聚丙烯的强度等性能。
交联改性则是通过交联聚丙烯来获得更好的热稳定性和机械强度等性能。
通过改性,聚丙烯塑料可以应用于更广泛的领域。
例如,通过共混改性和填充改性,可以将聚丙烯用于汽车零部件、管道、建筑材料等领域。
交联改性后,聚丙烯可以用于电线电缆、自行车轮胎和医疗器械等领域。
除了改性,聚丙烯塑料也可以通过添加一些辅助剂,如抗氧化剂、紫外线吸收剂、阻燃剂等来增强其性能。
例如,聚丙烯建筑材料中添加阻燃剂可以提高其耐火性。
在实际应用中,聚丙烯塑料也存在一些局限性。
例如,由于聚丙烯的低表面能,它的附着力和耐腐蚀性有限。
为了改善这些问题,可以采用表面处理等方法来提高其表面能。
总之,改性可以使聚丙烯塑料的性能得到大幅提升,使其在更为广泛的领域中得到应用。
未来,如果能够开发出更高性能的聚丙烯塑料,那么它将在更多领域展现其应用潜力。
聚丙烯的改性

聚丙烯管材
早期,聚丙烯管材主 要用作农用输水管,但是 由于早期产品性能还存在 一些问题(抗冲击强度、 耐老化性能较差),市场 未能打开。据报道,目前 韩国开发出一种耐高压给 水管用无规共聚聚丙烯 PP-R 112新牌号,使用该 牌号生产的管材可在20℃ 和11.2MPa的超高压状态 下使用50年。
聚丙烯及聚丙烯的改性
郭萍
一、聚丙烯简介
聚丙烯是由丙烯聚合而制得的一种热塑性 树脂。聚丙烯由于其力学性能优异,耐热性好, 耐应力开裂性和刚性优异,且易于加工成型,具 有广泛的应用价值,但是其韧性较差,尤其是在 低温下易脆断,对缺口敏感,因此应对聚丙烯进 行改性 。 聚丙烯作为通用热塑性塑料中增长最快的品 种,在经济建设和人民生活中的地位日益重要, 在汽车工业、家用电器、电子、包装及建材、家 具等方面具有广泛的应用。
相容技术:相容剂技术是塑料合金开发 研究的核心。由于赋予聚丙烯以极性, 所以 能够与更多极性聚合物共混制成实用合金。 几乎所有常见的大品种树脂与聚丙烯皆不相 容, 因此适用于制备聚丙烯合金的界面相容 剂的开发是聚丙烯高性能化的重要途径。
四、改性技术新进展
反应挤出共混技术:将高分子化学反应与各 组分的共混挤出工艺有机地结合在一起的连续过 程即是反应挤出技术。反应挤出技术可使聚丙烯 这种非极性聚合物获得极性。 各种改性技术的复合化:单纯使用单元技术 也有局限性, 往往是提高单项性能如冲击韧性的 同时, 使其它性能如刚性大幅度下降。为此, 聚丙 烯改性正进入这些单项技术配合起来运用的复合 化阶段。
3.3接枝改性
聚丙烯树脂中加入接枝单体,在引发剂 作用下,加热熔融混炼而进行接枝反应。接 枝反应机理大致为:首先是引发剂在加热时, 分解生成活性游离基与接枝单体接触时,使 之不稳定链打开,生成聚丙烯游离基再进行 链转移反应而终止。 在聚烯烃大分子上利用化学方法接枝马 来酸酐,其目的是在非极性的大分子骨架上 引入极性基团,称为聚烯烃的官能化。
聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用概述聚丙烯(Polypropylene,简称PP)是一种常见的塑料材料,具有良好的加工性能、强度和耐化学腐蚀性。
然而,聚丙烯在某些方面的性能还有待改善。
改性聚丙烯通过添加不同的添加剂、改变配方比例或改变加工工艺等方式,改善了聚丙烯的某些性能,扩展了其应用范围。
本文将介绍聚丙烯塑料的改性方法及其在各个领域中的应用。
聚丙烯塑料的改性方法1. 添加剂改性添加剂改性是最常见的一种聚丙烯塑料改性方法。
通过向聚丙烯中添加不同的添加剂,可以改变聚丙烯的物理、化学性能,提高其加工性能和耐候性。
常见的添加剂包括: - 填充剂:如碳酸钙、滑石粉等,可以提高聚丙烯的刚性和抗冲击性; - 阻燃剂:如氯化磷、硫酸铵等,可以提高聚丙烯的阻燃性能; - 稳定剂:如抗氧剂、紫外线吸收剂等,可以提高聚丙烯的耐氧化和耐候性; - 助剂:如流动剂、增韧剂等,可以改善聚丙烯的加工性能。
2. 共混改性通过与其他聚合物进行混合,可以改善聚丙烯的性能。
常见的共混改性方法有物理共混和化学共混两种。
•物理共混:将聚丙烯与其他聚合物机械混合,形成共混体系。
物理共混可以改善聚丙烯的强度、韧性和耐热性。
•化学共混:通过共聚反应或交联反应,将聚丙烯与其他聚合物进行化学结合。
化学共混可以显著改善聚丙烯的力学性能、热性能和耐化学性。
3. 改变配方比例通过改变聚丙烯的配方比例,如增加共聚单体的含量、调节分子量分布等方式,可以改变聚丙烯的结晶度、熔体流动性和力学性能。
•增加共聚单体含量:在聚丙烯的聚合过程中,加入适量的共聚单体,如丙烯酸、丙烯酸酯等,可以改善聚丙烯的柔韧性、降低结晶度。
•调节分子量分布:通过控制聚合反应条件,可以得到不同分子量分布的聚丙烯,从而改善聚丙烯的加工性能和力学性能。
聚丙烯塑料的应用领域聚丙烯的优良性能使其在各个领域都有广泛的应用。
1. 包装行业聚丙烯具有较高的刚性和抗冲击性,被广泛用于包装行业。
聚丙烯制成的塑料包装材料可以应用于食品包装、医药包装、化妆品包装等领域。
改性pp料是什么材料

改性pp料是什么材料改性PP又称作改性聚丙烯,指的是在PP料的基础上进行改性技术,如可以提升抗冲击性能、拉伸强度等。
改性PP 料主要是针对特定产品而专门开发的聚丙烯物料,可以直接用于挤出、注射、吹塑等产品的生产。
其在改性方面主要有四种方式,分别是:接枝改性、共聚改性、交联改性、共混改性。
改性pp料的种类1、易清洁改性PP材料易清洁改性PP材料是通过向传统的PP材料中引入低表面活性能物质,提升水与油在材料表面的接触角,形成超疏水表面,成为具有防污易清洁能力的PP材料,广泛应用于电饭煲、电压力锅、电磁炉、微波炉、油烟机等厨房电器的外观部件上,改善普通PP材料在厨房环境中易变脏、清理困难等问题。
2、防蟑螂、防鼠咬PP材料防蟑螂、防鼠咬PP材料通过针对对蟑螂和老鼠的味觉和嗅觉的刺激从而达到防治其对电器的危害。
主要应用于电磁炉等电器。
3、抗染色PP材料为降低成本,洗碗机或果汁机等家电的内胆材料大都采用改性PP材料生产,多次使用后,内胆容易显脏。
原因是内胆材料直接与果汁、食物残渣、食品调料等接触后受到污染引起材料表面颜色的变化,当颜色变化到一定程度后就会显脏,甚至作为污染源污染下一批食物,降低产品的使用品质,使用抗染色PP可以解决这些问题。
4、抗菌PP材料家用电器如:洗衣机、空调、空气净化器、净水机、冰箱等家电,使用一段时间后滋生大量致病菌、霉菌等,对消费者的健康造成直接的威胁。
抗菌PP材料对沾污在塑料上的细菌、霉菌、醇母菌、藻类甚至病毒等起抑制或杀灭作用,通过抑制微生物的繁殖来保持自身清洁。
5、微发泡改性PP材料微发泡改性PP材料是指以聚丙烯材料为基体,通过注塑工艺在气体内压的作用下,使制品中间层密布尺寸从十到几十微米的封闭微孔而两侧有着致密的表皮结构,从而达到省料和减重的目的。
由于微发泡改性PP材料使用了较低的应力,因此注塑更平整、更笔直、尺寸更稳定,同时,由于微孔的支撑作用,还可以有效解决零件缩痕。
6、长玻纤增强PP材料长玻纤增强pp材料是指含有玻璃纤维长度在10到25mm的改性聚丙烯复合材料,经过注塑等工艺形成三维结构,比普通的玻纤增强pp具有更高的综合性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚丙烯纤维的表面改性
学院:同济大学浙江学院
姓名:董瀚
学号:090736
摘要:结合聚丙烯( PP) 纤维分子结构特点、表面特性以及在水泥基材料应用中存在的问题, 研究了等离子处理方法对聚丙烯纤维表面的改性技术。
关键词:聚丙烯纤维; 表面改性;等离子处理
Research Progress in Surface Modification Technology of PP Fiber
ABSTRACT:In this article, we discussed the molecule structure and surface characteristics of PP fiber and the problems whenthey were used in cement matrix material. The surface modification technology of PP fiber was also researched with corona treatment with coupling agent.
KEYWORDS:polypropylene fiber; surface modification;corona treatment
1 前言
近年来, 聚丙烯( PP) 纤维在抗裂要求较高的混凝土工程中得到迅速的推广应用, 其出色的阻裂效果已得到试验及工程的证实。
但同时也存在一些致命缺点: 表面光滑; 表面能低; 分子链上不含任何活性基团, 而且表面疏水, 以致于纤维在水泥基材料中不易分散; 与水泥基材的物理化学粘接性能较差等,严重制约了其在水泥基材料中的应用。
因此对纤维表面进行适当的改性, 提高其在水泥基材料基体中的分散性和界面结合力是聚丙烯纤维扩大应用的关键所在。
本文主要介绍等离子处理方法(塑性开裂性能的缺陷)。
2 PP 纤维的结构和性能
聚丙烯是一种结构规整的结晶型聚合物, 为乳白色, 无味, 无毒, 质轻, 是聚烯烃的一种, 密度为0190~ 0. 91g/ cm3, 不溶于水, 熔点为165 ℃ , 燃点为590 ℃; 耐热性能良好; 聚丙烯几乎不吸水, 耐蚀性能良好, 与大多数化学品, 如酸、碱和有机溶剂接触不发生作用; 物理机械性能良好, 抗拉强度330 ~414MPa, 极限伸长率200% ~ 700% , 弹性模量为3.92~ 4. 90GPa; 耐光性能差【1】。
聚丙烯纤维是聚丙烯切片经纺丝、拉伸工艺制成的纤维级产品, 其抗拉强度、极限伸长率以及弹性模量随制作工艺不同而变化较大【2】。
聚丙烯纤维虽然具有很好的力学性能, 耐化学侵蚀, 但也存在一些致命缺点, 分子不带有极性基团、表面呈化学惰性和憎水性、在水泥基材料的应用中存在与基材的粘结性和抗蠕变性能较差的缺点。
众所周知, 水泥基材料耐久性的重要地位并不亚于强度和其它性能, 而耐久性不足最终都归结为材料开裂。
在水泥基材料中掺入高弹性模量的钢纤维, 其作用主要是阻止硬化材料破坏时的裂缝扩展, 使硬化材料在开裂后仍能保持一定的抗拉强度。
与钢纤维相比, 聚丙烯纤维的掺入能有效的抑制早期( 塑性期和硬化初期) 水泥基材料由于离析、泌水、收缩等因素形成的原生裂隙的发生和发展, 减少原生裂隙的数量和尺寸。
因此, 聚丙烯纤维和钢纤维的阻裂效应是不同的, 它们分别改善了不同时期水泥基材料的性能。
在一些对水泥基材料裂缝要求严格的工程中, 掺用聚丙烯纤维则有可能获得更为满意的效果, 因钢纤维在材料开裂后方能发挥阻裂效应,有些场合并无实际意义, 而水泥基材料在早期易发生塑性开裂性能的缺陷, 却可通过掺入聚丙烯纤维得到解决和改善。
3 PP的等离子表面改性技术
等离子体处理的优点在于反应易控制于纤维的表面, 对纤维本体的损伤不大, 而且对表面极端惰性的高聚物有明显的改性效果。
高聚物经等离子体表面处理后, 所产生的化学效应有: 链的断裂与烧蚀、表面交联、引入极性基团等。
张瑞峰等利用等离子体处理聚丙烯纤维[ 15] , 并用X - 射线光电子能谱( XPS) 研究了在不同的处理气氛中纤维表面元素组成、相对含量的变化、表面官能团的类型, 结果表明,纤维表面分别引入了- OH、- COOH、- NH2 和-CONH2 等活性官能团。
在O2 等离子体中处理, 纤维表面引入氧的量可达18. 0% , 在N2 气氛中处理引入氮的量可达4. 7%。
由于表面元素的改变、基团的变化, 使聚丙烯纤维表面的吸湿率由0. 1% 提高至0. 7% , 从而改善了纤维的亲水性能。
研究表明, 将等离子体处理同各种不同的化学处理方法相结合, 可使粘结强度得到进一步提高。