聚丙烯(PP)纤维的表面改性
聚丙烯改性

专业:08高分子1班学号:08206020135 姓名:金从伟聚丙烯改性引言:聚丙烯因其具有良好的加工性能和物理、力学、化学性能而获得广泛应用。
是目前增长速度最快的通用型热塑性塑料。
聚丙烯的主要应用领域为学向拉丝制品,膜片制品及包装容器制品。
但近年来将普通聚丙烯经过填充、增强、共混改性再作为原料制作汽车,电器.仪表等工业配套零部件也已成为其主要的应用领域。
关键词:聚丙烯;改性1.物理改性物理改性由于工艺过程简单,生产周期短。
所制得材料性能优良。
近年来已成为高分子材料一个新的研究热点。
常用的改性方法主要有共混改性、填充改性、增强改性等。
1.1 共混改性共混改性是将聚丙烯与橡胶或其它热塑性树脂的弹性体共混制备共混物。
最古老和最简单的方法是机械掺合法。
共混改性可明显改进低温脆性、冲击强度和耐寒性等。
如聚丙烯与乙丙橡胶顺丁橡胶、聚异丁烯等共混,可提高冲击强度3~7倍,提高耐寒性8~ l0倍。
聚丙烯除了二元共混体外,还采用了三元共混体系。
如玻璃纤维增强聚丙烯和橡胶共混,不但改善了冲击韧性和耐寒性,同时刚性和抗蟠变性能也得到保证,其制品的力学性能可与ABs相媲美。
1.2填充改性为了开拓聚丙烯在工程塑料应用领域中的用途,需要提高聚丙烯的刚性和耐热性,可以添加填充材料,如滑石粉、碳酸钙硫酸钡、云母、石膏、石棉、术粉、炭黑、硅藻粉和高岭土等。
填充性主要是提高聚丙烯的刚性、耐热性和尺寸稳定性,并可降低成本1.3增强改性用玻璃纤维和碳纤维作为增强材料,其最大特点是基体树脂聚丙烯的化学稳定性强,可提高抗张、抗弯曲和冲击强度,降低成型收缩率。
经增强后的聚丙烯,其性能与尼龙、聚甲醛、聚碳酸脂等工程塑料相当。
玻璃纤维增强聚丙烯既保持了聚丙烯成本低的特点,且在玻璃纤维增强热塑性塑料中,其比重最小,困而在重量和秽_格上占有优势,且具有流动性大、成型条件幅脚宽、耐水性和耐化学侵蚀性好的特点。
所以,聚丙烯中添加玻璃纤维后,其耐热刚性、尺寸稳定性、耐蠕变性和机械强度等都有很大的提高,可作为工程塑料而广泛应用。
聚丙烯(PP)改性的主要的几种方法

聚丙烯(PP)改性的主要的几种方法我们都知道,普通塑料往往有自己的特点和缺陷,当需要克服其缺陷时,我们往往是通过改性来予以克的。
聚丙烯(PP)最然具有耐热、耐腐蚀,制品可用蒸汽消毒密度小、是最轻的通用塑料等突出优点。
但其也有耐低温冲击性差,较易老化等缺陷。
而克服聚丙烯(PP)这些些缺陷,我们也是通过改性的方式来改变聚丙烯(PP)塑料的性能,以达到生产应用的要求。
通过改性的聚丙烯(PP)得到的塑料我们称之为聚丙烯(PP)改性塑料。
聚丙烯(PP)改性塑料,顾名思义是基于聚丙烯原料对其性能和其他方面的一些改进,如增强聚丙烯材料的冲击,拉伸强度,弹性等。
聚丙烯塑料原料的具体改性可分为以下几类。
接枝改性接枝改性是美国20世纪90年代初提出的,现已开发出相关产品。
采用固相接枝法对等规pp进行改性得到mpp,然后对mpp进行氯化即可获得mcpp固体粉状树脂。
氯化改性后的树脂附着力强,接伸模量提高,易于与其他树脂共混;而且由于改性使pp的结晶受到破坏,极性增加,从而可溶于某些溶剂,制得不同浓度的mcpp溶液。
mpp的用途主要有四个方面。
一、是提高工程塑料的耐冲击性能。
用mpp作相容剂,制得的pp与其他塑料的共混物冲击强度提高2~3倍,可用作抗冲击壳体材料;二、是exfer塑料公司开发的dexpro合金,即为聚酰胺和pp在相容剂存在下的合金,现已商品化;三、是用作热塑料粉末涂料,用于金属底材表面,起到防腐和抵抗化学药品的作用。
日本nozagl-giz牌号产品就是pp与尼龙的合金材料,具有较高的耐化学药品和耐油性能,尤其是具有极佳的耐氯化钾性能三是提高pp填料的粘合性。
mpp的引入可提高填料与pp的相容性,改善复合材料的性能,提高材料的整体热稳定性和局部抗热能力;四、是mpp也应用于自由基活性废料的固化。
此外,mpp还可用于提高pp纤维的可染色性和塑料制品的可装饰,制造可蒸煮的包装材料等。
mcpp的用途主要有:一、是用于制备塑料制品用底漆和塑料表面装饰涂料的附着力促进剂,特别是轿车保险杠、轮毂盖、电视机机壳等民用与工业用塑料器具的涂装;二、是大量用作塑料表面印刷油墨树脂;三、是用作防腐涂料树脂,用于钢屠、铝材等材料重防腐领域。
改性pp料是什么材料

改性pp料是什么材料改性PP又称作改性聚丙烯,指的是在PP料的基础上进行改性技术,如可以提升抗冲击性能、拉伸强度等。
改性PP 料主要是针对特定产品而专门开发的聚丙烯物料,可以直接用于挤出、注射、吹塑等产品的生产。
其在改性方面主要有四种方式,分别是:接枝改性、共聚改性、交联改性、共混改性。
改性pp料的种类1、易清洁改性PP材料易清洁改性PP材料是通过向传统的PP材料中引入低表面活性能物质,提升水与油在材料表面的接触角,形成超疏水表面,成为具有防污易清洁能力的PP材料,广泛应用于电饭煲、电压力锅、电磁炉、微波炉、油烟机等厨房电器的外观部件上,改善普通PP材料在厨房环境中易变脏、清理困难等问题。
2、防蟑螂、防鼠咬PP材料防蟑螂、防鼠咬PP材料通过针对对蟑螂和老鼠的味觉和嗅觉的刺激从而达到防治其对电器的危害。
主要应用于电磁炉等电器。
3、抗染色PP材料为降低成本,洗碗机或果汁机等家电的内胆材料大都采用改性PP材料生产,多次使用后,内胆容易显脏。
原因是内胆材料直接与果汁、食物残渣、食品调料等接触后受到污染引起材料表面颜色的变化,当颜色变化到一定程度后就会显脏,甚至作为污染源污染下一批食物,降低产品的使用品质,使用抗染色PP可以解决这些问题。
4、抗菌PP材料家用电器如:洗衣机、空调、空气净化器、净水机、冰箱等家电,使用一段时间后滋生大量致病菌、霉菌等,对消费者的健康造成直接的威胁。
抗菌PP材料对沾污在塑料上的细菌、霉菌、醇母菌、藻类甚至病毒等起抑制或杀灭作用,通过抑制微生物的繁殖来保持自身清洁。
5、微发泡改性PP材料微发泡改性PP材料是指以聚丙烯材料为基体,通过注塑工艺在气体内压的作用下,使制品中间层密布尺寸从十到几十微米的封闭微孔而两侧有着致密的表皮结构,从而达到省料和减重的目的。
由于微发泡改性PP材料使用了较低的应力,因此注塑更平整、更笔直、尺寸更稳定,同时,由于微孔的支撑作用,还可以有效解决零件缩痕。
6、长玻纤增强PP材料长玻纤增强pp材料是指含有玻璃纤维长度在10到25mm的改性聚丙烯复合材料,经过注塑等工艺形成三维结构,比普通的玻纤增强pp具有更高的综合性能。
PP改性知识大全含配方

PP改性知识大全(含配方)(塑料技术咨询)P是一种常用的塑料原料,也是常用的改性原料之一,对其改性方法可分为填充改性、增强增韧改性、共混改性及功能性改性四种,以下为您详细介绍。
填充改性无机填料:云母、碳酸钙、滑石粉、硅灰石、炭黑、石膏、赤泥、立德粉、硫酸钡等;云母的添加量为40%以下,粒径在300目以上;钛酸酯偶联剂用量为云母的30%左右;硅烷偶联剂用量较少,若用丙烯酸表面处理剂时,用量可加大到5-10%。
云母的长径比越大,增强效果越好。
采用静态混合器、销钉型混炼螺杆、双螺杆挤出机等有助于提高填充效果。
硅灰石的用量在30-40%,粒径采用300-325目,填充后的复合材料拉伸强度降低、缺口冲击强度提高。
其他滑石粉、赤泥、重质碳酸钙等填充PP时,粘度增加较大。
随切变速率增加,粘度增大现象逐渐减弱,一般可用表面处理剂如聚乙烯蜡、脂肪酸盐等及采用双螺杆挤出机。
用有机填料木粉、玉米棒芯时,应选择长径比大于15的为好,可改善韧性和负荷畸变度。
低填充时:滑石粉含量10-20%时,PP复合材料可取代ABS或高抗冲聚苯乙烯;高填充时:滑石粉含量超过30%,只主要用于热变形温度、模量等性能要求较高的制品。
不同粒度碳酸钙在HDPE中的临界值增强增韧改性增强材料:玻璃纤维、石棉纤维、单晶纤维和铍、硼、碳化硅等,另外填料改性中的云母、滑石粉处理好时,也能作为增强材料用。
增韧配方设计注意事项:1、弹性体与树脂的相容性要好塑料的极性大小为:纤维素塑料>PA>PF>EP>PVC>EVA>PS>PP/HDPE/LDPE/LLDPE;弹性体的极性大小为:丁晴胶>氯丁胶>丁苯胶〉顺丁胶〉天然胶〉乙丙胶。
高极性树脂选用高极性弹性体,低极性树脂选用低极性弹性体。
2、相容剂:适当的相容剂,可提高两者的相容性。
常用的相容剂为树脂或增韧剂的马来酸酐或丙烯酸类接枝物。
3、弹性体的协同作用:不同品种的弹性体一起加入会有协同作用,如在PP增韧配方中,EPDM和ABS复合加入增韧效果好。
改性PP(聚丙烯)

嘉力欣改性P P(聚丙烯)技术研究方案聚丙烯介绍:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0. 90--"0. 91g/cm,是目前所有塑料中最轻的品种之一。
它对水特别稳定,在水中的吸水率仅为0.01%,分子量约8万一15万。
成型性好,但因收缩率大(为1%~2.5%).厚壁制品易凹陷,对一些尺寸精度较高零件,很难于达到要求,制品表面光泽好,易于着色。
PP聚丙烯的常规等级:一、均聚PP-聚丙烯[size=-1]Homo-polyme r polypr opyle ne,简称PPH聚丙烯PP的均聚物简称PPH,是单一丙烯单体的聚合物。
聚丙烯(PP)作为热塑塑料聚合物是有规立构聚合物中的第一个。
其历史意义更体现在,它一直是增长最快的主要热塑性塑料,它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。
二、PP共聚物,Polypr opyle ne Copoly mer,简称PPC,是丙烯单体与乙烯单体的共聚物;按照乙烯单体在分子链上的分布方式,共聚PP可以分为无规共聚物(PPR)和嵌段共聚物(PPB)两种。
PPH的刚性好,但耐冲击性不好,尤其耐低温冲击性更不好,耐蠕变性差。
PPB的耐冲击性好,但耐蠕变性和PPH一样差。
PPR的耐冲击性和耐蠕变性则都好。
三、CPP膜-聚丙烯CPP是”Castin g Polypr opyle ne“的简称,即聚丙烯流涎薄膜。
是通过熔体流涎、骤冷生产的一种无拉伸、非定向的平挤薄膜。
它不经过BO PP中的纵向拉伸和横向拉伸两个过程,直接流涎成产品宽度。
嘉力欣改性P P针对汽车行业PP用于汽车工业具有较强的竞争力,但因其模量和耐热性较低,冲击强度较差,因此不能直接用作汽车配件,轿车中使用的均为改性P P产品,其耐热性可由80℃提高到145℃~150℃,并能承受高温750~1000h后不老化,不龟裂。
改性pp材料

改性pp材料改性PP材料改性聚丙烯(Modified Polypropylene,简称MPP)是通过在聚丙烯(Polypropylene,简称PP)中引入一定数量的改性剂或添加剂来提高其性能和性能的一种材料。
改性聚丙烯的主要改性方法有三种:物理改性、表面改性和化学改性。
其中,物理改性是通过物理手段在聚丙烯中加入改性剂,使其颗粒形态改变,从而改善其性能。
表面改性是通过在聚丙烯表面引入一层改性剂来改变其表面性质,从而使其更易处理、颜色更艳丽。
化学改性是通过在聚丙烯中引入一些化学反应来改变其结构和性能。
改性聚丙烯的主要性能有:增强性能、耐高温性能、耐候性能、耐热性能、耐化学性能、耐磨损性能、低温韧性、耐老化性能等。
改性聚丙烯的增强性能是通过在聚丙烯中加入一定数量的增强剂来提高其机械性能。
常见的增强剂有玻纤、碳纤维等。
这些增强剂可以增加聚丙烯的强度、刚度、韧性和耐磨性等性能。
改性聚丙烯的耐高温性能是通过在聚丙烯中加入耐热剂来提高其耐高温性能。
耐热剂可以使聚丙烯在高温环境下不变形、不熔化,从而保持其良好的性能。
改性聚丙烯的耐候性能是通过在聚丙烯中加入耐候剂来提高其耐候性能。
耐候剂可以使聚丙烯在室外长时间暴露于紫外线、高温和潮湿等环境中不发生变色、劣化等现象,从而保持其良好的外观和性能。
改性聚丙烯的耐化学性能是通过在聚丙烯中加入耐化剂来提高其耐化学性能。
耐化剂可以使聚丙烯在酸、碱等化学环境中不发生变化,从而保持其良好的性能。
改性聚丙烯的耐磨损性能是通过在聚丙烯中加入耐磨剂来提高其耐磨损性能。
耐磨剂可以使聚丙烯表面形成一层硬度较高的薄膜,从而提高其抗划伤、耐磨损性能。
改性聚丙烯的低温韧性是通过在聚丙烯中加入低温剂来提高其低温韧性能。
低温剂可以使聚丙烯在低温环境下仍能保持良好的柔韧性,从而防止其发生脆化和破裂。
改性聚丙烯的耐老化性能是通过在聚丙烯中引入防老化剂来提高其耐老化性能。
防老化剂可以增强聚丙烯对氧气、紫外线等外界因素的抵抗能力,从而延长其使用寿命。
聚丙烯表面改性

混凝土用聚丙烯纤维表面亲水性改性研究背景聚丙烯纤维(Polypropylene fiber,简称PPF)是一种半结晶的新型的混凝土增强纤维,被称为混凝土的“次要加强筋”。
掺入聚丙烯纤维的混凝土品质得到改善,综合使用性能得到提高。
具有掺加工艺简单、价格低廉、性能优异等特点。
作为一种新型的混凝土增强纤维,聚丙烯网状纤维正成为继玻璃纤维、钢纤维、不锈钢纤维后纤维混凝土科学研究和应用领域的新热点。
聚丙烯的分子式与结构分别如图1、图2所示:图1 聚丙烯分子式图2 聚丙烯结构示意图聚丙烯的重复单元由三个碳原子组成。
其中两个碳原子在主链上,一个碳原子以支链的形式存在。
从分子式和结构图可以看出,聚丙烯纤维分子链上缺少活性官能团,而且表面疏水,表面能低。
亲水性主要取决于纤维表面的极性基团,常见)等都是亲水性基团,的如羧基(-COOH)、酰胺基(-CONH)、羟基(-CO)、氨基(-NH2聚丙烯纤维表面缺少亲水性官能团,故表面疏水。
性能参数如表1所示表1 聚丙烯的性能参数为什么要对混凝土用聚丙烯进行改性?复合化是水泥基材料高性能化的主要途径,纤维增强是其中一种主要的方法,通过加入纤维(如玻璃纤维、碳纤维、钢纤维等增韧增强混凝土材料)来改善混凝土力学性能的研究已有许多年了。
纤维的加入既可以限制水泥硬化过程中的裂缝生成,又可以抵挡因外荷载作用而导致的裂缝扩展,同时还可以有效改善混凝土材料的脆性,从而提高混凝土的抗裂性[1]。
聚丙烯纤维价格便宜、来源丰富、化学稳定性好、熔点较高。
同钢纤维相比,聚丙烯纤维的细度大得多,在较少的掺量下就能获得巨大的纤维根数(700 ~3000 万根/kg),因而特别适合抑制混凝土的早期塑性开裂。
但聚丙烯纤维表面能低,分子链上缺少活性官能团,而且表面疏水,故在混凝土中不容易分散,与水泥混凝土的物理化学粘结力也较差。
这就削弱了聚丙烯纤维在混凝土中的增强效果,制约了该纤维在混凝土中的推广应用。
因此必须对聚丙烯纤维表面进行改性处理,使其表面具有亲水性,增强纤维一基体之间的粘结力。
聚丙烯纤维表面改性研究

B O, P 搅拌 反应 3h冷 却 , 滤 , . 抽 经丙 酮 洗 涤 , 洗 涤 水
后, 干. 烘 13 3 包 覆 法 ..
在造 纸 行业 主要 用 于 制 造 可 供 热封 、 耐沸 水 的
过 滤纸 ( 如用作 茶 叶包 装过 滤袋 ) 仪表 垫 圈纸 , 拭 、 擦 纸 等. 由于 聚丙 烯 纤 维 不 含 极 性 基 团 , 面 能 低 , 但 表
lO℃烘 干 至恒 重 , l 得到 改 性碳 酸 钙备 用 .
匀, 易漂 浮 , 致成 型纸 张 匀 度 不 好 , 响成 型 纸 张 导 影 的性 能l . _ 因此 , 必 要 对 聚丙 烯 纤 维 进 行 表 面 处 1 ] 有
理.
2 )然后 按 配 比将 聚丙 烯 纤 维 、 、 甲苯 、 水 二 NA 加入 带搅 拌 的三 口烧 瓶 中 , 通氮 , 5 在 O℃ 下溶 胀 9 O
亲水 性差 , 密 度 比水 小 . 且 因此 其 在 水 中 分 散 不 均
1 )将轻 质 碳酸 钙与 去 离子 水 配 成 悬 浮 液 , 热 加
至 7℃, 丙 烯 酸钠 ( 5 将 NA) 入 悬 浮 液 中 , 烈 搅 加 强 拌, 恒温 9 O℃反 应 1h 过 滤 , 去 离 子 水 洗 涤 , , 用 在
1 4
湖 北 工 业 大 学 学 报
20 06年 第 5 期
面被碳 酸 钙 的细小 颗粒所 包裹 ( 4 . 图 )
2 结果 与讨 论
21 P . P纤维表 面形 态对 比 利 用光学 显微 镜观 察不 同处理 方 法处理 后 的聚 丙烯纤 维 的微 观形 态 , 观察结 果如 图 1 图 4所示 . ~
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
1、绪论 2、改性机理 3、改性条件探究 4、结果表征 5、结论
1、绪论
1.1、聚丙烯纤维的基本物理化学性质
聚丙烯是一种结构规整的结晶性聚合物,为乳白色、无 味、无毒、质轻的热塑性材料,密度为0.90---0.91g/cm3, 是现有树脂中最轻的一种;它不溶于水,熔点为165℃, 燃点为590℃,耐热性能良好;聚丙烯几乎不吸水;耐蚀 性能良好,与大多数化学品如酸、碱和有机溶剂接触不发 生作用。
接枝反应机理如下
2.2聚丙烯纤维在混凝土中增强作用的机理
在混凝土硬化工程中,由于水化反应形成的结晶体产生 体积收缩以及自由水蒸发而引起的干缩都会在某个时期内 应力超过混凝土的抗拉强度,引起混凝土内部产生微裂缝。 1963年J.P.Romualdi和J.B.Baston提出“纤维间距理论” 该理论的基本思路是,混凝土内部存在不同尺度和形状的 孔缝缺陷和微裂纹,当施加外力时在这些部位产生应力集 中,引起裂缝扩展,导致结构破坏;而纤维达到一定的间 距后,裂缝通过纤维将荷载传递给上下表面,因此裂缝的 应力集中程度就缓和了,因而阻止了裂缝的产生和发展。
因此,在聚丙烯纤维应用前必须经过改性处理, 改善纤维在基材中的分散性,提高纤维与基材之 间的粘结强度。
1.3改性聚丙烯纤维在增强混凝土方面的应用
纤维增强混凝土是以水泥浆、砂浆和混凝土为 基材,以金属材料、无机材料和纤维材料为增强 材料组成的一种复合材料。
纤维材料的加入,对有效抑制混凝土早期塑性 裂缝的产生,并抑制外力作用下水泥基材料中裂 缝的扩展,减少冷缩和干缩都具有明显的改善作 用。同时,对高强混凝土抗拉、抗弯、抗冲击及 韧性等性能随长度增长而变差的现象也起到极大 的改善作用,对混凝土抗渗、防水、抗冻等耐久 性也有极大的促进作用。
而反应型等离子体则参与纤维表面上的化学反应,在表 面引入特征官能团,从而达到改性目地。
2.1.2表面接枝处理
由于聚丙烯纤维无反应活性,表面接枝时需要 纤维表面进行辐射或化学处理,以产生接枝点; 根据引发方式不同,表面接枝处理可分为等离子 体表面接枝改性、辐射表面接枝改性和化学表面 接枝改性。 1)辐射表面接枝改性
2、改性机理
2.1、表面改性的主要方法及其改性机理 2.1.1、低温等离子体处理
等离子体是正负带电粒子密度相等的导电气体,是有电 子、离子、原子、分子或自由基以及光子等粒子组成的集 合体。对于非反应型等离子体(如氢气、惰性气体等), 当高能粒子轰击纤维表面时,将能量转移给表层分子,使 之活化产生链自由基,自由基又进行相互反应生成表面交 联层,同时还产生表面蚀刻作用;
谢
谢
3.1.3不同实验条件的影响
• 综合吸湿率和表面官能团含量的实验结果,以及实际工业生产来 看,确定实验条件为:反应温度50℃,反应时间为20min.
3.2化学接枝条件对表面改性的影响 3.2.1高锰酸钾浓度的影响
3.2.2硫酸浓度的影响
3.2.3处理时间的确定
• 从上表的实验数据可以看出,接枝率随时 间的延长而显著上升,并在反应3h后随着 时间的延长而略有降低。这是由于延长处 理时间,提高了MnO2 的反应程度,使自由 基增加,增加了自由基在聚丙烯纤维中的 扩算程度,在反应后期,由于反应的终止 速率增加而使链引发速率减小。反应时间 过长使聚丙烯纤维表面溶胀程度增大,表 面蚀刻程度加剧,因此接枝率减小.结合试 验结果,反应时间应控制在3h为宜。
5、结论
①硅烷偶联剂处理:实验表明,利用该方法处理聚 丙烯纤维,在纤维表面上接枝了硅烷偶联剂,同 时过氧化物的分解在纤维表面上产生了轻微的刻 痕,提高了纤维表面的粗糙度。 ②KMnO4/H2SO4作为引发剂,接枝丙烯酸处理聚丙 烯纤维,在纤维表面上引入了活性基团-COOH等, 同时由于具有KMnO4/H2SO4强氧化性,改善了纤 维表面的粗糙程度。
2.1.3硅烷偶连剂处理
• 硅烷偶连剂是在同一个硅原子上含有两种具有 不同反应活性基团的低分子化合物;可用YRSiX表 示;其中X代表能够水解的烷氧基如甲氧基、乙氰 基等,它可与具有亲水性表面的无机物反应,生 成Si-O-Si键;Y是具有反应活性的有机基如乙烯基、 氨基等,在催化剂作用下,Y能与有机聚合物发生 反应;因此,可以利用硅烷偶连剂的这种性质来 增进无机物与有机物之间的粘结性能
KMnO4/H2SO4引发丙烯酸接枝共聚合反应机理
ቤተ መጻሕፍቲ ባይዱ
通过大量的对比实验发现,当体系中无丙烯酸 存在时,KMnO4的亮紫色可以持续数小时,往体 系中加入少量的丙烯酸(AA)、KMnO4与H+迅速反 应,KMnO4的亮紫色迅速消失而生成MnO2黑色沉 淀。当体系中有MnO2存在时,介质为淡黄色,当 向体系中加如H2SO4时,介质的淡黄色很快消失, 这说明体系中MnO2消失,生成Mn4+,进而生成 Mn3+或Mn2+和自由基,Mn3+很不稳定,很快生 成Mn4+和Mn2+,最终生成Mn2+,因为Mn2+在酸性 介质中最稳定。
3、改性条件探究 3.1、硅烷偶联剂对表面改性的影响 3.1.1偶联剂种类的影响
3.1.2硅烷过氧化物丙酮溶液配比的影响
实验中过氧化物作为反应的引发剂,为了考察过氧化物 用量的影响,固定硅烷浓度为20%和30%,改变过氧化物的 用量进行试验,得到图3.1
• 从上表可以看出,与未改性纤维相比,经 改性后纤维表面的吸湿率均有不同程度的 提高,综合上述两表的实验数据,同时考 虑到经济效益,初选硅烷过氧化物丙酮溶 液配比为:硅烷含量为30%,过氧化剂含 量为0.5%。
4、结果表征
4.1纤维表面的扫描电镜(SEM)分析
PP纤维经几种处理工艺改性,其处理前后的表面形态如图:
4.2纤维表面的能谱分析
对未改性和改性的纤维样品的能谱分析的结果如下:
• 由上述各种改性纤维的能谱图可知,在未改性纤维的能 谱中(图3.3(a)),只可以找到C、H两种元素;对硅烷处 理的纤维进行表面分析时,从图3.3(b)中可以找到C、H、O、 Si四种元素;在接枝丙烯酸处理的能谱中,可以找到C、S、 O、K,说明纤维表面接枝上了丙烯酸(图3.3c);在硅烷 浸泡处理的纤维表面(图3.3e),可以找到C、O两种元素, 在纤维表面的局部地区还能找到Si元素,这主要是由于硅 烷在纤维表面粘附不均引起的;在图3.3(f)中,可以发现C、 O、Fe、S和一些稀有金属元素,这一点正好与SEM电镜中 一致,即纤维改性处理的工艺是在纤维表面喷镀了一些金 属元素。
聚丙烯纤维分子不带有极性基团,是一种憎水性材料, 粘结性和抗蠕变性能差,表面呈化学惰性。
1、2本课题的研究目地
尽管聚丙烯纤维有很多优点,但同时已存在一 些缺点:表面能低,分子链上缺少活性官能团, 而且表面疏水,以至于纤维在材料中不容易分散, 其物理化学粘结力较差;弹性模量低。这些缺点 制约了聚丙烯纤维的应用。
辐射接枝是利用辐射方法在聚丙烯纤维表面产 生自由基,再与带有亲水基团的单体发生接枝共 聚反应,从而达到对纤维表面进行改性的目地。
2)化学接枝改性
• 该方法是用化学方法处理聚丙烯纤维 表面,如用强氧化剂氧化,以在纤维 表面形成接枝活性中心,再与带有活 性官能团的单体发生交联接枝反应, 从而在纤维表面引入活性官能团。文 献报道了用过氧二苯甲酰(BPO)以及 KMnO4/H2SO4体系作为引发剂。
①首先过氧化物游离基在聚丙烯纤维表面上引发形成活 性中心
。
S· 可为叔丁基自由基、聚丙烯自由基或其他自由基等;该反应也可 以通过链转移的方式终止。
2.1.4化学氧化处理
• 通过氧化性化学试剂或气体对纤维表面进行氧化处理, 改变纤维表面的粗糙程度或活性基团的含量,从而改善纤 维与基材之间的粘结性能和纤维表面亲水性。 • 可分为干法和湿法:干法为气相氧化法,设备简单,易 于操作,但是氧化程度难以控制,气相氧化法常用光氧化 和臭氧氧化;湿法为液相氧化,比较温和,易于控制,液 相氧化常用介质有铬酸、浓硝酸、二甲苯、KMnO4/H2SO4 等。不同介质的作用机理随有不同,但纤维表面都会产生 如下作用:腐蚀无定型区,蚀刻表面,氧化表面以及引入 官能团。