离散数学模型

合集下载

离散数学第五章

离散数学第五章

作业:P178 (2);P185 (1), (2)
5.3 半群和独异点
一、半群
1、定义
①具有运算封闭性的代数系统A=〈s,*〉 称为 广群,满足运算封闭、结合律的代数 系统 A=<s,*>,称为半群,这里*是二 元运算。 ②存在么元的半群称为独异点,也称含么 半群, 单位半群,单元半群。
5.3 半群和独异点
二、么元(单位元)和零元
例:代数A=〈{a,b,c}, ○ 〉用下表定义: ○ a b c 特殊元: b是左么元,无右么元; a是右零元,b是右零元, 无左零元; 运算:既不满足结合律,也不满足交换律。 a a a a b b b b c b c a
二、么元(单位元)和零元
例: a)〈I,x〉, I为整数集
5.2 运算及其性质
5.吸收律:设<A,*,△>,若x,y,z∈A有: x*(x △z)=x 称运算*满足吸收律; x △(x * y) =x; 运算 △满足吸收律
例:N为自然数集,x,y∈N,x*y=max{x,y},
x△y=min{x,y}
试证:*,△满足吸收律 证明:x,y∈N, x*(x△y)=max{x,min{x,y}}=x ∴*满足吸收律 x x≥y x<y x≥y =x =x
则么元为1,零元为0
b)〈(s),∪,∩〉 对运算∪,是么元, s是零元,
对运算∩,s是么元 ,是零元。 c)〈N,+〉 有么元0,无零元。
二、么元(单位元)和零元
2、性质
性质1: 设*是s上的二元运算,满足结合律,具 有左么元el,右么元er,则el=er=e 证明: er = el* er = e
闭否,<A,+>,<A,/>呢? 解:2r,2s∈A, 2r x 2s=2r+s∈A (r+s∈N)

第五章 离散模型

第五章 离散模型
由假设,

p11 0.8, p12 0.2, p21 0.7, p22 0.3,
再由于投保人处于健康状态,即 0 1 1, 0 2 0. 由此得到
n
0
1
2
3
4


n 1 1 0.8 0.78 0.778 0.7778 7 / 9. n 2 0 0.2 0.22 0.222 0.2222 2 / 9

x, y x y 1, 2.
y
2 1
o
1
2
3
x
在上图中, 实点即表示为容许状态的集合. 乘船的方案称为决策,仍然用向量
x, y 来表示,
即 x名商人和 y 名随从同坐一条船. 在这些决策中, 有
是符合条件的,称为容许决策。容许决策的全体组成集 合构成容许决策的集合,记为 D. 在这个问题中,容许决策的集合为
若投保人在开始时处于疾病状态,即0 1 0, 0 2 1. 则有
n
0
1
2
3
4


n 1 0 0.7 0.77 0.777 0.7777 7 / 9. n 2 1 0.3 0.23 0.223 0.2223 2 / 9
从两张表中可以看到,无论投保人在初始时处于什么 状态,当时间趋于无穷大时,该时刻的状态趋于稳定, 且与初始值无关。即
9
10 11 12
2, 2 0, 2 0,3 0,1 0, 2 0,0
2,0 0,1 0, 2 0,1 0, 2
分析
从上表中可以看到,该方案是可行的。
二、马氏链及其应用
1.一个简单的例子 我们知道,人寿保险公司最为关心的是投保人的健康

金融市场收益率离散数学模型及其定性分析

金融市场收益率离散数学模型及其定性分析

models fdiscrete RRACF modell
are
built up under various different financial back—
grounds.More specifically,concerning the relatively closed
build up

financial
network,we
basic discrete RRACF model reflecting the law of instant rates of return
of each node in the financial network.Since every financial network is open,we
return—amount of circulating fund model in
an
open financial network.A necessary
US—
and snfficient condition is obtained for the stability of equilibrium solution by
we build up another equation concerning the rate of returns
circulating fund with impulsive terms. Chapter 3一Chapter 6 mainly deals with the detailed discussion
of the equilibrium solution and the existence of periodic solutions to the discrete delay RRACF equation.The last chapter mainly deals with the RRACF model with impulsive terms.It is shown that the average rate of return of the network

2010-7-22离散数学模型分析覆盖问题 清晰版

2010-7-22离散数学模型分析覆盖问题 清晰版

离散数学模型分析——覆盖问题ylyang@youlongy@Email 2010年7月22日时间杨有龙教授报告人2008年国家一等奖西安电子科技大学理学院数学系杨有龙2009年国家二等奖西安电子科技大学理学院数学系杨有龙2009年国家二等奖西安电子科技大学理学院数学系杨有龙2008年陕西省一等奖西安电子科技大学理学院数学系杨有龙2008年陕西省一等奖西安电子科技大学理学院数学系杨有龙2009年陕西省一等奖西安电子科技大学理学院数学系杨有龙2009年陕西省一等奖西安电子科技大学理学院数学系杨有龙2009年国际数模ICM 一等奖西安电子科技大学理学院数学系杨有龙2009年国际数模ICM 二等奖西安电子科技大学理学院数学系杨有龙西安电子科技大学理学院数学系杨有龙近年赛事成绩33(1)2010年321717(2)5(2)13(1)42009年220812(2)33(1)532008年国家三等奖国家二等奖国家一等奖陕西省二等奖陕西省一等奖国家二等奖国家一等奖国际二等奖国际一等奖奖项全国研究生数学建模竞赛全国大学生数学建模竞赛国际大学生数学建模竞赛赛事内容提要背景问题覆盖问题覆盖问题的求解西安电子科技大学理学院数学系杨有龙内容提要背景问题覆盖问题覆盖问题的求解西安电子科技大学理学院数学系杨有龙问题1某城市的城建部门计划在每条街的拐角处或另一个尽头装一个消防水龙头,需要水龙头的个数是多少?请建立模型并给出解决的方案。

西安电子科技大学理学院数学系杨有龙问题2根据菜单和对应的营养表,怎么点菜使得营养全、费用少?西安电子科技大学理学院数学系杨有龙问题2A西班牙煎蛋B炒鸡丁C色拉D牛排E土豆F 洋葱炒肝菜单101516261224欢迎用餐西安电子科技大学理学院数学系杨有龙西安电子科技大学理学院数学系杨有龙1001F 0110E 0001D 1100C 0011B 1101A 矿物质维生素碳水化合物蛋白质营养成分列表内容提要背景问题覆盖问题覆盖问题的求解西安电子科技大学理学院数学系杨有龙2 /30西安电子科技大学理学院数学系杨有龙背景知识——图的表示一个图是由“顶点”集合和“边”集合所构成,边被看成图的不同顶点的无序对.v 5v 1v 4v 2v 3e 2e 7e 3e 4e 6e 5e 1(,)G V E =(,)v w E ∈V E西安电子科技大学理学院数学系杨有龙12345{,,,,}V v v v v v =五个顶点1234567{,,,,,,}E e e e e e e e =七条边西安电子科技大学理学院数学系杨有龙V 1 V 2V 3V 4 V 501001*0110**011***01****0⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠V 1V 2V 3V 4V 5图的表示矩阵用一个上三角形矩阵表示图的顶点之间是否有边相连,若有边则矩阵元素为1,否则为0,此矩阵称为图的表示矩阵。

离散数学--第十五章 欧拉图和哈密顿图

离散数学--第十五章 欧拉图和哈密顿图
13
实例
在上图中, (1),(2) 是哈密顿图; (3)是半哈密顿图; (4)既不是哈密顿图,也不是半哈密顿图,为什么?
14
无向哈密顿图的一个必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,对于任意V1V且 V1,均有 p(GV1) |V1|
证 设C为G中一条哈密顿回路。
当V1顶点在C上均不相邻时, p(CV1)达到最大值|V1|,
求图中1所示带权图k29主要内容欧拉通路欧拉回路欧拉图半欧拉图及其判别法哈密顿通路哈密顿回路哈密顿图半哈密顿图带权图货郎担问题基本要求深刻理解欧拉图半欧拉图的定义及判别定理深刻理解哈密顿图半哈密顿图的定义
第十五章 欧拉图与哈密顿图
主要内容
➢ 欧拉图 ➢ 哈密顿图 ➢ 带权图与货郎担问题
1
15.1 欧拉图
大时,计算量惊人地大
27
例6 求图中(1) 所示带权图K4中最短哈密顿回路.
(1)
(2)
解 C1= a b c d a,
W(C1)=10
C2= a b d c a,
W(C2)=11
C3= a c b d a,
W(C3)=9
可见C3
(见图中(2))
是最短的,其权为9. 28
第十五章 习题课
主要内容 欧拉通路、欧拉回路、欧拉图、半欧拉图及其判别法 哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图 带权图、货郎担问题
点.
由vi 的任意性,结论为真. 充分性 对边数m做归纳法(第二数学归纳法). (1) m=1时,G为一个环,则G为欧拉图. (2) 设mk(k1)时结论为真,m=k+1时如下证明:
5
从以上证明不难看出:欧拉图是若干个边不重的圈之 并,见示意图3.

离散数学模型的应用研究

离散数学模型的应用研究

离散数学模型的应用研究
离散数学是研究离散结构的数学分支,它的主要研究对象包括集合、函数、关系、图论、逻辑等。

离散数学模型是离散数学在各个领域中的应用研究,通过构建合适的离散数学模型,可以进行问题的分析、模拟和优化等。

离散数学模型在实际应用中广泛运用,以下就几个典型的领域进行介绍。

1. 计算机科学中的离散数学模型:离散数学在计算机科学中有广泛的应用。

例如在编译器设计中,通过离散数学模型可以实现代码的优化和自动化生成;在图形学中,离散数学模型可以用于图像的处理和渲染;在密码学中,离散数学模型可以用于设计和分析密码算法等。

2. 运筹学中的离散数学模型:运筹学是研究如何通过数学模型和优化方法来解决决策问题的学科。

离散数学模型在运筹学中有着重要的地位。

例如在物流管理中,可以利用离散数学模型来优化货物的配送路径和资源的利用;在排产问题中,可以使用离散数学模型来优化工厂的生产计划和资源调度等。

3. 社交网络分析中的离散数学模型:社交网络分析是研究社交网络结构和社交行为的学科,离散数学模型在这个领域中有着重要的应用。

例如在社交网络中,可以使用离散数学模型来分析网络的拓扑结构、社群结构和信息传播等;在推荐系统中,离散数学模型可以用于计算用户之间的相似度和预测用户的兴趣等。

离散数学模型在各个领域中都有重要的应用,它能够通过建立合适的模型来分析和解决实际问题,为各个领域的发展和进步做出贡献。

随着科技的进步和应用需求的提升,离散数学模型的研究和应用将会越来越受到重视和关注。

离散数学模型的应用研究

离散数学模型的应用研究

离散数学模型的应用研究作者:周鋆徐文豪葛玉凤来源:《科技资讯》2019年第07期摘; 要:离散数学是数学的一个重要分支,它已经从单纯的知识积累中发生了革命性的变化。

其内容包括数理逻辑、集合论、代数系统、图论以及组合理论等。

随着区块链的初步发展以及计算机的广泛应用,越来越多的离散数学知识被运用到区块链等领域中,该课题主要是就是研究利用离散数学的方法计算机等领域的实际应用。

关键词:离散数学; 计算机; 区块链; 数据结构中图分类号:G71; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;文献标识码:A; ; ; ; ; ; ; ; ; ; ; ; ; 文章编号:1672-3791(2019)03(a)-0234-02自20世纪50年代以来,数学知识一直出现新的观点,它已经从单纯的知识积累中发生了革命性的变化。

离散数学是数学的一个重要分支,内容包括数理逻辑、集合论、代数系统、图论以及组合理论等,主要应用在计算机等学科。

离散数学可以由基本数集的计算来支持,与连续数学模型相比,计算机工作基本上是分散的,计算更方便。

从实际情况看,它是从图像数学中脱颖而出的,而不是先建立连接条件,然后将其离散化,离散数学应包括数学逻辑预备、集合论、代数结构和布尔代数等5个主要部分。

离散数学的理论及方法大量地使用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的剖析与规划、人工智能、计算机网络建设中,它所研讨的对象是离散数量联系和离散结构数学结构模型。

计算机是一个离散结构,其只能处理离散的或者离散化了的数量关系,不管计算机科学自身,还是与计算机科学密切相关的科学领域,都面临着如何对离散结构树立相应的数学模型、如何将已用接连数量联系树立起来的数学模型离散化,然后能够由计算机来处理。

1; 离散数学在数据结构中的应用为了解决一个特定问题的数据处理,我们经常对该问题进行推理,选择合适的数学模型,设计计算方法,最后通过计算机编程来解决问题。

离散数学——图论

离散数学——图论

2021/10/10
11
哥尼斯堡七桥问题
❖ 把四块陆地用点来表示,桥用点与点连线表 示。
2021/10/10
12
❖ 欧拉将问题转化为:任何一点出发,是否存在通过 每条边一次且仅一次又回到出发点的路?欧拉的结 论是不存在这样的路。显然,问题的结果并不重要, 最为重要的是欧拉解决这个问题的中间步骤,即抽 象为图的形式来分析这个问题 。
2021/10/10
2
图论的发展
❖ 图论的产生和发展经历了二百多年的历史, 从1736年到19世纪中叶是图论发展的第一阶 段。
❖ 第二阶段大体是从19世纪中叶到1936年,主 要研究一些游戏问题:迷宫问题、博弈问题、 棋盘上马的行走线路问题。
2021/10/10
3
❖ 一些图论中的著名问题如四色问题(1852年)和哈密 尔顿环游世界问题(1856年)也大量出现。同时出现 了以图为工具去解决其它领域中一些问题的成果。
❖ P(G)表示连通分支的个数。连通图的连通 分支只有一个。
2021/10/10
40
练习题---图的连通性问题
❖ 1.若图G是不连通的,则补图是连通的。 ❖ 提示:直接证法。
根据图的不连通,假设至少有两个连通分 支;任取G中两点,证明这两点是可达的。
2021/10/10
41
❖ 2.设G是有n个结点的简单图,且 |E|>(n-1)(n-2)/2,则G是连通图。
❖ 例子
2021/10/10
29
多重图与带权图
❖ 定义多重图:包含多重边的图。 ❖ 定义简单图:不包含多重边的图。 ❖ 定义有权图:具有有权边的图。 ❖ 定义无权图:无有权边的图。
2021/10/10
30
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交 通 拥 挤 C5
居 民 搬 迁 C6
汽 车 排 放 物 C7
对 水 的 污 染 C8
对 生 态 的 破 坏 C9
桥梁 D1
隧道 D2
渡船 D2
(2)过河代价层次结构
例4 科技成果 的综合评价
效益C1
科技成果评价
水平C2
规模C3
直接 经济
间接 经济 效益 C12
社会 效益
学识
学术 创新
技术 水平
方案层对C2(费用) 的成对比较阵
1 1/ 3 1/ 8 B2 3 1 1 / 3 8 3 1
同样求第3层(方案)对第2层每一元素(准则)的权向量 方案层对C1(景色) 的成对比较阵
1 B1 1 / 2 1 / 5 2 1 1/ 2 5 2 1
0
收 岸 入 间 C2 商 业 C3
自 豪 感 C8
美 化 C11
桥梁 D1
隧道 D2
渡船 D3
(1)过河效益层次结构
例3 横渡 江河、海峡 方案的抉择
投 入 资 金 C1
过河的代价 A 经济代价 B1 社会代价 B2 环境代价 B3
操 作 维 护 C2
冲 击 渡 船 业 C3
冲 击 生 活 方 式 C4
Ci : C j aij
选 择 旅 游 地
1 2 A 1/ 4 1/ 3 1/ 3
1 A (aij ) nn , aij 0, a ji aij
4 7 1 2 3 3
1/ 2 1 1/ 7 1/ 5 1/ 5
3 5 5 A~成对比较阵 1 / 2 1 / 3 A是正互反阵 1 1 1 1
1. 正互反阵的最大特征根和特征向量的性质 正矩阵A 的最大特征根是正单根,对应 Ak e 正特征向量w,且 lim T k w, e (1,1,,1)T k e A e 定理1 正互反阵的最大特征根是正数, 特征向量是正向量。 定理2 n阶正互反阵A的最大特征根 n ,
第八章
离散模型
8.1 层次分析模型 8.2 循环比赛的名次
8.3 社会经济系统的冲量过程
8.4 效益的合理分配
y
离散模型
• 离散模型:差分方程(第7章)、
整数规划(第4章)、图论、对策 论、网络流、… … • 分析社会经济系统的有力工具
• 只用到代数、集合及图论(少许)
的知识
8.1 层次分析模型 背 景
3 0
0.633 0.193 0.175
3.009 0.005
0.166 0.166 0.668
3 0
k
CI k
w(2) 0.263 0.475 0.055 0.090 0.110
RI=0.58 (n=3), CIk 均可通过一致性检验
方案P1对目标的组合权重为0.5950.263+ …=0.300
Aw w
比较尺度aij Saaty等人提出1~9尺度——aij 取值 1,2,… , 9及其互反数1,1/2, … , 1/9 • 便于定性到定量的转化:
尺度
a ij
1 相同
2
3 稍强
4
5 强
6
7
8
9 绝对强
Ci : C j的重要性
明显强
aij = 1,1/2, ,…1/9 ~ Ci : C j 的重要性与上面相反
• Saaty于1970年代提出层次分析法 AHP (Analytic Hierarchy Process) • AHP——一种定性与定量相结合的、 系统化、层次化的分析方法
一. 层次分析法的基本步骤
1)建立层次分析结构模型
深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),上层受下层影响,而层内 各因素基本上相对独立。
n CI 越大,不一致越严重
n 1
为衡量CI 的大小,引入随机一致性指标 RI——随机模 拟得到aij , 形成A,计算CI 即得RI。 Saaty的结果如下
n RI 1 2 10 11 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 3 4 5 6 7 8 9
根据定理1,2,我们可以由λ max是否等于n来检验判断 矩阵A是否为一致矩阵。由于特征根连续地依赖于aij, 故λ max比n大得越多,A的非一致性程度也就越为严重, λ max对应的标准化特征向量也就越不能真实地反映出 X={x1,„,xn}在对因素Z的影响中所占的比重。因此, 对决策者提供的判断矩阵有必要作一次一致性检验, 以决定是否能接受它。 对于不一致(但在允许范围内)的成对比较阵A,建议 用对应于最大特征根的特征向量作为权向量w ,即
定理2
若A为一致矩阵,则
(1)A必为正互反矩阵。 (2)A的转置矩阵AT也是一致矩阵。 (3)A的任意两行成比例,比例因子(即wi /wj)大 于零,从而rank(A)=1(同样,A的任意两列也成 比例)。 (4)A的最大特征根λ max=n,其中n为矩阵A的阶。A 的其余特征根均为零。 (5)若A的最大特征根λ max对应的特征向量为W=(w1,„, wn)I,则a=wi /wj, i,j = 1,2,„,n。 ij
• 心理学家认为成对比较的因素不宜超过9个 • 用1~3,1~5,…1~17,…,1p~9p (p=2,3,4,5), d+0.1~d+0.9 (d=1,2,3,4)等27种比较尺度对若干实例构造成对比较 阵,算出权向量,与实际对比发现, 1~9尺度较优。
3 一致性检验
对A确定不一致的允许范围
已知:n 阶一致阵的唯一非零特征根为n 可证:n 阶正互反阵最大特征根 n, 且 =n时为一致阵 定义一致性指标: CI
例1 国家 实力分析
国家综合实力
国民 收入
军事 力量
科技 水平
社会 稳定
对外 贸易
美、俄、中、日、德等大国
例2 工作选择
贡 献 收 入
工作选择
发 展
声 誉
关 系
位 置
供选择的岗位
例3 横渡 江河、海峡 方案的抉择
节 省 时 间 C1
过河的效益 A
经济效益 B1 当 地 商 业 C4 建 筑 就 业 C5 社会效益 B2 安 全 可 靠 C6 交 往 沟 通 C7 环境效益 B3 舒 适 C9 进 出 方 便 C1
允许不一致,但要确定不一致的允许范围
设想把一块单位重量的大石头 0 砸成 n 块小石头
C1, C2 ,, Cn ,它们的重量为 w1 , w2 ,, wn ,作成对比较
aij wi / w j ,得到成对比较阵
w1 w 1 w2 A w 1 w n w1
要由A确定C1,… , Cn对O的权向量
成对比较的不一致情况
1 A 2
1/ 2 1
4 7
a12 1 / 2 (C1 : C2 )
a13 4 (C1 : C3 )
正互反阵A称一致阵
一致比较
不一致
a23 8 (C2 : C3 )
aij a jk aik , i, j , k 1,2,, n
1个或几个层次。
•与其他决策问题一样,研究分析者不一定是决策者, 不应自作主张地作出决策。
例. 选择旅游地
如何在3个目的地中按照景色、 费用、居住条件等因素选择.
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
―选择旅游地”思维过程的归 纳 • 将决策问题分为3个层次:目标层O,准则层C, 方案层P;每层有若干元素, 各层元素间的关系 用相连的直线表示。
技术 创新
效益
C11
水平
C21
C13
C22
C23
C24
待评价的科技成果
三. 层次分析法的若干问题
• 正互反阵的最大特征根是否为正数?特征向量 是否为正向量?一致性指标能否反映正互反阵接 近一致阵的程度?
• 怎样简化计算正互反阵的最大特征根和特征向量?
• 为什么用特征向量作为权向量? • 当层次结构不完全或成对比较阵有空缺时怎样用 层次分析法?
方案层对目标的组合权向量为 (0.300, 0.246, 0.456)T
组合 权向量
第2层对第1层的权向量
第1层O
第2层C1,…Cn 第3层P1, …Pm
w ( w1 ,, wn )
( 2) ( 2) ( 2)
T
第3层对第2层各元素的权向量
( 3) ( 3) ( 3) T
wk ( wk 1 ,, wkm ) , k 1,2,, n
w1 w2 w2 w2 wn w2
T

w1 wn w2 wn wn wn
w ( w1 , w2 , wn ) ~ 权向量
定理1 正互反矩阵A的最大特征根λ max必为正实数,其对应特 征向量的所有分量均为正实数。A的其余特征根的模均严格小于 λ max。(证明从略)
2)构造成对比较阵
用成对比较法和1~9尺度,构造各层对上一层每一因素的 成对比较阵。
3)计算权向量并作一致性检验
对每一成对比较阵计算最大特征根和特征向量,作一致性 检验,若通过,则特征向量为权向量。
4)计算组合权向量(作组合一致性检验*)
组合权向量可作为决策的定量依据。
1 建立层次结构模型
•在用层次分析法研究问题时,首先要根据问题的因 果关系并将这些关系分解成若干个层次。 •同一层次的诸因素从属于上一层的因素或对上层因 素有影响,同时又支配下一层的因素或受下层因素的 作用。 •较简单的问题通常可分解为目标层(最高层)、准 则层(中间层)和方案措施层(最低层)。中间可有
相关文档
最新文档