离散时间系统的数学模型
离散时间系统的数学模型—差分方程

一.用差分方程描述线性时不变离散系统
线性:均匀性、可加性均成立;
x (n) 1
离散时间系统
y (n) 1
x 2 ( n ) 离散时间系统
c x (n ) + c x (n )
x1n+ x2n
x2 n
乘法器:
x1n x1n+ x2n
x2 n
x1 n
x1n x2 n
x2 n
系统框图
乘法器
xn
延时器
axn
a
yn
1
yn 1
E
xn a axn
yn
yn 1
z 1
五.差分方程的特点
(1)输出序列的第n个值不仅决定同一瞬间的输入样值, 而且还与前面输出值有关,每个输出值必须依次保留。
11
22
离散时间系统
y2 (n )
c y (n ) + c y (n )
11
22
时不变性
xn yn,xn N yn N 整个序列右移 N位
x(n)
y(n)
1 1 0 1 2 3 n
1
系统
1 o 1 2 3 4 n
x(n N )
y(n N )
1
1
系统
1 0 1 2 3
yt ynT yn
f t f nT f n
yn yn 1 ayn+ f n
T
yn 1 yn 1+ T f n
1 aT
1 aT
当前输出 前一个输出 输入
离散系统的数学模型

离散系统的数学模型
1.1 离散时间系统的数学模型
为激励信号,
为响应信号
离散时间系统 将激励序列转换为响应序列的系统,其 输入输出都是离散信号。在数学上,离 散系统的输入-输出关系可表示为
离散系统可以用差分方程来描述 差分方程 由输入序列、输出序列以及它们的差分所组
成的方程。 例如:
无反馈差分方程 某ຫໍສະໝຸດ 时刻的输出只与输入有关,而余 ,月利率为1%。写出结余 与净存款
的
关系式。
解: 当月的净存款
月末结余
月末利息
所以有
或
例5.3.2 试写出第k 节点电压 的数学模型。
解: 整理得
例5.3.3 假设离散时间系统的差分方程为 求其传输算子
解:算子方程为 即
所以
离散系统的模拟框图表示
差分方程的基本元算符号
例5.3.4 某离散系统的差分方程为
与该时刻之前的输出无关 。
有反馈差分方程 某一时刻的输出不仅与输入有关,还 与该时刻之前的输出有关。
系统的差分方程的一般形式 :
前向差分方程
后向差分方程
差分算子 离散系统的传输算子
差分方程 算子方程
传输算子
系统的输入-输出模型
1.2离散时间系统数学模型的建立
例5.3.1 某一银行按月结余。设第 个月末的结
试用模拟框图表示此系统。 解:系统的差分方程可化为 框图来表示为
信号与系统
7-4离散系统的数学模型全篇

2. 线性常系数差分方程及其解法
c(k
)
a1c(k b1r(k
11))ba22rc((kk22))bamnrc((kk
n) m);
n
m
c(k) aic(k i) bjr(k j);
i 1
j 1
后向差分方程:时间概念清楚,便于编制程序。
c(kn) a1c(kn 1) a2c(kn 2) anc(k) b1r(kn 1) b2r(kn 2) bmr(kn m);
n
m
c(k n) aic(k n i) bjr(k n j);
i 1
j 1
前向差分方程:便于讨论系统阶次、使用Z变换 法计算初始条件不为零的解。
上述几个差分方程在书写上都很烦琐,为书 写简便可采用时间移动算子。
0.1 0.4 16k 0.3 81k
c(nT
)
0.1 0.8 16k 0.1 1.6 16k
0.9 81k 2.7 81k
0.1 3.2 16k 8.1 81k
k 0, 1, 2, 3, 4, ;
n 4k
n 4k 1 ; n 4k 2
n 4k 3
3. 脉冲传递函数(定义、意义) 使用 脉冲传递函数,便于分析和校正线性离
c(k) 0.5c(k 1) 0.5c(k 2) r(k); r(k) 1(k); c(k) 0, k 0;
试用递推法计算输出序列c(k),k= 0,1,2,…。
解例7采-16用-1递续推关系 c(k) = 1+0.5c(k-1)– 0.5c(k-2);
c(0) 1; c(1) 1 0.5 1.5;
c(2) 1 0.51.5 0.5 1.25; c(3) 1 0.51.25 0.51.5 0.875;
线性离散系统的数学模型

解 :k 0 y(1) ay(0)bu(0)
k 1
y(2) ay(1)bu(1) a2y(0)abu(0)bu(1)
k1
y(k) ak y(0) ak1ibu(i) 通 解特 解
i0
线性离散系统的数学模型
解法二:解析法——差分方程通解求法
y ( k n ) a 1 y ( k n 1 ) a n y ( k ) b 0 u ( k m ) b 1 u ( k m 1 ) b m u ( k )
➢第二种形式:称为 (n,m) 阶差分方程,其中 m≤n,是在输入 输出的最低阶上统一。
y ( k n ) a 1 y ( k n 1 ) a n y ( k ) b 0 u ( k m ) b 1 u ( k m 1 ) b m u ( k )
连续定常系统的 n 阶微分方程(m≤n)
m0 线性离散系统的数学模型
例 3-3-1 已 知 离 散 系 统 脉 冲 响 应 h(k),求 在 u*(t)1*(t) 作 用 下 系 统 的 输 出 y*(t)。
1,k0 u*(t)1*(t) 0,k0
解: 由卷积和公式:
k
y(k) u(k)* h(k) u( j)h(k j) j0
k
3.2.2 差分方程解 =通解+特解
➢ 通解是齐次方程的解,为零输入解,代表系统在无外力 作用下的自由运动,反映了离散系统自身的特性。
➢ 特解是由非零输入产生的解,对应于非齐次方程的特解, 反映了系统在外作用下的强迫运动。 差分方程求解有两种方法:解析法与递推法。
线性离散系统的数学模型
解法一:递推法——从初始值递推求解
数 学 模
连续系统 微分方程 脉冲过渡函数
—— ——
数学模型之离散模型

离散模型的应用领域
计算机科学
离散模型在计算机科学中广泛 应用于算法设计、数据结构、
网络流量分析等领域。
统计学
离散模型在统计学中用于描述 和分析离散数据,如人口普查 、市场调查等。
经济学
离散模型在经济学中用于描述 和分析离散的经济现象,如市 场交易、人口流动等。
生物学
离散模型在生物学中用于描述 和分析生物种群的增长、疾病
强化学习与离散模型
强化学习通过与环境的交互来学习最优策略。离散模型可以用于描述环境状态和行为,为 强化学习提供有效的建模工具。
离散模型在人工智能中的应用
1 2
决策支持系统
离散模型在决策支持系统中发挥着重要作用,通 过建立预测和优化模型,为决策者提供科学依据 和解决方案。
推荐系统
离散模型常用于构建推荐系统,通过分析用户行 为和偏好,为用户提供个性化的推荐服务。
03
分布式计算与并行化
为了处理大规模数据集,离散模型需要结合分布式计算和并行化技术,
以提高计算效率和可扩展性。
机器学习与离散模型的结合
集成学习与离散模型
集成学习通过结合多个基础模型来提高预测精度。离散模型可以作为集成学习的一部分, 与其他模型进行组合,以实现更准确的预测。
深度学习与离散模型
深度学习具有强大的特征学习和抽象能力。将深度学习技术与离散模型相结合,可以进一 步优化模型的性能,并提高对复杂数据的处且依赖于过去误差项的平方。
GARCH模型
定义
广义自回归条件异方差模型(Generalized AutoRegressive Conditional Heteroskedasticity Model)的简称,是ARCH模型的扩展。
特点
离散控制系统的数学模型

即
Y (z)
z2
z 3z
2
(z
z 1)( z
2)
利用反演积分法求出z反变换,得 y(k) 1 2k k 0,1, 2,
y(t) (1 2k ) (t kT ) k 0
1.2 脉冲传递函数
1.脉冲传递函数定义
在线性定常离散控制系统中,当初始条件为零时,系统离散输出信号的z
变换与离散输入信号的z变换之比,称为线性定常离散控制系统的脉冲传递函
R(z) 1 G1 (z)HG2(z)
自动控制原理
例1-13 试用z变换法求解下列二阶前向差分方程 y(k 2) 3y(k 1) 2y(k) 0
其中,初始条件为 y(0) 0, y(1) 1 。
解:对方程两端取z变换,得
z2Y (z) z2 y(0) zy(1) 3zY (z) 3zy(0) 2Y (z) 0
即 (z2 3z 2)Y (z) y(0)z2 ( y(1) 3y(0))z 代入初始条件,得 (z2 3z 2)Y (z) z
(2)串联环节之间无采样开关时
设开环离散系统如图1-18所示,在两个串联连续环节G1(s)和G2(s)之间没 有理想采样开关。此时系统的传递函数为 G(s) G1(s)G2 (s)
上式作为一个整体进行z变换,由脉冲传递函数定义得
G(z)
Y (z) R(z)
G1G2 (z)
图1-18 环节之间无理想采样开关的开环采样系统
自动控制原理
离散控制系统的数学模型
1.1 线性常系数差分方程
对于线性定常离散控制系统,一般可用n阶后向差分方程描述,即
n
m
y(k) ai y(k i) bir(k j)
i 1
j 1
matlab离散化状态空间模型 -回复

matlab离散化状态空间模型-回复如何使用MATLAB 进行离散化状态空间模型的建模和分析离散化状态空间模型是一类广泛应用于系统建模和分析的数学工具。
它在控制论和动态系统理论中有着重要的作用。
MATLAB 是一个功能强大的数学软件,可以方便地进行离散化状态空间模型的建模和分析。
本文将介绍如何使用MATLAB 进行离散化状态空间模型的建模和分析。
一、离散化状态空间模型的概念和原理离散化状态空间模型是描述离散时间系统动态特性的一种数学模型。
它由状态方程和输出方程组成。
状态方程描述了系统状态的演化规律,输出方程描述了系统输出与状态的关系。
离散时间系统的状态方程和输出方程可以用矩阵形式表示如下:x(k+1) = Ax(k) + Bu(k)y(k) = Cx(k) + Du(k)其中,x(k) 表示系统在时刻k 的状态向量,u(k) 表示系统在时刻k 的输入向量,y(k) 表示系统在时刻k 的输出向量,A、B、C、D 分别为系统的状态矩阵、输入矩阵、输出矩阵和直接传递矩阵。
离散化状态空间模型的建模需要将连续时间系统的状态空间模型进行离散化处理。
离散化的基本原理是将连续时间系统的状态方程和输出方程在一段时间内进行离散化处理,使得系统的状态和输出在该离散时间内近似地描述系统的动态特性。
二、使用MATLAB 进行离散化状态空间模型的建模和分析的步骤1. 定义系统的连续时间状态空间模型首先,需要定义连续时间状态空间模型的状态矩阵A、输入矩阵B、输出矩阵C 和直接传递矩阵D。
这些矩阵的维度和元素值反映了系统的动态特性。
例如,假设我们有一个连续时间状态空间模型:dx(t)/dt = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)其中,状态向量x(t) 的维度为n,输入向量u(t) 的维度为m,输出向量y(t) 的维度为p。
那么,我们可以用MATLAB 编写如下代码定义连续时间状态空间模型:A = [a11, a12, ..., a1n; a21, a22, ..., a2n; ..., an1, an2, ..., ann];B = [b11, b12, ..., b1m; b21, b22, ..., b2m; ..., bn1, bn2, ..., bnm];C = [c11, c12, ..., c1n; c21, c22, ..., c2n; ..., cp1, cp2, ..., cpn];D = [d11, d12, ..., d1m; d21, d22, ..., d2m; ..., dp1, dp2, ..., dpm];2. 将连续时间状态空间模型离散化在MATLAB 中,可以使用c2d 函数将连续时间状态空间模型离散化为离散时间状态空间模型。
数学建模简明教程第六章离散模型

收集数据与信息
数据来源
确定数据来源,包括实验数据、调查数据、公开数据等,确保数据的准确性和 可靠性。
数据预处理
对收集到的数据进行清洗、整理和转换,以适应离散模型的建立和应用。
选择合适的离散模型
模型类型
根据问题特点和目标,选择合适的离 散模型类型,如概率模型、统计模型 、逻辑模型等。
离散模型的优化
参数调整
根据验证结果,调整离散 模型的参数,以提高模型 的预测精度和稳定性。
算法改进
探索更高效的算法,以降 低计算复杂度和提高模型 训练速度。
特征选择
根据模型需求,选择与问 题相关的特征,去除冗余 和无关特征,提高模型性 能。
离散模型的改进建议
深入研究数据
持续学习
深入了解数据分布和特性,为模型改 进提供更有针对性的指导。
等方面。
在交通运输领域,离散模型用于 描述交通流量的变化和预测交通
状况。Βιβλιοθήκη 在经济学和社会学领域,离散模 型用于研究人口增长、市场行为、
社会网络等方面的问题。
02
离散模型的建立
确定问题与目标
明确问题背景
在建立离散模型前,需要明确问 题的背景、研究目的和相关领域 ,以便确定模型的应用范围和针 对性。
确定研究目标
数学建模简明教程第六章 离散模型
• 离散模型概述 • 离散模型的建立 • 离散模型的求解 • 离散模型的验证与优化 • 离散模型案例分析
01
离散模型概述
离散模型的定义
离散模型是指对研究对象进行离散化 处理,将其划分为若干个离散的单元 或状态,然后对每个单元或状态进行 数学描述和分析的模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.线性差分方程 a0(n)y(n)+ a1(n)y(n-1)+ …... aN(n)y(n-N)
= b0(n)x(n)+ b1(n)x(n-1)+ …... bM(n)x(n-M) 其中ai(n) 、bj(n)、 x(k) ,i=0,1,……N; j=0,1,……M; k=n-M,……n。
返回
二、差分方程
在连续时间系统中,系统内部的数学运算关系可归结 为微分(积分)、乘系数、相加的关系,即:微分方程。
在离散时间系统中,基本运算关系是延时(移位)、 乘系数、相加的关系,即:差分方程。 这是由于系统的组成以及所处理的信号的性质不同, 因此描述系统的数学手段也不同。
(一)数学模型的基本单元 (二)差分 (三)差分方程 (四)差分方程的建立 (五)差分方程的特点
i
2
2
d i un
n
n
i
n
in+1 u n u
n
1 iu i n n + 1 u n 2 i
i
1 2 i u i n n + 1 2 n + 1 u n 6 i
n + 1 1 a i a u i u n 1 a i n
xi xn
n
a 1
返回
(三)差分方程
1.一般差分方程
ky(n))=0 表达式F(n,y(n), y(n), …… 或 Q(n,y(n), y(n-1), ……, y(n-k))=0 称为未知序列y(n)的差分方程,F、Q是已知函数。
k
(k阶差分)
3.典型序列的差分(后向) n = n -(n-1)=1 u(n) = u(n) -u(n-1)=d (n) n2= n2 -(n-1)2= 2n - 1 n2u(n) = n2u(n) - (n-1)2u(n-1)= (2n-1)u(n-1) 2 n 1 sin n sin n sin n 1 2 sin cos 4.差分的逆运算———求和 典型序列的求和
因果系统的充要条件: h(n) 0, n<0
h(n)为单位脉冲响应。
返回
(四)稳定系统
有界输入、产生有界输出的系统称为稳定系统。 稳定系统的充要条件: hn
n
即:单位脉冲响应绝对可和。 注意: ,只是系统稳定的必要条件, lim h (n)0
n
而非充分条件。
(二)时不变系统
如果: T[x(n)]= y(n),若有T[x(n-N)]= y(n-N); 则称为时不变系统。
x ( n)
y( n)
1
1 O 1 2 3 n x( n N )
x(n)
T[ . ]
y(n)
1
1 O 1 2 3 4
y( n N )
n
x(n-N)
1
T[ . ]
y(n-N)
整个序列右移N位
2x(n)
= x(n) - x(n-1) = x(n) -2x(n-1)+x(n-2)
3x ( n ) = 2x ( n ) 2x(n-1)
k
=x(n) -3x(n-1)+ 3x(n-2)- x(n-3)
m 0 m m k
Cx x n 1 n m
返回
(一)线性系统
具有均匀(齐次)性、叠加性的系统称为线性系统。 若:
x1 ( n ) y1 ( n )
离散时间系统
x2 ( n )
则有:
离散时间系统
离散时间系统
y2 ( n )
c1 x1 ( n ) + c2 x2 ( n )
c1 y1 ( n ) + c2 y2 ( n )
(c1、c2为任意常数) 返回
§7.3离散时间系统的数学模型——
差分方程
一、线性、时不变离散系统
二、差分方程 三、离散时间系统的模拟
返回
一、线性、时不变离散系统
系统功能的本质:是将输入序列转变成输出序列
的运算(映射)。即:y(n)=T[x(n)]
运算关系
x(n) (一)线性系统
T[ . ]
y(n)
(二)时不变系统 (三)因果系统 (四)稳定系统
中心差分dx(n)定义为: dx(n) = x(n+h/2) - x(n- h/2)
式中h( h>0)为步长,一般取步长h=1。 1.序列x(n)的前向差分 Dx(n) = x(n+1) - x(n) (一阶差分) D2x(n) = Dx(n+1) -Dx(n) = x(n+2) -x(n+1)-[x(n+1) -x(n)] = x(n+2) -2x(n+1)+x(n) (二阶差分)
x2n
x n x2n 1
乘法器:
x n 1
x2n
若x2(n)=a,则为标量乘法器 返回
(二)差分
对于一个离散信号x(n) ,差分运算有三种形式: 前向差分Dx(n)定义为: Dx(n) = x(n+h) - x(n)
后向差分 x(n)定义为: x(n) = x(n) - x(n- h)
D3x(n) = x(n+3) -3x(n+2)+ 3x(n+1)- x(n)
(三阶差分) (k阶差分)
Cx D x n 1 n + k m
k m 0 mm k
k
2.序列x(n)的后向差分 x(n) = x(n) - x(n-1)
(一阶差分)
(二阶差分) (三阶差分)
返回
(一)数学模型的基本单元
延时器
y n
1 E
y n 1
或T、D
a
y n
z
1
y n 1
标量乘法器 加法器:
x n 1
x n
ax n
x n 1
x n
n a ax
x n+ x2n 1
x n+ x2n 1
x2n
1 2 3
n
1
1 2 3
n
1 O
1 O
返回
(三)因果系统
系统的输出y(n)只取决于此时刻、以及此时刻以前 的输入,即 : x(n)、 x(n-1)、 x(n-2)……。则称为 因果系统。
{若y(n)取决于x(n+1)、 x(n+2)……,即:系统的 输出取决于未来的输入,这在时间上就违背了因果关 系,因而是非因果系统。}