(完整版)万有引力与航天专题训练

合集下载

(物理)物理万有引力与航天练习题20篇含解析

(物理)物理万有引力与航天练习题20篇含解析

(物理)物理万有引力与航天练习题20篇含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则:,,代入数据得2.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。

这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。

已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。

【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。

【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==3.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==5.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.6.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。

高中物理万有引力与航天题20套(带答案)

高中物理万有引力与航天题20套(带答案)

高中物理万有引力与航天题20套(带答案)一、高中物理精讲专题测试万有引力与航天1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P点,远地点为同步圆轨道Ⅲ上的Q点.到达远地点Q时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G,地球质量为M,地球半径为R,飞船质量为m,同步轨道距地面高度为h.当卫星距离地心的距离为r时,地球与卫星组成的系统的引力势能为p GMmEr=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=5.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMTh R π= 【解析】【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-6.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.7.一名宇航员抵达一半径为R 的星球表面后,为了测定该星球的质量,做下实验:将一个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛出位置,测得小球在空中运动的时间为t ,已知万有引力恒量为G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1)该星球表面的“重力”加速度g 的大小; (2)该星球的质量M ;(3)如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期T 为多大?【答案】(1)2v g t =(2)22vR M Gt=(3)2T π=【解析】 【详解】(1)由运动学公式得:2vt g=解得该星球表面的“重力”加速度的大小 2v g t=(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该星球表面上的物体,由牛顿第二定律和万有引力定律得:mg =2mM GR解得该星球的质量为 22vR M Gt= (3)当某个质量为m′的卫星做匀速圆周运动的半径等于该星球的半径R 时,该卫星运行的周期T 最小,则由牛顿第二定律和万有引力定律2224m M m RG R Tπ''=解得该卫星运行的最小周期 22Rt T vπ= 【点睛】重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向心力由万有引力提供.8.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr =将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算9.“嫦娥四号”卫星从地球经地一月转移轨道,在月球附近制动后进入环月轨道,然后以大小为v 的速度绕月球表面做匀速圆周运动,测出其绕月球运动的周期为T ,已知引力常量G ,月球的半径R 未知,求: (1)月球表面的重力加速度大小;(2)月球的平均密度。

高中物理万有引力与航天真题汇编(含答案)及解析

高中物理万有引力与航天真题汇编(含答案)及解析

高中物理万有引力与航天真题汇编( 含答案 ) 及分析一、高中物理精讲专题测试万有引力与航天1.一名宇航员抵达半径为 R、密度平均的某星球表面,做以下实验:用不行伸长的轻绳拴一个质量为 m 的小球,上端固定在 O 点,如图甲所示,在最低点给小球某一初速度,使其绕 O 点在竖直面内做圆周运动,测得绳的拉力大小 F 随时间 t 的变化规律如图乙所示. F1、F2已知,引力常量为G,忽视各样阻力.求:(1)星球表面的重力加快度;(2)卫星绕该星的第一宇宙速度;(3)星球的密度.F1F2( 2)(F1 F2)R F1 F2【答案】(1)g6m (3)6m8 GmR【分析】【剖析】【详解】(1)由图知:小球做圆周运动在最高点拉力为 F2,在最低点拉力为 F1设最高点速度为 v2,最低点速度为 v1,绳长为l在最高点:F2mg mv22l①在最低点:F1mg mv12l②由机械能守恒定律,得1mv12mg 2l1m v22③22由①②③,解得g F1 F2 6mGMm(2)R2mgGMm mv2R2=R两式联立得:v=(F1F2)R6mGMm(3)在星球表面:R2mg④星球密度:M⑤V由④⑤,解得F1F28 GmR点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳索的拉力与重力的协力供给向心力,由牛顿第二定律能够求出重力加快度;万有引力等于重力,等于在星球表面飞翔的卫星的向心力,求出星球的第一宇宙速度;而后由密度公式求出星球的密度.2.以下图,宇航员站在某质量散布平均的星球表面一斜坡上P 点沿水平方向以初速度v0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为 R,万有引力常量为G,求:(1)该星球表面的重力加快度;(2)该星球的密度;(3)该星球的第一宇宙速度 v;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T.2v0 tan3v0 tan; (3)2v0Rtana Rt【答案】 (1); (2)t ;(4) 2t 2 GRt v0tan 【分析】【剖析】【详解】(1)小球落在斜面上,依据平抛运动的规律可得:y 1gt22gttanαv0t2v0x解得该星球表面的重力加快度:g 2v0 tanαt(2)物体绕星球表面做匀速圆周运动时万有引力供给向心力,则有:GMmR2则该星球的质量:mgM gR 2 G该星球的密度:M3g3v0tanα4R3 4 GR 2 GRt3(3)依据万有引力供给向心力得:G Mm m v2R2R该星球的第一宙速度为:v GMRgR2v0 Rtanat(4)人造卫星绕该星球表面做匀速圆周运动时,运转周期最小,则有:2 RTv所以:T 2 Rt2Rt v0 Rtanαv0tan点睛:办理平抛运动的思路就是分解.重力加快度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.3.我国发射的“嫦娥三号”登月探测器凑近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.封闭发动机后,探测器自由着落,落到月球表面时的速度大小为 v,已知万有引力常量为G,月球半径为R,h R ,忽视月球自转,求:(1)月球表面的重力加快度g0;(2)月球的质量 M;(3)若是你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,能够假想,假如速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v1起码为多大?【答案】(1)g0v2v2 R2v2 R (2)M(3)v12h 2h2hG【分析】(1)依据自由落体运动规律v22g0h ,解得 g0v22h(2)在月球表面,设探测器的质量为m,万有引力等于重力,G Mmmg0,解得月球R2v2 R2质量M2hG(3)设小球质量为m ' ,抛出时的速度 v1即为小球做圆周运动的围绕速度万有引力供给向心力Mm 'v 12 ,解得小球速度起码为v 1v 2 RGm '2hR 2R4.2018 年 11 月,我国成功发射第 41 颗北斗导航卫星,被称为“最强北斗 ”。

高中物理万有引力与航天专项训练及答案及解析.docx

高中物理万有引力与航天专项训练及答案及解析.docx

高中物理万有引力与航天专项训练及答案及解析一、高中物理精讲专题测试万有引力与航天1. 据每日邮报 2014 年 4 月 18 日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地 ”行星 .假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面附近 h 处自由释放 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 2该行星的第一宇宙速度;该行星的平均密度.【答案】 12h R ?2 ? 3h. t 2 2 R2Gt【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求 M 出质量与运动的周期,再利用,从而即可求解.V【详解】1 根据自由落体运动求得星球表面的重力加速度h1 gt 22解得: g 2ht2则由 mgm v 2R求得:星球的第一宇宙速度vgR2h 2 R ,t2 由 GMm mg m2h R 2t 2有: M2hR 2Gt2所以星球的密度M3hV2Gt 2R【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2. 宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个星体的质量均为m,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为G,则 :(1)直线三星系统中星体做囿周运动的周期为多少?(2)三角形三星系统中每颗星做囿周运动的角速度为多少?L3( 2)3Gm【答案】( 1)435Gm L【解析】【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度;【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:Gm2Gm2m( 2 )2L(2 L)2L2TT 4L35Gm(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗Gm2L星,满足:2m (2)2 cos30cos30L解得:=3GmL33.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加速度: g2v0.tGMm (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg R2gR22v0 R2得:MGtG4 R3因为V3M3v0则有:2πRGtV(3)重力提供向心力,故该星球的第一宇宙速度mg m v2Rv gR2v0Rt【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度 v0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t. 已知引力常量为G,月球的半径为 R,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g月;(2)月球的质量 M;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.【答案】 (1)2v0; (2)2R2v0; (3)2Rt t Gt2v0【解析】【详解】(1) 小球在月球表面上做竖直上抛运动,有2v0 tg月月球表面的重力加速度大小g月2v 0t (2)假设月球表面一物体质量为m,有MmGR2=mg月月球的质量M 2R2v0 Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 05. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为求:(1)行星的质量 M ;(2)行星表面的重力加速度 g ;(3)行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【解析】【详解】(1)设宇宙飞船的质量为 m ,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.6. 如图所示, A 是地球的同步卫星.另一卫星B 的圆形轨道位于赤道平面内.已知地球自转角速度为0 ,地球质量为 M , B 离地心距离为 r ,万有引力常量为G , O 为地球中心,不考虑 A 和 B 之间的相互作用.(图中 R 、h 不是已知条件)(1)求卫星 A 的运行周期T A(2)求 B 做圆周运动的周期T B(3)如卫星 B 绕行方向与地球自转方向相同,某时刻A、B 两卫星相距最近(O、 B、 A 在同一直线上),则至少经过多长时间,它们再一次相距最近?2r3t2【答案】(1)T A(2) T B2( 3)GMGM r30【解析】【分析】【详解】(1) A 的周期与地球自转周期相同2T AGMm m(2)2 r(2)设 B 的质量为 m,对 B 由牛顿定律 :r 2T B解得:T Br 3 2GM(3) A、 B 再次相距最近时 B 比 A 多转了一圈,则有:(B0 ) t2t2GM解得:r 3点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第 3 问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.7.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R,引力常数为G.(1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?3v02Rv0【答案】(1)( 2)2 GRt t【解析】【详解】(1) 由匀变速直线运动规律:v0gt 2所以月球表面的重力加速度g 2v0 t由月球表面,万有引力等于重力得GMmmg R2gR 2 MG月球的密度M3v0=2 GRtV2(2) 由月球表面,万有引力等于重力提供向心力:mg m vR2Rv0可得: vt8.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度v0竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R;(2)小石子能上升的最大高度.GM v02【答案】 (1) R =( 2)hg2g【解析】GMm(1)对行星表面的某物体,有:mg-2R得: R =GM g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:0v022ghv02得: h2g9.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为 +Q,静电力常量为 k,推导距离点电荷 r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为 M ,半径为 R ,引力常量为 G .a .请参考电场强度的定义,推导距离地心r 处(其中 r ≥R )的引力场强度E 引 的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中 r <R )的引力场强度 E 引 的表达式.【答案】( 1)kQGM GMr2 ( 2) a . E 引r 2b . E 引R 3rE【解析】【详解】(1)由 EF , Fk qQ,得 EkQqr 2r 2(2) a .类比电场强度定义,E 引F 万 ,由 F 万GMm ,m r 2得 E 引 GMr2b .由于质量分布均匀的球壳对其内部的物体的引力为 0,当 r < R 时,距地心 r 处的引力场强是由半径为 r 的“地球 ”产生的.设半径为 r 的“地球 ”质量为 M r ,M r4 M4 r 3 r 3 M.R 33R 33得 E引GM r GM rr 2R 310. 2017 年 4 月 20 日 19 时 41 分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。

(完整word版)万有引力与航天试题全集(含详细答案)

(完整word版)万有引力与航天试题全集(含详细答案)

万有引力与航天试题全集(含答案)一、选择题:本大题共。

1、地球绕太阳运动的轨道是一椭圆,当地球从近日点向远日点运动时,地球运动的速度大小(地球运动中受到太阳的引力方向在地球与太阳的连线上,并且可认为这时地球只受到太阳的吸引力)()A。

不断变大B。

逐渐减小 C.大小不变 D。

没有具体数值,无法判断2、对于开普勒第三定律的表达式=k的理解正确的是A.k与a3成正比B.k与T2成反比C.k值是与a和T无关的值D.k值只与中心天体有关3、苹果落向地球,而不是地球向上运动碰到苹果,下列论述中正确的是A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的B.由于地球对苹果有引力,而苹果对地球没有引力而造成的C。

苹果对地球的作用力和地球对苹果的作用力是相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都正确4、某球状行星具有均匀的密度ρ,若在赤道上随行星一起转动的物体对行星表面的压力恰好为零,则该行星自转周期为(万有引力常量为G)A. B.C。

D.5、关于开普勒第三定律的公式=k,下列说法中正确的是A。

公式只适用于绕太阳做椭圆轨道运行的行星 B.公式适用于所有围绕星球运行的行星(或卫星)C。

式中的k值,对所有行星(或卫星)都相等D。

式中的k值,对围绕不同星球运行的行星(或卫星)都相同6、根据观测,某行星外围有一模糊不清的环,为了判断该环是连续物还是卫星群,测出了环中各层的线速度v的大小与该层至行星中心的距离R。

则以下判断中正确的是A。

若v与R成正比,则环是连续物B。

若v与R成反比,则环是连续物C。

若v2与R成反比,则环是卫星群D。

若v2与R成正比,则环是卫星群7、关于太阳系中各行星的轨道,以下说法正确的是A。

所有行星绕太阳运动的轨道都是椭圆 B.有的行星绕太阳运动的轨道是圆C。

不同行星绕太阳运动的椭圆轨道的半长轴是不同的D。

不同的行星绕太阳运动的轨道各不相同8、类似于太阳与行星间的引力,地球和月球有相当大的万有引力,为什么它们不靠在一起,其原因是A。

万有引力与航天试题附答案

万有引力与航天试题附答案

万有引力与航天单元测试题一、选择题1.关于日心说被人们接受的原因就是 ( )A.太阳总就是从东面升起,从西面落下B.若以地球为中心来研究的运动有很多无法解决的问题C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单D.地球就是围绕太阳运转的2.有关开普勒关于行星运动的描述,下列说法中正确的就是( )A.所有的行星绕太阳运动的轨道都就是椭圆,太阳处在椭圆的一个焦点上B.所有的行星绕太阳运动的轨道都就是圆,太阳处在圆心上C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等D.不同的行星绕太阳运动的椭圆轨道就是不同的3.关于万有引力定律的适用范围,下列说法中正确的就是( )A.只适用于天体,不适用于地面物体B.只适用于球形物体,不适用于其她形状的物体C.只适用于质点,不适用于实际物体D.适用于自然界中任意两个物体之间4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的就是( )A.地球公转的周期及半径B.月球绕地球运行的周期与运行的半径C.人造卫星绕地球运行的周期与速率D.地球半径与同步卫星离地面的高度5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度与周期变化情况就是( )A.速度减小,周期增大,动能减小B.速度减小,周期减小,动能减小C.速度增大,周期增大,动能增大D.速度增大,周期减小,动能增大6.一个行星,其半径比地球的半径大2倍,质量就是地球的25倍,则它表面的重力加速度就是地球表面重力加速度的( )A.6倍B.4倍C.25/9倍D.12倍7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )A.根据公式v=ωr可知,卫星运动的线速度将增加到原来的2倍B.根据公式F=mv2/r可知,卫星所需向心力减小到原来的1/2C.根据公式F=GMm/r2可知,地球提供的向心力将减小到原来的1/4D.根据上述B与C中给出的公式,8.假设在质量与地球质量相同,半径为地球半径两倍的天体上进行运动比赛,那么与在地球上的比赛成绩相比,下列说法正确的就是()A.跳高运动员的成绩会更好B.用弹簧秤称体重时,体重数值变得更大C.从相同高度由静止降落的棒球落地的时间会更短些D.用手投出的篮球,水平方向的分速度变化更慢9.在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,使得部分垃圾进入大气层.开始做靠近地球的近心运动,产生这一结果的初始原因就是( )A.由于太空垃圾受到地球引力减小而导致做近心运动B.由于太空垃圾受到地球引力增大而导致做近心运动C.由于太空垃圾受到空气阻力而导致做近心运动D.地球引力提供了太空垃圾做匀速圆周运动所需的向心力,故产生向心运动的结果与空气阻力无关10.“东方一号”人造地球卫星A与“华卫二号”人造卫星B,它们的质量之比为m A:m B=1:2,它们的轨道半径之比为2:1,则下面的结论中正确的就是( )A.它们受到地球的引力之比为F A:F B=1:1B.它们的运行速度大小之比为v A:v B=1:22:1C.它们的运行周期之比为T A:T B=23:1D.它们的运行角速度之比为ωA:ωB=211.西昌卫星发射中心的火箭发射架上,有一待发射的卫星,它随地球自转的线速度为v1、加速度为a1;发射升空后在近地轨道上做匀速圆周运动,线速度为v2、加速度为a2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v3、加速度为a3。

高中物理万有引力与航天题20套(带答案)含解析

高中物理万有引力与航天题20套(带答案)含解析

高中物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='4.我国预计于2022年建成自己的空间站。

万有引力与航天专题复习学案(自己整理较全)

万有引力与航天专题复习学案(自己整理较全)

万有引力与航天1、匀速圆周运动: ①线速度 ②角速度 ③周期和频率 ④向心加速度 ⑤向心力2、开普勒三定律①椭圆定律 ②面积定律 ③第三定律例1(2012北京18A ):判断对错:分别沿圆轨道和椭圆轨道运行的两颖卫星,不可能具有相同的周期 。

( )练习1(2013西城二模17)如图所示,我国自行设计、制造的第一颗人造地球卫星“东方红一号”运行轨道为椭圆轨道,其近地点M 和远地点N 的高度分别为439km 和2384km ,“东方红一号”卫星DA .在M 点的速度小于在N 点的速度B .在M 点的加速度小于在N 点的加速度C .在M 点受到的地球引力小于在N 点受到的地球引力D .从M 点运动到N 点的过程中动能逐渐减小练习2(2013朝阳二模17)经国际小行星命名委员会命名的“神舟星”和“杨利伟星”的轨道均处在火星和木星轨道之间,它们绕太阳沿椭圆轨道运行,其轨道参数如下表。

注:AU 是天文学中的长度单位,1AU=149 597 870 700m (大约是地球到太阳的平均距离)。

“神舟星”和“杨利伟星”绕太阳运行的周期分别为T 1和T 2,它们在近日点的加速度分别为a 1和a 2。

则下列说法正确的是AA .12T T >,12a a <B .12T T <,12a a <C .12T T >,12a a >D .12T T <,12a a >3、万有引力定律表达式: 测量引力常量的科学家 ,实验名称 ,实验方法 。

4、解决天体圆周运动问题的两条思路(1)忽略中心天体自转,天体表面物体的重力等于天体给物体的万有引力。

表达式:黄金代换式:(2)天体运动都可近似地看成匀速圆周运动,其向心力由万有引力提供,即注意:如图,一般中心天体半径记为R ,环绕天体到中心天体表面的距离记为h ,则环绕天体环绕半径记为r ,r=R+h1、解决重力加速度问 忽略中心天体自转得:表面重力加速度:轨道重力加速度(距天体表面高h 处):例2(04北京): 1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G,那么在下列给出的各种情景中,能根据测量的数据
求出月球密度的是
()
A.在月球表面使一个小球做自由落体运动,测出落下
的高度H和时间t
B.发射一颗贴近月球表面绕月球做圆周运动的飞船,
测出飞船运动的周期T
C.观察月球绕地球的圆周运动,测出月球的直径D和
月球绕地球运动的周期T
D.发射一颗绕月球做圆周运动的卫星,测出卫星离月
(2R0 )

GMm R0 2
my
(4分)
T 2π 8R03 2π 8R0 4π 2R0
GM
g
3.因卫星上物体的重力用来提供绕地球做圆周运动的 向心力,所以均处于 失重 状态,与重力有关的仪器
不能使用,与重力有关的实验不能进行.
4.卫星变轨时,离心运动后速度变 小 ,向心运动后速 度变 大 .
5.确定天体表面重力加速度的方法有:①测重力法;② 单摆法;③ 平抛 (或竖直上抛)物体法;④近地卫星环 绕法.
系(1)由
G
Mm r2
v2 m
r
,得v= GM
r
,则r越大,v越小.
(2)由
G
Mm r2
m
2r,得ω=
3.
(三3)种由宇G 宙Mrm2速度m
4π2 T2
r,得T=
GM
r3 ,则r越大,ω越小.
4π2r3 GM
,则r越大,T越大.
(1)第一宇宙速度(环绕速度):v1= 7.9 km/s ,是人造地
球卫星的最小发射速度.
r,得
M
为天体的半径.
4π2r3 GT 2
,
M V
M
4 3
πr03
3πr 3 GT 2r03
,r0

当卫星沿天体表面绕天体运行时,r=r0,则ρ= GT 2 .
思路方法
1.分析天体运动类问题的一条主线就是F万=F向,抓住 黄金代换GM= gR2 .
2.近地卫星的线速度即第一宇宙速度,是卫星绕地球 做圆周运动的 最大速度,也是发射卫星的最小 速度.
m
解析 (1)对其中任意一颗恒星,它受到的合力为
F合
G (
mm 2L)2
2G
mm L2
Gm2 2L2
(2
2 1)
(2)设相邻两颗恒星间距为a,四颗星总位于同一直线
上,即四颗恒星运动的角速度ω相同,由万有引力定律
和牛顿第二定律,对内侧恒星M有
对外侧恒星m有
G
MM a2
G
Mm (2a)2
G
Mm a2
M 2
到该卫星发射的微波信号的时间是多少?(图中A1、 B1为开始接收到信号时,卫星与接收点的位置关系).
解题关键 1.开始接收到信号时,A1B1恰好为切线.同 样,当微波信号消失时,卫星与接收点的连线也为地
球的切线方向.
2.要注意卫星转动时,地球同时要自转.
解析
(1)
GMm (2R0 )2
m
4π2 T2
万有引力与航天 专题训练
1.在处理天体的运动问题时,通常把天体的运动看成
是匀速圆周 运动,其所需要的向心力由万有引力 提
供.其基本关系式G为Mr m2
v2 m
r
Hale Waihona Puke m 2rm(.2Tπ)2 r
m(2πf
)2 r
在天体表面,忽略自转的情况下有
G
Mm R2
.
mg
2.卫星的绕行速度、角速度、周期与轨道半径r的关
a 2
G
Mm a2
G
Mm (2a)2
G
Mm (3a)2
m 2
3a 2
解得M∶m=85∶63
答案
(1) Gm2(2
2L2
2 1)
(2)85∶63
1.在利用万有引力定律解决天体运动的有关问题 时, 通常把天体的运动看成匀速圆周运动,其需要的 向心力G M就rm2 是 m由vr2天 m体之2r 间m(相2Tπ)互2 r 作 m用(2π的f )2万r 有引. 力提供.即
例2 (2009·合肥市第三次质量检测) (14分)如图3-2-2
所示,一颗绕地球做匀速圆周运动的
卫星,其轨道平面与地球赤道平面重
合.离地面的高度等于地球半径R0.该 卫星不断地向地球发射微波信号.已
知地球表面重力加速度为g.
图3-2-2
(1)求卫星绕地球做圆周运动的周期T.
(2)设地球自转周期为T0,该卫星绕地球转动方向与地 球自转方向相同,则在赤道上的任意一点能连续接收
号”卫星与GPS卫星相比
()
A.离地球更近
B.线速度更小
C.角速度更大
D.加速度更大
解析
同步卫星周期T=24小时,由
G
Mm r2
m(
2π T
)
2
r
,得
知“北斗二号”r1比GPS卫星r2大,故A错.由
G
Mm r2
ma
v2 m
r
m 2r
,得B项正确.
答案 B
预测演练2 (2009·杭州市模拟二)已知万有引力常量
(2)第二宇宙速度(脱离速度):v2=11.2 km/s ,使物体挣 脱地球引力束缚的最小发射速度.
(3)第三宇宙速度(逃逸速度):v3=16.7 km/s ,使物体挣 脱太阳引力束缚的最小发射速度.
4. 天体质量M、密度ρ的估算 测出卫星绕天体做匀速圆周运动的半径r和周期T,由
G
Mm r2
m
4π2 T2
球表面的高度H和卫星的周期T
解析
月球密度
M 4 πR3
,求ρ需先知道M和月球半径R.
A项由
H
1 2
gt 2
,得
g
3
2H t2
,由gR2=GM,求不出ρ;
B项由
G
Mm R2
4π2 m T2
R ,求得
3π GT 2
,故B项正确;
C项不知月球
质量,故C项错;D项不知月球半径,故D项错.
答案 B
题型2 卫星和航天问题
2.对于多星组成系统的匀速圆周运动的向心力,是 所受万有引力的合力提供的.
预测演练1 (2009·昆明市5月适应性检测)2009年4月
15日零时16分,西昌卫星发射中心成功地将我国北斗
卫星导航系统建设计划中的第二颗组网卫星——“北
斗二号”送入地球同步轨道.美国的全球卫星定位系统
(简称GPS)中的卫星运行周期约为12小时,则“北斗二
题型1 万有引力定律的应用 例1 (2009·重庆市第二次调研抽测) 宇宙中存在一 些离其它恒星很远的四颗恒星组成的四星系统,通 常可忽略其它星体对它们的引力作用.稳定的四星 系统存在多种形式,其中一种是四颗质量相等的恒
星位于正方形的四个顶点上,沿着外 接于正方形的圆形轨道做匀速圆周 运动;另一种如图3-2-1所示,四颗恒 星始终位于同一直线上,均围绕中点 图3-2-1 O做匀速圆周运动.已知万有引力常量为G,请回答 (1)已知第一种形式中的每颗恒星质量均为m,正方形 边长为L,求其中一颗恒星受到的合力. (2)已知第二种形式中的两外侧恒星质量均为m、两 内侧恒星质量均为M,四颗恒星始终位于同一直线,且 相邻恒星之间距离相等.求内侧恒星质量M与外侧恒 星质量m的比值M .
相关文档
最新文档