中心对称教学设计

合集下载

中心对称中班科学教案

中心对称中班科学教案

中心对称中班科学教案一、教学目标1. 理解中心对称的概念和特点;2. 发现和观察日常生活中的中心对称物体;3. 能够通过折纸实验来制作中心对称物体;4. 培养观察、思考和动手能力。

二、教学准备1. 准备一些有中心对称的物体,如蝴蝶、雪花等;2. 准备一些彩纸、剪刀和胶水。

三、教学过程1. 导入教师出示一些有中心对称的物体,如蝴蝶和雪花,引导学生观察并思考:你们看到的蝴蝶和雪花有什么特点?能否找到它们的中心对称线?为什么?2. 探究教师引导学生进行观察并提问:你们有没有见过其他中心对称的物体?请举例子。

学生可以发表自己的观察结果,教师帮助学生总结归纳,确保学生能正确理解中心对称的概念。

3. 实验教师进行折纸实验,要求学生按照教师的指导,使用彩纸和剪刀来制作中心对称的物体。

教师可以事先设计好一些折纸图案,如心形、星星等,确保学生能够成功完成实验,并且理解中心对称的原理。

4. 创作学生根据自己的兴趣和想象力,使用彩纸和剪刀来设计和制作中心对称的物体。

鼓励学生发挥创造力,在教师的引导下完成创作过程。

5. 展示学生将自己设计和制作的中心对称物体在课堂上进行展示,并向同学们介绍自己的创作过程和想法。

教师和同学们可以对每个作品进行评价和讨论,鼓励学生们互相学习和分享。

6. 总结教师引导学生回顾整个学习过程,通过学生的回答总结中心对称的特点,并强调中心对称在生活中的应用。

四、教学延伸1. 学生可以进一步观察和发现中心对称的物体,并记录下来;2. 学生可以尝试设计更复杂的中心对称图案;3. 教师可以设计一些游戏或者谜语来巩固学生对中心对称的理解。

五、教学评价教师可以通过观察学生在实验和创作过程中的表现来进行评价,包括学生对中心对称的理解、观察和思考能力,以及创造力和合作精神等方面。

同时,学生的展示和同学们的评价也是评价的重要标准之一。

六、教学反思本教案通过观察、实验和创作等方式来教授中心对称的概念和特点,旨在培养学生的观察、思考和动手能力。

教学设计5:23.2.2中心对称图形

教学设计5:23.2.2中心对称图形

23.2.2中心对称图形【教学目标】 一、知识与技能让学生经历观察、探究、发现、讨论、阅读的过程,学习中心对称图形的定义和性质。

二、过程与方法1.通过学生动手、合作和讨论,培养学生的参与意识,加强学生的合作与交流精神。

2.同时使学生积累一定的审美体验。

三、情感态度与价值观激发学生学习数学的兴趣,使学生更加喜欢数学。

四、教学重难点教学重点:理解中心对称图形的定义及其性质教学难点:理解中心对称图形的定义,会判断哪些图形是中心对称图形 【教学过程】 一、情景导入同学们,让我们用数学的眼光去欣赏这些图片,用所学的数学知识去描述它们二、新授过程 1.动手试一试,想一想图1图3图5图2图4下面这些图形通过怎样的变换可以与原来的图形重合?2、观察与发现(中心对称图形的有关概念)如果一个图形绕一个点_________后,能和_________ ,那么这个图形叫做_________;这个点叫做它的_________互相重合的点叫做_________. 如图(见课件)中_________是中心对称图形,对称中心是_________,点A的对称点是______,点D的对称点是______。

3、请欣赏下列图形4、生活中,你还见过哪些中心对称图形?请举例说明.5、问题:判断下列图形是否是中心对称图形?如果是,那么对称中心在哪里?(见课件)6、练习,a选择题:(1)下列图形中即是轴对称图形又是中心对称图形的是()A 角B 等边三角形C 线段D平行四边形(2)下列多边形中,是中心对称图形而不是轴对称图形的是()A平行四边形B矩形C菱形D正方形b小魔术:小明先拿出图(1)所示的四张纸牌,然后背着大家将其中某一张旋转了180°,得到图(2)。

问小明旋转的是哪一张?(见课件)三、探索1、我们已经知道,平行四边形是中心对称图形,根据你的思考,你能验证平行四边形的哪些性质?你能进而总结中心对称图形的性质吗?(见课件)2、中心对称图形的性质:对称点的连线经过_________并且被对称中心_________3、(看谁算得快)如图,有一组数排列成方阵,试计算这组数的和。

《中心对称》教案

《中心对称》教案

《中心对称》教案1教学目标:知识与技能:(1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.过程与方法:利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.情感、态度与价值观:经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.教学重点难点:重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.教学方法:(一)创设情境导入新课:导语一在前一节中我们学习了图形的旋转,那么旋转后的图形有哪些性质?(旋转前后图形全等,对应点到旋转中心的距离相等,旋转角均相等.)导语二观察图中三个图形旋转的角度,发现哪个图形与其他二个不同?(二)合作交流解读探究:教师指出在生活中有许许多多的图形都具有以上特征,在各个领域中都有广泛的应用.它都能给人以一种美的享受.本节我们就来研究这些图形的形成——中心对称.探究:如图,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板.这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系?发现:我们可以发现:(1)点O是线段AA’的中点;(2)△ABC≌△A'B'C'.上述发现可以证明如下.(1)点A'是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA',所以点O在线段AA'上,且OA=OA',即点O是线段AA'的中点.(2)在△AOB与△A'OB'中,OA=OA',OB=OB',∠AOB=∠A'OB',∴△AOB≌△A'OB'.∴AB=A'B'.同理BC=B'C',AC=A'C'.∴△ABC≌△A'B'C'.探索:下图中△A'B'C'与△ABC关于点O是成中心对称的,你能从图中找到那些等量关系?(多媒体出示图形)结论:(1)关于中心对称的两个图形中,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.例1如图4-31,已知四边形ABCD和点O,画出四边形A′B′C′D′,使它与四边形AB CD关于点O成中心对称.解:(1)连接AO,BO,CO,DO;(2)分别延长AO到A′,BO到B′,CO到C′,DO到D′,使OA′=OA,OB′=OB,O C′=OC,OD′=OD;(3)顺次连接点A′,B′,C′,D′.(如图4-32)四边形A′B′C′D′就是所求的四边形.议一议:中心对称与轴对称有什么区别?又有什么联系?《中心对称》教案2教学目标:教学知识点:1.熟记中心对称图形的有关概念.2.叙述并应用中心对称图形的基本性质.过程与方法:1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.掌握中心对称图形及其基本性质,掌握平行四边形是中心对称图形.情感、态度与价值观:通过师生的共同活动,使学生体会积累一定的审美体验.教学重、难点:教学重点:中心对称图形的定义及其性质.教学难点:中心对称图形的定义.教学过程:Ⅰ.巧设情景问题,引入课题[师]同学们,平行四边形纸板准备好了吗?好,我们现在来做一做如下图所示,在一个平行四边形纸板上,连结两条对角线,得到交点O,用图钉过点O 将纸板固定在一张纸上,并描下此时四边形ABCD的轮廓.绕点O旋转平行四边形纸板,使得点A移动到点C的位置.(1)此时的纸板与原来的位置是否重合?(2)指出旋转中心,求出旋转角的度数.(3)根据上面的过程,你能验证平行四边形的哪些性质?与同伴交流.(学生动手做、讨论、总结)[生1]把平行四边形纸板绕对角线的交点O旋转,使点A移动到点C的位置时,纸板与描下的轮廓重合.平行四边形旋转的中心是对角线的交点O,由于点A和点C在一条直线上,所以旋转的角度为180°.[师]这位同学分析得很正确:下面来看第(3)个问题,大家互相交流交流.[生2]从刚才旋转的过程中,验证了平行四边形的对边相等,对角相等,对角线互相平分等性质.[师]很好,我们来看(演示刚才学生旋转的过程),这个平行四边形绕它的对角线的交点O旋转180°,它与原图重合,我们把这样的图形,称为中心对称图形.这节课我们就来探讨中心对称图形.Ⅱ.讲授新课[师]我们再来看这根木条(出示教具),它绕着这一点(指出木条的中点)旋转180°时,也和原图重合.即与它本身重合,这样的图形叫中心对称图形.大家来总结归纳:什么是中心对称图形?[生]把一个图形绕它的某个点旋转180°,如果旋转后的图形与原来的图形重合,那么这个图形叫做中心对称图形.[师]很好,在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形(centralsymmetryfigure).这个点叫做它的对称中心.想一想,平行四边形的对称中心是什么?[生]平行四边形的对称中心是对角线的交点.[师]对,大家再想一想:我们学过的哪些图形是中心对称图形.[生]线段、平行四边形、矩形、菱形、正方形.[师]很好,它们的对称中心各是什么?[生]线段的对称中心是线段的中点.平行四边形的对称中心是对角线的交点,因为矩形、菱形、正方形是特殊的平行四边形,所以它们的对称中心都是对角线的交点.[师]这位同学回答得真棒.假设点A是某个中心对称图形上的一点,绕O点旋转180°后,它变成了点C,点A和点C 就是一对对应点,而且O是AC的中点.(如图)再看平行四边形是中心对称图形,点B绕O点旋转180°后,它与点D重合,点B和点D就是一对对应点,从平行四边形的性质也可知:O是BD的中点.由此大家能否总结出中心对称图形的性质吗?[生]中心对称图形上的每一对对应点所连成的线段的中点都是对称中心.[师]同学们总结得很好,这就是中心对称图形的性质.中心对称图形上的每一对对应点所连成的线段都被对称中心平分.中心对称图形在日常生活和生产中有广泛的应用,请你举出所看到的中心对称图形的实例.[生甲]家庭装饰中的各种图案、竹签做的玩具小飞机、纸做的小风车.[生乙]飞机的双叶螺丝桨、风车的风轮.[生丙]水泵叶轮……[师]很好,大家举出这么多中心对称图形的例子.你能说说中心对称图形在欣赏和实用方面的价值吗?(出示一些中心对称图形的图片).[生1]中心对称图形的形状匀称、美观,所以在很多建筑物和工艺品上常用这种图形作装饰图案.[生2]由于中心对称图形绕中心旋转180°,后与原来的图形重合.所以具有中心对称图形的物体,在平面内能绕对称中心平稳地旋转.这种特性在生活和生产中都有应用.[师]同学们回答得真棒.下面大家拿出扑克牌,看看这些牌的牌面哪些是中心对称图形?[生1]红桃2、方块2、黑桃2、黑桃10、方块J、梅花10、方块K、黑桃4.[生2]红桃4、红桃K、梅花Q.[生3]方块中除7不是,其余的都是中心对称图形.[师]很好,从大家回答中知道同学们基本掌握了中心对称图形的概念.下面大家来“想一想”.除了平行四边形,你还能找到哪些多边形是中心对称图形?[生1]正六边形、正八边形、正十边形.[生2]这样的多边形很多,在正多边形中,只要边数为偶数,那它就是中心对称图形.[师]很好,下面我们来做练习,以巩固中心对称图形的定义及性质.Ⅲ.练习1.正方形是中心对称图形吗?正方形绕两条对角线的交点旋转多少度能与原来的图形重合?能由此验证正方形的一些特殊性质吗?答案:正方形是中心对称图形,它绕两条对角线的交点旋转90°或其整数倍,都能与原来的图形重合.由此,可以验证正方形的四条边相等,四个角是直角,对角线互相垂直平分等性质.2.下图中,哪个“风车”是中心对称图形?(1) (2) (3)答案:(1)(3)是中心对称图形.3.如图,点O是正六边形ABCDEF的中心.(1)找出这个轴对称图形的对称轴.(2)这个正六边形绕点O旋转多少度后能和原来的图形重合.(3)如果换成其他的正多边形呢?能得到一般的结论吗?答案:(1)直线AD、CF、BE以及AB、BC、CD的垂直平分线都是这个正六边形的对称轴.(2)这个正六边形绕O点旋转60°或其整数倍的度数后能与原来的图形重合.(3)一般地,绕正n边形的中心旋转n360或其整数倍,都能与原来的图形重合.Ⅳ.课时小结本节课我们学习了中心对称图形的有关概念和它的基本性质.能判定一个图形是否是中心对称图形.。

《中心对称》精品教学方案

《中心对称》精品教学方案

第二十三章旋转23.2.1中心对称一、教学目标1.正确认识什么是中心对称、对称中心,理解关于中心对称的图形的性质特点.2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.3.经历中心对称的探索过程,通过观察、操作、发现,探究中心对称的有关概念和基本性质,培养学生的观察能力和动手操作能力.4. 通过对中心对称的学习,感受对称、匀称、均衡的美感,体验图形变化的规律,感受图形变换和图形的美丽,感受生活中的数学,培养热爱数学的情怀.二、教学重难点重点:中心对称的概念及性质,以及根据性质作图.难点:中心对称性质的推导及理解.三、教学用具多媒体等.四、教学过程设计【回顾旧知】教师活动:引领学生们一起复习旋转的三要素,旋转的性质,为下面学中心对称做铺垫.【思考】教师活动:教师依次提出两个问题,动画演示操作,引导学生观察、思考.并引导学生说出旋转的结果,引出概念.思考(1) :如图,把其中一个图案绕点O旋转180°,你有什么发现?回答:旋转180°后,两个图案互相重合.思考(2) :如图,线段AC,BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你有什么发现?回答:旋转180°后,两个图案互相重合.【归纳】定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心(简称中心).这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.教师活动:分析概念要素,帮助学生理解.△OAB与△OCD关于点O对称.点A与点C是关于点O的对称点.点B与点D是关于点O的对称点.教师活动:追问:“你还能指出其他对称点吗?”引导学生认识到此图的对称点有无数组,避免学生认为只有标记出的点才有对称点.回答:点E与点F(AE=CF)是关于点O的对称点……注意:1. 中心对称是指两个图形间的位置关系,必须涉及两个图形.2. 中心对称是特殊的旋转,旋转角为180°.3. 成中心对称的两个图形,只有一个对称中心,这个对称中心可能在两个图形的外部,也可能在图形的内部或图形上,但对称点一定在对称中心的两侧或与对称中心重合.【探究】已知三角尺的一个顶点是O.第一步,画出△ABC.第二步,以三角尺的一个顶点O为中心,把三角尺旋转180°,画出△A′B′C′.第三步,移开三角尺.可知△ABC与△A′B′C′关于点O对称.教师活动:引导学生画图,探索对应点以及图形之间的关系,并引导学生阐述结论、分析性质,帮助学生理解.思考(1):分别连接AA′,BB′,CC′.点O在线段AA′上吗?如果在,在什么位置?回答:可知点A′是点A绕点O旋转180°得到的,即线段OA绕点O旋转180°得到线段OA′,则点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也是线段BB′和CC′的中点.归纳:中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.思考(2):△ABC与△A′B′C′有什么关系?回答:△ABC≌△A′B′C′.归纳:中心对称的两个图形是全等的.总结:中心对称的性质:1. 中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2. 中心对称的两个图形是全等的.【做一做】如图,△ABC与△A′B′C′关于点O中心对称,则:(1) △ABC_______△A′B′C′.(2) OA=____,OB=____,OC=____.(3) AA′,BB′,CC′都经过点_____.(4) 点O是线段_____、_____、______的中点.答:(1) ≌.(2) OA′、OB′、OC′.(3) O.(4) A A′、B B′、CC′.【归纳】一、旋转和中心对称的联系和区别.二、中心对称与轴对称的对比【典型例题】例:(1) 如图,选择点O为对称中心,画出点A关于点O的对称点A′.解答:第一步:连接AO.第二步:延长AO至A′,使OA=OA′,即可以求得点A关于点O 的对称点为A′.(2)如图,线段AB和点O,画出线段AB关于点O的对称线段A′B′ .解答:第一步:连接AO并延长到A′,使OA′=OA,则得A的对称点A′. 第二步:连接BO并延长到B′,使OB′=OB,则得B的对称点B′. 第三步:连接A′B′,即可以求得线段AB关于点O的对称线段A′B′.(3) 如图,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.解答:作出A,B,C三点关于点O的对称点A′,B′,C′,依次连接A′B′,B′C′,C′A′ ,就可得到与△ABC关于点O对称的△A′B′C′. 【归纳】【随堂练习】练习1以下说法中,关于中心对称的描述不正确的是( )A.把一个图形绕着某一点旋转,如果它能与另一个图形重合,那么就说这两个图形中心对称.B.关于中心对称的两个图形是全等的.C.关于中心对称的两个图形,对称点的连线必过对称中心.D.如果两个图形关于点O对称,点A与点A'是对称点,那么OA=OA'.答案:A练习2如图已知△ABC与△A′B′C′关于点O成中心对称,则下列判断不正确的是( ).A. ∠ABC=∠A′B′C′B. ∠BOC=∠B′A′C′C. AB=A′B′D. OA=OA′答案:B练习3如图,已知△ABC与△A′B′C′关于某点成中心对称,求出它们的对称中心O.答案:方法1:连接一组对应点(例BB′),用刻度尺找出BB′的中点O,则点O即为所求.方法2:连接两组对应点(例CC′,BB′),两个线段的交点为O,则点O即为所求.以思维导图的形式呈现本节课所讲解的内容.巩固例题练习11/ 11。

人教版九年级数学上册23.2.2《中心对称》教学设计

人教版九年级数学上册23.2.2《中心对称》教学设计

人教版九年级数学上册23.2.2《中心对称》教学设计一. 教材分析人教版九年级数学上册第23.2.2节《中心对称》是中心对称图形部分的内容。

这部分内容是在学生已经掌握了平面几何的基本概念和性质的基础上进行讲解的。

本节内容主要介绍中心对称图形的定义、性质和判定方法,以及如何通过中心对称来解决一些几何问题。

教材通过具体的图形和实例,引导学生探究中心对称图形的性质,培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析九年级的学生在数学方面已经有了一定的基础,对平面几何的概念和性质有一定的了解。

但是,对于中心对称图形的理解和运用可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、推理等方法,逐步理解中心对称图形的性质和判定方法,提高他们解决问题的能力。

三. 教学目标1.了解中心对称图形的定义和性质。

2.学会判断一个图形是否为中心对称图形。

3.能够运用中心对称图形的性质解决一些几何问题。

4.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.中心对称图形的定义和性质。

2.中心对称图形的判定方法。

3.如何运用中心对称图形的性质解决几何问题。

五. 教学方法1.引导法:通过问题引导,让学生主动探究中心对称图形的性质和判定方法。

2.操作法:让学生通过实际操作,观察和分析中心对称图形的性质。

3.讨论法:让学生通过小组讨论,共同解决问题,培养学生的合作能力。

六. 教学准备1.教学课件:制作中心对称图形的课件,包括图片、实例和动画等。

2.教学素材:准备一些中心对称图形的实例,用于讲解和练习。

3.教学工具:准备黑板、粉笔、直尺、圆规等教学工具。

七. 教学过程1.导入(5分钟)通过一个具体的图形,引导学生观察和思考,提出问题:“这个图形有什么特殊性质?”让学生回顾平面几何的知识,为新课的学习做铺垫。

2.呈现(10分钟)讲解中心对称图形的定义和性质,通过具体的实例和动画,让学生直观地理解中心对称图形的概念。

23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册

23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册
2. 数学抽象:学生能够从具体的图形中抽象出中心对称图形的概念,理解中心对称图形的性质,并能够将这些性质抽象成数学语言进行表达。
3. 数学建模:学生能够将中心对称图形的性质应用到实际问题中,通过建立数学模型来解决问题,培养学生的数学应用能力和解决问题的能力。
教学难点与重点
1. 教学重点:
(1)中心对称图形的概念:本节课的核心是让学生理解并掌握中心对称图形的定义,即图形中心有一个点,称为对称中心,使得图形上的任意一点关于对称中心都有对应的一点,这两点距离对称中心相等,且连线垂直平分。
- 针对学生在自主学习和合作学习中的困难,提供更多的学习资源和指导,帮助学生提高自主学习能力和团队合作能力。
- 定期进行教学反思和评估,及时调整教学策略和方法,以提高教学效果。
教学评价与反馈
2. 小组讨论成果展示:通过小组讨论成果展示,评估学生在合作学习中的参与度和对中心对称图形概念、性质的理解程度。
6. 学生自我评价与反馈:鼓励学生进行自我评价和反馈,让他们认识到自己的优点和不足,并提出改进建议。
7. 家长反馈:通过与家长的沟通,了解学生在家庭中的学习情况,并根据家长反馈给予学生适当的指导和建议。
8. 定期进行教学评价与反馈,及时调整教学策略和方法,以提高教学效果。
课后作业
1. 请学生运用中心对称图形的性质,设计一个简单的几何作图,并说明作图步骤和原理。
4. 已知一个矩形ABCD,点E是CD边上的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。
5. 已知一个正方形ABCD,点E是对角线AC的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。

中心对称图形导教学教案

中心对称图形导教学教案第一章:中心对称图形的概念引入1.1 教学目标:让学生了解中心对称图形的定义。

培养学生识别中心对称图形的能力。

引导学生通过实际操作探索中心对称图形的性质。

1.2 教学重点:中心对称图形的定义。

中心对称图形的性质。

1.3 教学难点:理解并应用中心对称图形的性质。

1.4 教学准备:准备一些中心对称图形的实物或图片,如矩形、正方形、圆等。

准备一张大白纸和一些彩色笔,用于学生实际操作。

1.5 教学过程:1.5.1 导入:向学生介绍中心对称图形的概念,引导学生思考他们是否曾经见过类似的图形。

展示一些中心对称图形的实物或图片,让学生尝试识别它们。

1.5.2 新课导入:向学生解释中心对称图形的定义,即存在一个点作为中心,将图形上的任意一点关于这个中心进行对称,得到的图形与原图形完全重合。

举例说明一些常见的中心对称图形,如矩形、正方形、圆等。

1.5.3 实践操作:让学生分组,每组领取一张大白纸和一些彩色笔。

要求学生各自在白纸上画出一个自己设计的中心对称图形。

学生完成绘制后,让他们互相交换图形,并尝试找出中心对称点,将图形折叠或旋转,验证是否完全重合。

1.5.4 性质探索:引导学生小组合作,探索中心对称图形的性质。

学生可以通过实际操作,观察中心对称图形的特点,如对称轴的数量、对称点到图形的距离等。

教师进行点评和补充。

1.6 作业布置:让学生回家后,找一些生活中的中心对称图形,拍照或画出来,并在下一堂课上进行分享。

第二章:中心对称图形的基本性质2.1 教学目标:让学生掌握中心对称图形的基本性质。

培养学生通过实际操作验证中心对称图形性质的能力。

2.2 教学重点:中心对称图形的基本性质。

2.3 教学难点:理解和应用中心对称图形的基本性质。

2.4 教学准备:准备一些中心对称图形的实物或图片。

准备一张大白纸和一些彩色笔。

2.5 教学过程:2.5.1 复习导入:复习上节课学习的中心对称图形的定义。

让学生展示他们回家找到的中心对称图形,并进行分享。

23.2.2中心对称图形 教学设计

23.2.2中心对称图形教学设计学习目标:1.通过具体事例,理解中心对称图形的概念.2.掌握中心对称图形的性质.3.了解中心对称与中心对称图形的关系.重点:中心对称图形的概念及相关的性质.难点:中心对称与中心对称图形的区别与联系复习导入1.观察下面的两幅图,你想到了什么?2.说一说,成轴对称和轴对称图形之间的区别与联系?3.中心对称的性质:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.新课探究1.观察:将下面的图形绕O点旋转180°,你有什么发现?共同点:(1)都绕一点旋转了180度;(2)都与原图形完全重合.2.中心对称图形的定义把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.C'B'A'OAB C图中_ABCD________是中心对称图形对称中心是_点O_____点A的对称点是___点C___点D的对称点是__点B____注意:中心对称图形是指一个图形.3.中心对称与中心对称图形的区别与联系:中心对称与中心对称图形是两个既有联系又有区别的概念.区别: 中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称.联系: 如果将中心对称的两个图形看成一个整体,则它们是中心对称图形.如果将中心对称图形对称的两部分看成两个图形,则它们成中心对称.典例精析1.下列几何图形:(1)等腰三角形 (2)矩形 (3)等腰梯形(4)平行四边形,其中是中心对称图形的是(2)、(4) . 巩固练习1.判断下列图形是否为中心对称图形.2.观察图形,并回答下面的问题:(1)哪些只是轴对称图形?(3)、(4)、(6)(2)哪些只是中心对称图形?(1)(3)哪些既是轴对称图形,又是中心对称图形?(2)、(5)3.剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟. 下列剪纸图案中,是中心对称图形的有( D)A. ①②③B. ①②④C. ①③④D. ②③④课堂小结通过本课时的学习,需要我们掌握:1.中心对称及中心对称图形的有关概念;2.能判断简单的几何图形是否是中心对称图形;了解中心对称图形的应用.作业布置见精准作业板书设计。

人教版九年级数学上册:23.2.1中心对称(教案)

2.教学难点
-理解中心对称的实质:学生往往容易将中心对称与轴对称混淆,需要通过实例讲解和练习,使学生明确两者的区别。
-判断中心对称图形:学生可能在判断复杂图形是否为中心对称图形时遇到困难,需要教授一些识别技巧和辅助方法。
-应用中心对称解决实际问题:将中心对称应用于实际问题解决时,学生可能不知如何下手,需提供具体的案例和指导。
-中心对称在图案设计中的应用:学生可能缺乏创新意识,难以独立设计出具有中心对称美的图案。
举例:
-对于难点的突破,可以通过以下方法:
1.对比中心对称和轴对称,通过直观演示和图例分析,强化学生对中心对称实质的理解。
2.提供一系列图形,指导学生通过观察、折叠、标记等方法判断其是否为中心对称图形。
3.设计一些实际问题,如平面坐标系的图形变换、建筑物布局等,指导学生运用中心对称的性质进行求解。
-掌握中心对称的性质:中心对称图形的每一点关于对称中心都有对应的另一点,且两点之间的线段被对称中心平分。
-学会识别中心对称图形:能够识别常见的中心对称图形,如正方形、圆形、线段等。
-应用中心对称进行图形变换:掌握如何利用中心对称对图形进行旋转、翻折等变换。
举例:讲解中心对称的定义时,可以通过实际操作教具或多媒体演示,让学生直观感受中心对称的过程。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质这两个重点。对于难点部分,如中心对称与轴对称的区别,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题,如如何在坐标平面上找到对称中心。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过折叠和旋转正方形,观察中心对称的基本原理。

2024年《中心对称》教学设计

《中心对称》教学设计【学情分析】认知基础:学生在七年级下册和本章前面几节课中,已学习了轴对称、平移、旋转等概念,学生已初步了解了各种变换的基本性质,初步具备了分析、设计图案的基本技能。

但对图形的三种基本变换的掌握不够透彻,也缺乏理论高度,另外本节课在认知方式和思维深度上对学生有较高的要求。

活动经验:在前面学习轴对称、平移、旋转等知识的过程中,学生已经初步积累了一定的图形变换的数学活动经验,具备了一定的识图能力和主动参与、合作的意识。

本节课旨在让学生在进行观察、分析、欣赏等操作性活动中,丰富学生对图形变换的认识,并使他们正确理解和把握平移、旋转等内容,进一步深化对图形的三种基本变换的理解和认识。

【教学任务分析】《中心对称》是义务教育课程标准北师大版实验教科书八年级(下)第三章《图形的平移与旋转》第三节的内容。

本节课以图形的旋转为基础,通过活动认识中心对称与中心对称图形,探索成中心对称的基本性质,利用中心对称的基本性质研究中心对称的画图,认识并欣赏自然界和现实生活中的中心对称图形。

本节内容是在八年级知识的基础上,让学生继续考察图形的变换,初步掌握中心对称的概念和基本性质,感受图形之间的相互关系和变换规律,同时体会数形结合的思想和方法,为后续学习打下基础。

因此,本节课的教学目标定位为:教学目标:1.了解中心对称、中心对称图形的概念,能够说出中心对称图形的性质,感知简单图形中心对称的图形中对应元素的相等关系。

2. 学生通过观察、操作、对比、合作交流等多种方式展开自主学习,进一步积累对中心对称图形特征的数学体验。

3.学生通过有组织的讨论和交流,掌握中心对称的性质,形成科学严谨的求实态度,增强动手能力,发展空间观念。

目标解析:达成目标(1)的标志是:学生能够辨析图形是否为中心对称图形。

达成目标(2)的标志是:学生能够指出中心对称图形中的对应元素。

达成目标(3)的标志是:学生可以通过测量或证明等方式判断一个图形是否为中心对称图形,能够按要求制作一个图形关于某点的中心对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《中心对称》教学设计
人教版教科书数学九年级上册
哈尔滨市道里区第一五九中学校张琪
【摘要】
本节课主要研究了中心对称的有关概念及中心对称的基本性质
【关键词】中心对称,对称中心,对称点
【教材分析】
1.考试说明
①了解中心对称的有关概念
②掌握中心对称的基本性质
2. 教学目标
⑴. 知识技能
①了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题
②通过具体实例认识两个图形关于某一点中心对称的本质:就是一个图形绕一点旋转
180°而成。

③理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心
所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用
⑵.过程与方法
在发现、探究的过程中完成对中心对称变换从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力
⑶. 情感态度与价值观
利用图形探索中心对称的性质,让学生体验数学与生活是紧密联系的,体会到生活中的对称美,发展学生的审美能力,增强对图形的欣赏意识。

3.教学重点
①利用中心对称、对称中心、关于中心对称点的概念解决一些问题
②中心对称的两条基本性质及其运用
4.教学难点:中心对称的性质及利用以上性质进行作图
【学情分析】
学生在学习了旋转的基础上学习中心对称,在作图方面已经有了一定的基础,中心对称是一种特殊的旋转,对于性质的得出难度不大。

【教学策略】
利用多媒体的形式展示,通过学生自主动脑思考得出结论。

【教学过程】
一、创设情境,引入新课
观察:
①如图1把其中一个图案绕点O旋转180°,你有什么发现?
图1
②如图2,线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180º,你有什么发现?
图2
老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△OCD重合.
归纳:把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;点O叫做对称中心;这两个图形中的对应点叫做关于中心的对称点。

【设计意图】
从旋转变换的角度引入中心对称的概念,让学生体会知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式(中心对称要求旋转角必须为180 º,)渗透了从一般到特殊的数学思想方法.
二、师生合作,探求新知
[探究]如图,旋转三角板,画关于点O对称的两个三角形;
第一步,画出△ABC;
第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';
第三步,移开三角板。

这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系?
[发现]我们可以发现:(1)点O是线段AA'的中点;(2)△AB C≌△A'B'C'。

上述发现可以证明如下.
(1)点A'是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA',所以点O在线段A A'上,且OA=O A',即点O是线段A A'的中点。

同样的,点O也是线段BB'和CC'的中点
(2)在△AOB与△A'OB'中,
OA=OA',OB=OB',∠AOB=∠A'OB',
∴△AOB≌△A'OB'.
∴AB=A'B'.
同理BC=B'C',AC=A'C'.
∴△ABC≌△A'B'C'.
【设计意图】
师生合作,归纳出中心对称的性质.
三、理解新知,典例解析
[活动一] 师生合作,归纳出中心对称的性质:
(1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平
分;
(2) 关于中心对称的两个图形是全等图形.
[活动二] 中心对称与轴对称进行类比
轴对称中心对称
有一条对称轴——直线有一个对称中心——点
图形沿对称轴对折(翻转180度)后重合图形绕对称中心旋转180度后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心且被对称中心平分
例1.(1)如教材图28.2-4,选择点O为对称中心,画出点A关于点O的对称点A’;
(2)如教材图28.2-5,选择点O为对称中心,画出与△ABC关于点O对称的△A’B’C’。

问:1、一个点绕对称中心旋转180º,得到的是一个平角,这表示什么?
2、你是如何理解“对称点所连线段都经过对称中心,而且被对称中心所平分”的?
3、确定一个三角形需要几个点?作一个三角形关于某点成中心对称的三角形,需要作几个点的对称点呢?
四、课堂巩固,拓展提升
A、教材P13练习1、2题
B、如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并
回答.
(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.
(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.
C、如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′
B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).
【设计意图】
巩固学生对中心对称性质的理解,检查学生对所学知识的掌握情况.
五、归纳小结,总结新知
问题:本节课你学到了什么知识?从中得到了什么启发?
本节课应掌握:
1.中心对称及对称中心的概念
2.中心对称的两条基本性质:
(1)关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;
(2)关于中心对称的两个图形是全等图形
六、作业设计,课后巩固
教科书第21页习题28.2第1题
【设计意图】
让学生及时回顾整理本节课所学的知识,了解教学效果,及时调整教学.
板书设计:
§28.2.1 中心对称
1.中心对称及对称中心的概念例题练习
2.中心对称的两条基本性质:
(1)关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;
(2)关于中心对称的两个图形是全等图形.
教学反思:
教学设计
28.2.1中心对称
哈一五九中学
张琪。

相关文档
最新文档