高应变检测技术解析
高应变检测方法

高应变检测方法1. 光纤布拉格光栅传感器:利用光纤布拉格光栅传感器可以测量结构中的应变变化。
该传感器的原理是通过测量布拉格光栅中反射光束的波长变化来确定应变情况。
2. 电阻应变片:电阻应变片是一种通过测量电阻值变化来确定材料应变的传感器。
通过将电阻应变片粘贴在结构物上,当结构物发生应变时,电阻应变片的电阻值也会随之改变。
3. 压力传感器:虽然压力传感器主要用于测量压力,但它们也可以用于测量应变。
通过将压力传感器放置在结构物表面,并测量传感器受到的力的变化,可以确定应变情况。
4. 声波传感器:声波传感器可以用于测量结构物的应变变化。
通过发送声波信号并测量信号的反射时间来确定结构物的应变情况。
5. 共振频率方法:共振频率方法是一种通过测量结构物的共振频率变化来确定应变情况的方法。
通过对结构物施加激励,并测量结构物在共振频率上的响应,可以推断出应变情况。
6. 电容式传感器:电容式传感器可以用于测量结构物的应变变化。
通过将电容式传感器放置在结构物上,并测量电容值的变化,可以确定结构物的应变情况。
7. 磁性弹性体传感器:磁性弹性体传感器通过利用磁性材料的特性来测量结构物的应变变化。
当结构物发生应变时,磁性弹性体传感器的磁性特性也会随之改变。
8. 位移传感器:位移传感器可以用于测量结构物表面的位移变化,在某些情况下,位移变化可以与应变相关联。
9. 超声波检测方法:超声波检测方法可以用于测量结构物的应变变化。
通过发送超声波信号并测量信号的回波时间来确定结构物的应变情况。
10. 振动传感器:振动传感器可以用于测量结构物的振动变化,而结构物的振动变化可以与其应变相关联。
通过测量振动传感器的输出信号,可以确定结构物的应变情况。
高应变测试技术

第四时间段以第二时间段的终点作为起点, 区段长度 20ms 左右, 这一区段主要用于修正土的卸载系数, 如卸载时土的最大弹性变形和 土的最大负阻力等。
13
图 10
拟合曲线的四个时间区段
拟合质量系数 Er 的计算公式如下:
Er Pc ( j ) Pm ( j ) / Pj ( i =1,2,3,4)
4 i 1
式中的 Pc ( j ) 为计算的桩顶力波, Pm ( j ) 为实测的桩顶力波, Pj 为 实测桩顶冲击力峰值。 从 Er 的计算方法可以看出, 四个区段中以桩端处的权值最重。Er 愈小, 说明拟合曲线与相对应的实测曲线愈接近, 相应的土参数也相 对合理。 由于不同实例曲线拟合程序中考虑拟合质量系数的方法不尽相 同,很难用一个统一的标准衡量拟合曲线的吻合程度,为此《建筑基 桩检测技术规范》 等标准中均未列出具体的拟合质量系数标准。 国内 也有部分地方规程参照 CAPWAPC 程序,规定了混凝土预制桩和钢 管桩的最终拟合质量系数宜小于 3%,混凝土钻孔灌注桩的拟合质量 系数宜小于 5%,并以此作为拟合是否达到要求的标准。 6、主要参数对拟合曲线的影响 下面介绍几个主要土参数对拟合曲线的影响(仅指力波) ; ⑴将某一桩单元处的土阻力增加(或减少) ,会使力的拟合曲线 从该单元往后上抬(或下降)。 图 11 中力拟合曲线在 2 L c 之前偏低, 且
4、拟合法确定承载力
(1)曲线拟合法的特点 a、不要求桩身等阻抗; b、可以考虑桩身内阻尼对应力波衰减的影响; c、假定动阻尼力存在于桩侧和桩端,各单元上土的动阻尼力 与静阻力和桩土相对运动速度成正比:
Rd i J i Rs i V i
高应变法检测 方法

三、现场检测工作
1、准备工作
⑴收集资料
工程地质资料、建筑概况、桩位布置图,施工原始记录等, 进行现场调查,了解建筑工程特点。
⑵受检桩龄期应符合下列规定:
①受检桩的混凝土龄期达到28天或预留同条件养护试块强度 达到设计强度。 ②休止时间:砂土7天,粉土10天,非饱和粘土15天,饱和
三、现场检测工作
二、适用范围与限制条件
力学模型及其参数,而模型的建立和参数的选择只能是近似的 和经验性的,是否合理、准确需要大量工程实践经验积累来不 断完善。 灌注桩的截面尺寸和材质的非均匀性、施工的隐蔽性(干作 业成孔桩除外)及由此引起的承载力变异性普遍高于打入式预 制桩,混凝土材料应力—应变关系的非线性、桩头加固措施不 当、传感器条件差及安装处混凝土质量的不均匀性,导致灌注
一般来说,高应变法冲击荷载作用下,使桩土体系进入充分的 非弹性工作阶段,桩和桩周土之间出现瞬时的剪切破坏,从而 充分地激发桩周土对桩的全部阻力作用。
一、高应变法的检测原理
1、概述
通过采集桩身截面在冲击荷载作用下的轴向应变和桩身运动的 时程曲线,获得该截面的轴向内力F(t)和轴向运动速度v(t),从 而观察到应力波在桩身中的传播过程。运用一维波动方程对桩 身阻抗和土阻力进行分析和计算,以判定桩身完整性和单桩承载 力。
且桩头截面尺寸应与桩身截面尺寸相同; ③桩头主筋应全部直通至桩顶混凝土保护层之下,各主筋应 在同一高度上。 ④距桩顶1倍桩径范围内,宜用厚度为35mm的钢板围裹或距桩 顶1.5倍桩径范围内设置箍筋,间距不宜大于100mm。桩顶应设 置钢筋网片2~3层,间距60~100mm。 ⑤桩头混凝土强度等级宜比桩身混凝土提高1~2级。
在高应变试验中,有关土阻力应力波的重要推论有以下几点: ⑴在锤击力的作用下,桩身运动将激发土阻力而使桩身受到外 加的阻力波作用。 ⑵土阻力信号由检测截面的传感器接收,使得实测曲线包含了 试验时实际激发的土阻力信息。
高应变检测方法

高应变检测方法高应变检测方法引言高应变检测是一项重要的技术,广泛应用于工程、材料科学、地质灾害预测等领域。
本文旨在介绍几种常见的高应变检测方法,包括光纤传感法、电阻应变计法、声发射法等。
通过这些方法的应用,可以实时准确地监测材料和结构在受力过程中的应变情况,从而提高安全性和可靠性。
一、光纤传感法光纤传感是一种基于光学原理的高应变检测方法,其原理是利用光纤的光学特性来实现应变的测量。
通过将光纤束固定在被测物体上,当物体受到应变时,光纤会发生变化,从而导致光的传输特性发生变化。
通过测量这些变化,可以准确地计算出物体的应变情况。
光纤传感法具有非常高的灵敏度和稳定性,可以实时监测应变的变化。
它适用于各种材料和结构,包括金属、混凝土、土壤等。
此外,光纤传感法还可以实现多点应变的监测,通过布置多个光纤传感器,可以同时监测多个位置的应变情况。
二、电阻应变计法电阻应变计是一种常见的高应变检测方法,其原理是通过测量被测物体上电阻的变化来实现应变的测量。
电阻应变计通常由导线和电阻片组成,当物体受到应变时,导线和电阻片的长度会发生变化,从而导致电阻值的变化。
通过测量电阻值的变化,可以计算出物体的应变情况。
电阻应变计法具有简单、成本低、易于操作的优点,广泛应用于各种工程和科学研究领域。
但是,电阻应变计法的测量范围有限,通常适用于小应变的测量。
对于高应变场合,需要采用高灵敏度的电阻应变计或其他更为敏感的检测方法。
三、声发射法声发射法是一种基于声学原理的高应变检测方法,其原理是通过检测被测物体在受力作用下产生的声波信号来实现应变的测量。
当物体受到应变时,会在内部和表面产生应变能量释放,从而产生声波。
通过记录和分析这些声波信号的特征,可以准确地计算出物体的应变情况。
声发射法具有非常高的灵敏度和准确性,可以实时监测应变的变化。
它适用于各种材料和结构,包括金属、塑料、岩石等。
声发射法可以实现远程监测,无需对被测物体进行接触或干预,具有很大的便利性和安全性。
高应变检测

高应变检测高应变检测是一种重要的技术,广泛应用于工程、材料科学以及生物医学领域。
它通过测量物体在受力下的变形程度,来评估物体的强度和稳定性。
本文将介绍高应变检测的原理、应用领域、相关技术和发展前景。
高应变检测的原理是基于物体受力导致的形变,利用适当的传感器进行测量。
传感器可以是电阻应变计、光纤光栅、电容应变计等。
这些传感器的工作原理各不相同,但都可以通过测量物体表面或内部的形变情况,来判断物体的应变程度。
高应变检测在工程领域有着广泛的应用。
例如,结构工程师可以利用高应变检测来评估建筑物、桥梁和其他结构的安全性能。
通过在关键部位安装传感器,可以实时监测物体的应变情况,并及时采取措施,以防止结构的破坏和崩溃。
此外,高应变检测也在材料科学领域中扮演重要角色。
材料科学家可以通过测量材料的应变程度,来评估材料的弹性、硬度和韧性等特性。
这对于合金、陶瓷、塑料等材料的研究和应用具有重要意义,有助于优化材料的性能和开发新材料。
在生物医学领域,高应变检测也发挥着重要作用。
例如,医生可以利用高应变检测来监测人体内部的血管应变,从而评估血管的健康状况。
这对于心血管疾病的早期诊断和治疗具有重要意义。
与高应变检测相关的技术也在不断发展。
例如,现代传感器技术的进步,使得高应变检测更加精确和灵敏。
同时,计算机技术的快速发展,使得高应变检测的数据处理和分析更加方便和高效。
未来,高应变检测有着广阔的发展前景。
随着科学技术的不断进步,高应变检测将在更多领域中得到应用。
例如,在航天领域,高应变检测可以用于评估航天器在发射和运行过程中的结构安全性。
在汽车工业中,高应变检测可以用于评估汽车的碰撞安全性能。
在体育领域,高应变检测可以用于评估运动员的受力情况,从而预防运动损伤。
总之,高应变检测是一项重要的技术,已经广泛应用于工程、材料科学和生物医学领域。
它通过测量物体受力导致的变形情况,来评估物体的强度和稳定性。
未来,高应变检测有着广阔的发展前景,将在更多领域中发挥重要作用。
高应变检测基本知识讲解

第二步 仪器设备的安装与连接
1.放置重锤
2.放置固定架
3.传感器与应变环的安装
4.仪器连接
第三步 测试参数设定 开机,选择RS模式 设置高应变相关参数
设置桩土参数
第四步 检查和确认仪器、设备的工作状态
1.检查仪器设备是否正常连接 2.调试应力环的应变值
监视
应变值范围±1000
第五步 重锤锤击(重锤低击)
粗砂--0.05,砂土--0.1~0.15,粉质砂土0.15~0.25,粉土0.25~0.4,粉质 黏土0.4~0.7,黏土0.7~1.0,固定端为0,自由端为1 case法主要定3点:行波起跳点,行波峰值点,桩底反射点 2.在case法分析的基础上再用武汉岩海拟合分析程序进行拟合。 按地勘资料输入桩侧土的摩阻力和端阻力→按f键人工计算,这是第一次拟 合→拟合不满意→继续修改“土单元参数”或“整体参数”→再按f键人工 计算→想要电脑自动拟合→按u键“卸载优化”→拟合效果仍有待改进→按r 键“阻力优化”→反复使用这两种优化直到拟合满意为止。 卸载优化对曲线的整段综合优化即大方向的拟合较好 阻力优化对曲线的2L/c即桩底反射前的信号段拟合较好 辐射阻尼优化对曲线的尾部拟合较好 土塞优化对曲线的2L/c附近拟合较好
2.检测频率
抽检数量不宜少于总桩数的5%,且不得少于5根。
第二节 适用范围及检测方法
适用范围
1、可检测预制桩、预应力管桩和钢管桩的单桩竖向抗压承载力 和完整性; 2、监测打入桩的桩身应力和锤击能量传递比,为沉桩工艺参数 及桩端持力层选择提供依据; 3、对于灌注桩检测,应具备现场实测经验和本地区相似条件条 件下的可靠对比试验资料。 4、对于Q-s曲线为缓变形的大直径桩、扩底桩、嵌岩桩等,其桩 端阻力发挥所需的位移很大,难于把桩打动,一般不采用高应 变法。
高应变检测

Case法的计算承载力结果取决于一个假定的阻尼系数JC,它需要经过一系列的动静对比试验来确定阻尼系数 的取值,为此,Smith于1960年建议采用通过测量桩头力与速度的变化,结合反映桩土模的波动方程,给出一组 Smith类型的土参数的质弹模型(capwap)。Capwapc是在capwap的基础上发展起来的。
1、仪器的硬件要求,包括A/D转换器、前置放大和滤波器、稳定性和适用性
2、仪器的配件性和维修方便性亦应满足现场测试、记忆、再现功能,合理正确的实时分析功能,美观的图形 打印与显示功能等。
3、仪器的配套性和维修方便性亦应满足现场测试要求。
谢谢观看
操作流程
1高应变检测的适用范围
(1)打入式预制桩,打试桩时的打桩过程监测。
(2)施1前已进行单桩静载试验的一级建筑桩基的工程桩竖向抗压承载力和桩身完整性的检测。
(3)不复杂的二级建筑桩基、一级建筑桩基的工程桩竖向抗压承载力和桩身完整性的检测。
(4)一、二级建筑桩基静载试验检测的辅助检测。另外,高成变检测丰委用于耐工程没计‘进行校验和为工 程验收而进行的现场试聆,对多支盘灌注桩、大直径扩底桩、以及具有缓变形Q—S曲线的大直径灌注桩均不宜采 用高应变法检测单桩竖向抗压承载力;对灌注桩及超长钢桩进行竖向抗压承载力检测时,应具有现场实测经验和 本地区相近条件下的可靠对比验证资料。
检测方法
凯斯法(Case法)
桩身受一向下的锤击力后,桩身向下运动,桩身产生压应力波P(T),在桩身的每一载面Xi处作用有土的摩 阻力R(I,t),应力波到达该处后产生生一新的压力波向上和向下传播。上行波为幅值等于1/2R(I,t)的压应 力波,在桩顶附近安装一组传感器,可接收到锤击力产生的应力波P(T)和每一载面Xi处传来的上行波。同样, 下行波是幅值为1/2R(I,t)的拉力波,到达桩尖后反射成压力波向桩顶传播,到达传感器位置后被传感器接收, 这些波在桩身中反复传播,每到传感器位置时均被传感器接收,在公式的推导过程中不考虑应力波的传播过程中 能量的耗散,可得桩的静极限承载力。
高应变检测方法

高应变检测方法高应变检测是一种重要的实验技术,它在材料科学、工程领域以及生物医学等领域都有着广泛的应用。
高应变检测方法的发展对于材料性能的研究和工程设计具有重要意义。
本文将介绍几种常见的高应变检测方法,并对它们的原理和特点进行简要的分析。
首先,光学方法是一种常见的高应变检测方法。
通过光学方法可以实现对材料表面应变场的测量,其中包括全场测量和局部测量两种方式。
全场测量方法主要包括全息干涉法、数字图像相关法和数字全息法等,这些方法可以实现对材料表面应变场的全面测量,具有测量范围广、测量精度高的优点。
局部测量方法主要包括应变片法和光栅法等,这些方法可以实现对材料表面应变场的局部测量,具有测量精度高、实时性好的特点。
其次,电阻应变片法也是一种常用的高应变检测方法。
电阻应变片是一种特殊材料,其电阻随应变而发生变化,通过测量电阻的变化可以得到材料的应变信息。
电阻应变片法具有测量范围广、适用性强的优点,可以实现对不同材料、不同形状的应变场的测量。
此外,电阻应变片法还具有测量精度高、成本低的特点,因此在工程领域得到了广泛的应用。
最后,声发射技术是一种新兴的高应变检测方法。
声发射技术通过监测材料在加载过程中产生的微小声波信号来获取材料的应变信息。
声发射技术具有对材料损伤敏感、实时性好的优点,可以实现对材料在加载过程中的应变情况进行实时监测。
此外,声发射技术还可以实现对材料的损伤状态进行评估,具有较好的预警效果。
综上所述,高应变检测方法是材料科学和工程领域中的重要技术手段,不同的检测方法各有特点,可以根据具体的应用需求选择合适的方法。
随着科学技术的不断发展,高应变检测方法也将不断完善和创新,为材料性能的研究和工程设计提供更加可靠的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高应变方法的发展概况
自19世纪人们开始采用打桩公式计算桩基承载力以来, 这种方法包括:
(1)打桩公式法,用于预制桩施工时的同步测试,采用刚 体碰撞过程中的动量与能量守恒原理,打桩公式法以工程 新闻公式和海利打桩公式最为流行。
(2)锤击贯入法,简称锤贯法,曾在我国许多地方得到 应用,仿照静载荷试验法获得动态打击力与相应沉降之间 的曲线。通过动静对比系数计算静承载力,也有人采用波 动方程法和经验公式法计算承载力 。
假定破坏只发生在桩土界面
基本概念和基本关系式
应力波波速与质点速度
dL
F
C2 = E /ρ
dL=C×dt
C-波速 E-弹性模量 ρ-材料密度
应力波波速c是杆的材料性质的函数。其物理意义就是
应力波在杆身中的传播速度。通俗地讲,“应力波波速”
就是压缩区(或拉伸区)沿杆运动速度;而“质点速度”
就是应力波经过时杆上质点的运动速度。
高应变法的波动力学基础
一维波动方程
∂2u/∂t2 = c2∂2u/∂x2 - R/(ρ•A)
式中:u是杆上x处在t时刻的轴向位移, 它是纵向坐标和时间两个变量的函数。上 式中左边的偏微分是杆上质点的加速度, 右边的偏微分是杆上质点的应变。
应力波在杆中的传播规律及基本概念
下行波和上行波 一维波动方程的通解为: u(x,t) = f(x-ct) + g(x+ct) 解由两部分组成,分别代表两个行波,其传
桩身应力
dL
F
在压缩区桩身应力:: σ = F/A A :为桩身截面积
基本概念和基本关系式
质点速度与应力应变的关系 质点的速度与力的关系 V = Fc/EA 质点的速度与应力的关系 V =σc/E 质点的速度与应变的关系 V =εc
基本概念和基本关系式
桩身力学阻抗Z Z = ∣F/V∣= EA/c =ρcA
高应变方法的发展概况
(3)Smith 波动方程法,设桩为一维弹性桩,桩土间符合 牛顿粘性体和理想弹塑性体模型,将锤、冲击块、锤垫、桩 等离散化为一系列单元,编程求解离散系统的差分方程组, 得到打桩反应曲线,根据实测贯入度,考虑土的吸着系数, 求得桩的极限承载力。
(4)波动方程半经验解析解法,也称CASE法,根据应力波 理论,可同时分析桩身完整性和桩土系数承载力
桩的基本假定 基本概念和基本关系式 高应变动力试桩的波动力学基础 应力波对试桩实测曲线的影响 高应变动力试桩的桩土模型
高应变动力试桩的凯司法(CASE法) 高应变动力试桩法确定桩身完整性(力试桩在原理上就被简化为一维线 性波动力学问题: 假定桩身材料是均匀的和各向同性的 假定桩是线弹性杆件 假定桩是一维杆件 假定纵波的波长比杆的横截面尺寸大得多
高应变检测技术
杨永波
中国科学院武汉岩土力学研究所 武汉中科智创岩土技术有限公司
2008.10
目录
1 前言 2 基本理论 3 现场测试技术 4 波形分析 5 现场测试过程中可能出现的问题 6 理论上存在的问题及误差来源分析 7 高应变测试目前存在的问题 8 曲线拟合法简介
1 前言
什么是高应变法基桩检测: 高应变法试桩是一种用重锤冲击桩顶,
国外试验规范情况: 1983年ISSMFE 把高应变法作为推荐方法 1989年美国ASTM公布了《高应变动力试桩标准试验 方法》 1987年加拿大规定桩承载力可由高应变法确定 1988年英国土木工程师协会编制的《桩工规范》中 规定了桩基可用高应变动测法
我国高应变技术的发展概况
80年代中后其从美国和瑞典引进仪器和相关技术,并进行 消化吸收和研究。 1986年,中国科学院武汉岩土力学研究所开发出第一台 RSM动测仪 1989年家工程质量监督检验中心颁布了《高应变动力试 桩国法暂行规定》 1997年行标JGJ106-97《基桩高应变动力检测规程》实 施 2003年国家行业标准《建筑基桩检测技术规范》(JGJ 106-2003 )颁布执行
国外高应变技术发展概况
发展历史: 1960年smith “打桩分析的波动方程法” 1965年美国的 Goble教授提出CASE法 1974年 Goble提出了计算机曲线拟合CAPWAP 法 80年代 Rausche提出了更接近桩土实际状态的 连续杆件模型capwapc拟合法
国外高应变技术发展概况
Z =ρcA [L/L]=Mc/L 在描述应力波现象时,把实测的速度曲线乘以相应的桩身 阻抗Z,该曲线将保持速度的变化规律而按一定的比例转 换为力的单位,在同一坐标系中可以直接对比该曲线与实 测的力曲线之间的关系,这将大大方便我们的观察与分析。 此外,下行波和上行波的时程曲线也是用Z这一参量经过 换算计算得到的。
质点运动速度
dt :受到冲击之后的微小时段 dL = c dt
F
质点速度: v = δ //dt
δ…
由于桩身压缩dL,桩身 质点产生的微小位移
桩身应变
= v (EA/c) = Z v 力和速度是成比例的
F
dL = c dt
应变,,ε = δ //dL
δ = v dt
由于桩身压缩dL,桩身 质点产生的微小位移, 从而使质点产生速度V
冲击脉冲在沿桩身向下传播的过程中使 桩—土产生足够的相对位移,以激发桩周 土阻力和桩端支承力的一种动力检测方法。
1 前言
高应变法检测目的: ⑴判定单桩竖向承载力是否满足设计要求。 ⑵检测桩身缺陷及位置,判定桩身完整性类别。 ⑶分析桩侧和桩端阻力。
1 前言
高应变法适用范围: 检测基桩竖向承载力和完整性 检测预制桩打入时的桩身应力和锤击能量传递 比,为沉桩工艺参数及桩长选择提供依据。 进行灌注桩承载力检测时,应有现场实测经验和 本地区相近条件可靠验证资料
(5)波动方程拟合法,即CAPWAP法,是目前广泛应用的 一种较合理的方法。
(6)静动法(Statnamic),其意义在于延长冲击力作用 时间(~100ms),使之更接近一静载试验状态。
高应变方法的发展概况
目前,在我国应用范围最广泛的高应变分 析方法采用CASE法和实测曲线拟合法。
2 高应变法基本理论
播速度均为c而传播方向相反,在竖向的桩身中 传播时通常称为下行波和上行波。
根据波动理论,一个任意位移波和与它对应 的应力波在杆中的传播仅仅随时间以波速c沿正 反方向移动而其形状保持不变。