利用空间向量证明空间位置关系
5高中数学:用空间向量研究直线与平面的位置关系

高中数学:用空间向量研究直线与平面的位置关系一、引言空间向量是高中数学中的重要内容,它为我们研究三维空间中的几何对象提供了有力的工具。
其中,利用空间向量研究直线与平面的位置关系是一个核心的应用领域。
通过向量的运算性质,我们可以清晰地描述和判断直线与平面之间的平行、垂直和相交等关系。
本文将详细解析如何利用空间向量来研究直线与平面的位置关系,帮助学生更好地掌握这一知识点。
二、基本概念与性质1.直线与平面的位置关系:在三维空间中,直线与平面的位置关系主要有三种:平行、相交和直线在平面内。
2.向量的表示:直线可以用方向向量和一点来表示,而平面则可以用法向量和一点来表示。
方向向量和平面的法向量都是描述直线和平面方向的重要工具。
3.向量的运算:通过向量的加法、减法、数乘和数量积等运算,我们可以推导出判断直线与平面位置关系的关键条件。
三、判断方法1.判断直线与平面平行:如果直线的方向向量与平面的法向量垂直,则这条直线与平面平行。
即,如果两向量的数量积为零,则直线与平面平行。
2.判断直线与平面垂直:如果直线的方向向量与平面的法向量平行,则这条直线与平面垂直。
即,如果两向量平行(方向相同或相反),则直线与平面垂直。
3.判断直线在平面内:如果直线的方向向量与平面的法向量垂直,且直线上的一点在平面内,则这条直线在平面内。
4.判断直线与平面相交:如果直线既不与平面平行也不在平面内,那么这条直线与平面相交。
相交的情况比较复杂,可能涉及到求交点和交角等问题。
四、应用举例1.求交点:通过联立直线的方程和平面的方程,可以求出直线与平面的交点。
交点坐标满足两个方程,因此可以通过解方程组得到。
2.求交角:交角是直线与平面相交时的一个重要参数。
通过计算直线的方向向量与平面法向量的夹角,可以得到交角的大小。
夹角可以通过向量的数量积和模长计算得出。
3.解决实际问题:在实际问题中,经常需要判断或求解直线与平面的位置关系。
例如,在建筑设计中,需要确定光线照射角度;在机械工程中,需要计算零件的加工角度等。
1.4.1 用空间向量研究直线、平面的位置关系(第1课时)空间中点、直线和平面的向量表示

课前自学
第4页
知识点一 空间中点的位置向量 如图,在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以
用向量O→P来表示.我们把向量O→P称为点P的位置向量.
第5页
知识点二 空间直线的向量表示式
(1)如图1,a是直线l的方向向量,在直线l上取
→
AB
=a,设P是直线l上的任意一点,则点P在直线l
-4=2λ, x=-3λ, y=5λ,
解得
λ=-2,
x=6, 所以x,y的值分别是6和-10. y=-10,
第16页
题型二 求平面的法向量
例2 如图所示,已知四边形ABCD是直角梯形,AD∥BC,∠
ABC=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
1 2
,试建
立适当的坐标系.
(1)求平面ABCD的一个法向量;
第15页
(2)已知直线l1的方向向量a=(2,-3,5),直线l2的方向向量b=(-4,x,
y),若a∥b,则x,y的值分别是( )
√A.6和-10
B.-6和10
C.-6和-10
D.6和10
【解析】 因为a∥b,a=(2,-3,5),则存在唯一的实数λ,使得b=λa,
即(-4,x,y)=λ(2,-3,5)=(2λ,-3λ,5λ),所以
l的方向向量.
第14页
思考题1 (1)【多选题】若M(1,0,-1),N(2,1,2)在直线l上,则直
线l的一个方向向量是( )
√A.(2,2,6)
C.(3,1,1)
√B.(1,1,3)
D.(-3,0,1)
【解析】
∵M,N在直线l上,且
→
MN
=(1,1,3),故向量(1,1,3),(2,
利用空间向量证明空间中的直线和平面位置关系

利用空间向量证明空间中的直线和平面位置关系空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立。
空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广。
【知识回顾】1.确定空间直角坐标系必须有三个要素,即:原点、坐标轴方向、单位长。
2.从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,则就建立了空间直角坐标系。
点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xoy 平面、 yoz 平面、和 Zox 平面.3.已知M 为空间一点.过点M 作三个平面分别垂直于x 轴、y 轴和z 轴,它们与x 轴、y 轴和z 轴的交点分别为P 、Q 、R,这三点在x 轴、y 轴和z 轴上的坐标分别为x,y,z.于是空间的一点M 就唯一确定了一个有序数组x,y,z.这组数x,y,z 就叫做点M 的坐标,并依次称x,y,z 为点M 的横坐标.纵坐标和竖坐标.坐标为x,y,z 的点M 通常记为M(x,y,z).4.空间向量的坐标运算:(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则:222123||a a a a a a =⋅=++,222123||b b b b b b =⋅=++a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3,a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), cos 〈a ,b 〉=a ·b|a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 5.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,则一条直线的方向向量可以有无数个. (2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0. 6. 共线向量:如果表示空间向量的有向线段所在直线互相平行或重合,则这些向量 7. 叫做共线向量(或平行向量),记作a ∥b . 8. 面向量:平行于同一平面的向量,叫做共面向量.9. 共面向量定理:如果两个向量a 、b 不共线,那么向量p 与向量a 、b 共面的 充要条件是存在有序实数组(x ,y ),使得p =x a + y b . 9.利用向量处理求解立体几何问题: (1)直线与平面的位置关系:①若a ∥n ,即a =λn , 则 L ∥ α ②若a ⊥n ,即a·n = 0,则a ∥ α.(2) 平面与平面的位置关系:平面α的法向量为n 1 ,平面β的法向量为n 2 ①若n 1∥n 2,即n 1=λn 2,则α∥β ; ②若n 1⊥n 2,即n 1 ·n 2= 0,则α∥β10.点到平面的距离:A 为平面α外一点, n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH.= = , 即:AB →在法向量n 上投影的绝对值。
用空间向量研究立体几何中的直线、平面的位置关系(课时教学设计)-高中数学人教A版2019选择性必修一

空间中直线、平面的平行、垂直教学设计(一)教学内容空间直线、平面间的平行、垂直关系的向量表示,证明直线、平面位置关系的判定定理.(二)教学目标通过用向量方法判断直线与直线、直线与平面、平面与平面的平行、垂直关系.发展用向量方法证明必修内容中有关直线、平面平行、垂直关系的判定定理的能力.提升学生的直观想象、逻辑推理、数学运算等素养.(三)教学重点及难点重点:用向量方法解决空间图形的平行、垂直问题.难点:建立空间图形基本要素与向量之间的关系,如何把立体几何问题转化为空间向量问题.(四)教学过程设计新课导入:因为空间向量可以表示空间中的点、直线、平面,所以自然地会联想到利用空间向量及其运算可以表示“直线与直线”“直线与平面”和“平面与平面”之间的平行、垂直等位置关系,解决此问题的关键是转化为研究直线的方向向量、平面的法向量之间的关系.教材对空间中直线、平面的平行和垂直两种位置关系分开研究,首先研究空间中直线、平面的平行.1.空间中直线、平面的平行问题1:由直线与直线、直线与平面或平面与平面的平行关系,可以得到直线的方向向量、平面的法向量间的什么关系?师生活动:学生思考,教师点拨.问题1.1由直线与直线平行,可以得到直线的方向向量间有什u1l1u2l2的方向向量分别为u,v ,则l 1//l 2u //v u =λv , λ∈R.问题1.2由直线与平面平行、平面与平面平行,可以得到直线与面平行.得出结论:直线与平面平行还可以用直线的方向向量与平面法向量垂直进行,平面平行可以转化为法向量共线,教师可以结合右图启发学生对此进行研究.设计意图: 实现将直线平行与直线的方向向量平行的互相转化,直线和平面的平行与直线的方向向量和平面法向量垂直的转化,平面平行与平面法向量共线的转化. 2.空间中直线、平面的平行例题例2. 已知:如图,a ⊄β,b ⊂β,a ⋂b =P , a //α,b //α. 求证:α//β.师生活动:学生读懂题意,尝试分析解答.老师引导分析.分析:设平面α的法向量为n ,直线a ,b 的方向向量分别为u ,v ,则由已知条件可得n·u =n·v =0,由此可以证明n 与平面β内的任意一个向量垂直,即n 也是β的法向量.学生完成证明, 教师示范解答. 证明:如图,取平面α的法向量n ,直线a ,b 的方向向量u ,v .αn 1βn 2a buvP αnβ因为a //α,b //α, 所以n·u =0,n·v =0.因为a ⊂β,b ⊂β,a ⋂b =P ,所以对任意点Q ∈β,存在x ,y ∈R,使得 PQ ⃗⃗⃗⃗⃗ =xu +yv . 从而n·PQ ⃗⃗⃗⃗⃗ =n·(xu +yv )=xn· u +yn· v =0. 所以,向量n 也是平面β的法向量.故α//β.设计意图:例2是用向量方法证明平面与平面平行的判定定理,设置例2的目的是使学生体会利用法向量证明两个平面平行的一般基本思路.例3.如图在长方体ABCD -A 1B 1C 1D 1中,AB=4,BC=3,CC 1=2. 线段BC 上是否存在点P ,使得A 1P//平面 ACD 1? 师生活动:学生读懂题意,尝试解答.老师引导分析.分析:根据条件建立适当的空间直角坐标系,那么问题中涉及的点、向量B 1C ⃗⃗⃗⃗⃗⃗⃗ ,A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ ,以及平面ACD 1的法向量n 等都可以用坐标表示.如果点P 存在,那么就有n·A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =0,由此通过向量的坐标运算可得结果.学生完成求解,教师示范解答.解:以D 为原点,DA ,DC ,DD 1,所在直线分别为x轴、y 轴、z 轴,建立如图所示的空间直角坐标系.因为A,C,D 1的坐标分别为(3,0,0),(0,4,0),(0,0,2), 所以AC ⃗⃗⃗⃗⃗ =(-3,4,0),AD ⃗⃗⃗⃗⃗ =(-3,0,2). 设n =(x,y,z )是平面ACD 1的法向量, 则n·AC ⃗⃗⃗⃗⃗ =0,n·AD ⃗⃗⃗⃗⃗ =0,即{−3x +4y =0−3x +2z =0),所以x =23z ,y =12z .取z =6,则x =4,y =3, 所以n =(4,3,6)是平面ACD 1的一个法向量,由A,C,B 1的坐标分别为(3,0,2),(0,4,0),(3,4,2), 得A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,4,0),B 1C ⃗⃗⃗⃗⃗⃗⃗ =(-3,0,-2)DABC D 1A 1B 1C 1设点P 满足B 1P ⃗⃗⃗⃗⃗⃗⃗ =λB 1C ⃗⃗⃗⃗⃗⃗⃗ (0<λ≤1), 则B 1P ⃗⃗⃗⃗⃗⃗⃗ =(-3λ,0,-2λ),所以A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +B 1P ⃗⃗⃗⃗⃗⃗⃗ =(-3λ,4,-2λ).令n·A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =0,得-12λ+12-12λ=0,解得λ=12,这样的点P 存在 所以,当B 1P ⃗⃗⃗⃗⃗⃗⃗ =12B 1C ⃗⃗⃗⃗⃗⃗⃗ ,即P 为B 1C 的中点时,A 1P//平面ACD 1.设计意图:例3是用向量方法判断直线与平面平行的问题,设置例3的目的是使学生体会利用法向量和坐标法解决直线与平面平行问题的一般思路.本题也可以利用共面的充要条件求解. 3.空间中直线、平面的垂直问题2:在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?师生活动:教师引导学生结合图形研究线与面垂直,两平面垂直.教师引导学生类比已经经历了研究空间中直线、平面平行的过程,对直线与直线、直线与平面、平面与平面垂直关系的研究可以类似地进行,让学生自主探究,将研究直线、平面间的垂直关系转化为研究直线的方向向量、平面的法向量之间的关系,然后借助图形分别给出直线与直线、直线与平面、平面与平面垂直的向量表达式.问题2.1 直线l 1,l 2的方向向量分别为v 1,v 2,直线l 1,l 2垂直时,方向向量v 1,v 2有什么关系?师生活动:让学生自主探究显现垂直时,直线方向向量v 1,v 2有什么关系,教师展示答案.问题 2.2:由直线与平面的垂直关系,可以得到直线的方向向量、平面的法向量间有什么关系呢?师生活动:让学生自主探究线面垂直时,直线的方向向量、平面的法向量间有什么关系,教师展示答案.问题2.3:由平面与平面的垂直关系,可以得到这两个平面的法向量间有什么关系呢?师生活动:让学生自主探究面面垂直时,两个平面的法向量间有什么关系,教师展示答案.设计意图:让学生自主探究,将研究直线、平面间的垂直关系转化为研究直线的方向向量、平面的法向量之间的关系.然后借助图形分别给出直线与直线、直线与平面、平面与平面垂直的向量表达式,进一步体会空间向量在研究直线、平面间位置关系中的作用. 4.空间中直线、平面的垂直例题例4 如图,在平行六面体ABCD A 1B 1C 1D 1中,AB =AD =AA 1=1, ∠A 1AB =∠A 1AD =∠BAD =60°,求证:直线A 1C ⊥平面BDD 1B 1.师生活动:学生读懂题意,尝试解答,老师引导分析.分析:根据条件建立适当的基底向量,通过向量运算证明直线A 1C ⊥平面BDD 1B 1.证明:设AB a =,AD b =,1AA c =,则{,,}a b c 为空间的一个基底且1AC a b c =+-,BD b a =-,1BB c =.因为AB =AD =AA 1=1, ∠A 1AB =∠A 1AD =∠BAD =60°, 所以2221ab c ===,12a b b c c a ⋅=⋅=⋅=. 在平面BDD 1B 1上,取BD 、1BB 为基向量,则对于面BDD 1B 1上任意一点P ,存在唯一的有序实数对(λ,μ),使得1BP BD BB λμ=+. 所以,1111()()()0AC BP AC BD AC BB a b c b a a b c c λμλμ⋅=⋅+⋅=+-⋅-++-⋅=. 所以1AC 是平面BDD 1B 1的法向量. 所以A 1C ⊥平面BDD 1B 1.设计意图:设置例 4 的目的是使学生体会“基底法”比“坐标法”更具有一般性.教学时要注意让学生体会空间向量基本定理在证明中的作用,体会用空间向量解决问题的一般方法.例 5 证明“平面与平面垂直的判定定理”:若一个平面过另一个平面的垂线,则这两个平面垂直.师生活动:学生读懂题意,尝试解答.老师引导分析,学生完成证明.已知:如图,l⊥α,1⊂β,求证:α⊥β.证明:取直线 l 的方向向量u⃗,平面β的法向量n⃗.因为l⊥α,所以u⃗是平面α的法向量.因为1⊂β,而n⃗是平面β的法向量,所以u⃗⊥n⃗.所以α⊥β.设计意图:设置例 5 的目的是使学生体会利用法向量证明平面与平面垂直的一般思路.教学时要注意突出直线的方向向量和平面的法向量的作用,即通过直线的方向向量和平面的法向量,把直线与直线、直线与平面、平面与平面的关系完全转化为两个向量之间的关系,通过向量的运算,得到空间图形的位置关系.5.课堂小结,反思感悟(1)知识总结:(2)学生反思:①通过这节课,你学到了什么知识?②回顾这节课的学习,空间中用向量法判断直线、平面平行与垂直用的具体方法?③在解决问题时,用到了哪些数学思想?设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力,教给学生如何总结,提升学生的数学“学习力”. 6.课堂检测与评价1. 如图,在正方体 ABCD -A 1B 1C 1D 1中,E ,F 分别是面AB 1,面A 1C 1的中心. 求证:EF//平面ACD 1.证明:设正方体的棱长为2,以D 为坐标原点,BA ⃗⃗⃗⃗⃗ , DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ,的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D xyz , 则根据题意A(2,0,0),C( 0,2,0),D 1(0,0,2 ),E( 2,1,1 ), F( 1,1,2 ) 所以EF ⃗⃗⃗⃗⃗ =(−1,0,1),AC ⃗⃗⃗⃗⃗ =(−2,2,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(−2,0,2), 设n=( x , y ,z )是平面ACD 1的一个法向量,则n ⊥AC ⃗⃗⃗⃗⃗ ,n ⊥AD 1⃗⃗⃗⃗⃗⃗⃗ . 所以{n ⋅AC⃗⃗⃗⃗⃗ =−2x +2y =0n ⋅AD 1⃗⃗⃗⃗⃗⃗⃗ =−2x +2z =0),取x = 1,则y =1,z = 1,所以n = ( 1,1,1 ) 又EF ⃗⃗⃗⃗⃗ ⋅n =(−1,0,1)·(1,1,1)= − 1+1=0,所以EF ⃗⃗⃗⃗⃗ ⊥n , 所以EF 平面ACD 1.2.如图所示,在直三棱柱ABC A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .证明:由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E ⎝⎛⎭⎪⎫0,0,12,则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12). 设平面AA 1C 1C 的一个法向量为n 1=(x 1,y 1,z 1). 则⎩⎨⎧ n 1·AA1→=0,n 1·AC→=0⇒⎩⎪⎨⎪⎧z 1=0,-2x 1+2y 1=0.令x 1=1,得y 1=1.∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎨⎧n 2·AC 1→=0,n 2·AE→=0⇒⎩⎪⎨⎪⎧-2x 2+2y 2+z 2=0,-2x 2+12z 2=0,令z 2=4,得x 2=1,y 2=-1.∴n 2=(1,-1,4). ∵n 1·n 2=1×1+1×(-1)+0×4=0. ∴n 1⊥n 2,∴平面AEC 1⊥平面AA 1C 1C .设计意图:第一题证明线面平行,第二题用向量法证明面面垂直,恰当建系向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度,可以使学生巩固课上所学习的知识.7.作业布置完成教材:第31页练习第1,2题第33页练习第1,2,3题第41 页习题1.4 第5,8,11题(六)教学反思1.认识与运用向量及其运算中数与形的关联,体会转化思想.教学中应结合几何图形予以探讨,特别要重视平行六面体、长方体模型作用,引导学生借助图形理解它们,注意避免不联系几何意义的死记硬背;2.深化理解向量运算的作用,正是有了向量运算,向量才显示其重要性.要引导学生结合几何问题,关注向量运算在分析解决问题中的作用;3.重视综合方法、基底向量方法、建立坐标系方法各自特点的分析与归纳,综合方法以逻辑推理作为工具解决问题,基底向量方法利用向量的概念及其运算解决问题,坐标方法利用数及其运算来解决问题,坐标方法常与向量运算结合起来使用,根据它们的具体条件和特点选择合适的方法.总之新的教材,让学生经历向量由平面向空间的推广,重视了知识的发生、发展过程,使学生学会数学思考和推理.。
用空间向量研究直线、平面的位置关系

图
直线的方
向向量
求
l
a
B
A
平面的法
向量
示
α
l
法
① 取两点;② 定向量.
例题小结 直线的方向向量和平面的法向量的求法
向量名称
图
直线的方
向向量
示
求
l
a
B
法
① 取两点;② 定向量.
A
l
① 找到 ⊥ ;② l 的方向向
量即为平面的法向量.
u
平面的法
向量
α
α
a
b
例题小结 直线的方向向量和平面的法向量的求法
直观想象
空
间
向
量
逻辑推理
数学运算
课堂小结
问题5:本节课主要学习了哪些知识内容?
• 用向量表示点: OP
• 用向量表示直线:OP OA ta
• 用向量表示平面:OP OA x AB y AC
P
a AP 0 , 其中a是平面的法向量.
课堂小结
问题6:本节课主要学习了哪些思想方法?
问题3:如何用向量表示空间中的直线 l ?
OP OA ta ,
①
OP OA t AB. ②
都称为空间直线的向量表示式.
空间任意直线由直线上一点A及直线的方向向量a唯一确定.
问题3:如何用向量表示空间中的直线 l ?
OP OA ta
问题3:如何用向量表示空间中的直线 l ?
取向量b,b与a有什么关系?
所以 P a AP 0
P b AP 0.
P a AP 0
空间向量点线面的位置关系

空间向量点线面的位置关系在三维空间中,点、线和面是基本的几何要素。
它们的位置关系在数学和几何学中扮演着重要的角色。
本文将探讨空间向量中点、线和面之间的不同位置关系及其特点。
一、点和线的位置关系在三维空间中,点和线的位置关系主要有以下几种情况。
1. 点在线上:如果一个点位于一条直线上,那么这个点与直线上的任意两点构成的向量都是共线的。
换句话说,点和线的向量共线。
2. 点在线的延长线上:点也可以位于一条线的延长线上,这时点与线上的任意两点构成的向量也是共线的。
3. 点与线相交:在三维空间中,点还可以与一条直线相交。
这时,点与线上的任意两点构成的向量不再共线。
4. 点与线平行:若一点与直线平行,则该点与直线上的任意两点构成的向量平行。
但是,点与线平行并不意味着点在线的延长线上。
二、点和面的位置关系点和面的位置关系也有几种情况,如下所示。
1. 点在面上:如果一个点位于一个平面上,那么这个点与平面上的任意三个点构成的向量都在同一个平面内。
2. 点在面的延长线上:点也可以位于一个平面的延长线上,这时点与平面上的任意三个点构成的向量仍在同一个平面内。
3. 点在平面内但不在平面上:有时,一个点位于一个平面内部但不在平面上。
这时,点与平面上的任意三个点构成的向量不在同一个平面内。
4. 点与平面相交:在三维空间中,点还可以与一个平面相交。
这时,点与平面上的任意三个点构成的向量不在同一个平面内。
三、线和面的位置关系线和面的位置关系主要有以下几种情况。
1. 线在平面上:如果一条直线位于一个平面上,那么直线上的任意两点构成的向量都在同一个平面内。
2. 线与平面相交于一点:一个直线也可以与一个平面相交于一点。
这时,直线上的任意两点构成的向量不在同一个平面内。
3. 线与平面平行:若一条直线与一个平面平行,则直线上的任意两点构成的向量与平面内的向量平行。
但是,直线与平面平行并不意味着直线在平面上。
4. 线在平面的延长线上:一条直线还可以位于一个平面的延长线上,这时直线上的任意两点构成的向量仍在同一个平面内。
《用空间向量研究直线、平面的位置关系》课件与导学案

则 A(1, 0, 0) , B(1, 2, 0) , E (0, 0, 3) , F (1, 2, 3) , ∴ BE (1, 2, 3) , AB (0, 2, 0) ,
实数对(x, y ),使得OP xa yb ,
这样点O与向量a , b 可以确定平面,
课堂探究
如下图,取定空间任意一点 O ,可以得到,空间一点 P 位于平
面ABC 内的充要条件是存在实数 x,y,使 = + + .
上式称为空间平面 ABC 的向量表示式. 由此可
设 n1=(x1,y1,z1)是平面 ADE 的法向量,
则 n1⊥,n1⊥,
1 = 0,
1 · = 21 = 0,
得
即
1 · = 21 + 1 = 0, 1 = -21 .
令 z1=2,则 y1=-1,
所以 n1=(0,-1,2).
因为1 ·n1=-2+2=0,所以1 ⊥n1.
法向量的平面完全确定,可以表示为集合 | · = 0 .
例题解析
例 1.已知长方体 ABCD-A 1B 1C1D1 中,AB=4,BC=3,CC1 =2,M
为 AB 中点.以 D 为原点,DA,DC,DD1 所在直线分别为 x 轴、y 轴、
z 轴建立如图所示空间直角坐标系,
(1)求平面 BCC1B 1 的一个法向量.
从而 n
PQ n ( xu yv ) xn u yn v 0 .
所以,向量 n 也是平面 的法向量. 故
a
b
.
P
v
n
例题解析
用空间向量研究直线、平面的位置关系 高中数学获奖教案

1.4.1用空间向量研究直线、平面的位置关系(第三课时)(人教A版普通高中教科书数学选择性必修第一册第一章)一、教学目标1..能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.2. 能用向量方法证明必修内容中有关直线、平面垂直关系的判定定理.3. 能用向量方法证明空间中直线、平面的垂直关系.二、教学重难点1.用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系2.用向量方法证明空间中直线、平面的垂直关系三、教学过程1.创设情境,从图形中探究新知问题1:类似空间中直线、平面平行的向量表示,在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?观察下图回答。
【预设的答案】位置关系向量表示线线垂直设直线l1,l2的方向向量分别为u1,u2,则l1⊥l2⇔u1⊥u2⇔u1·u2=0线面垂直设直线l的方向向量为u,平面α的法向量为n,则l⊥α⇔u∥n⇔∃λ∈R,使得u=λn面面垂直设平面α,β的法向量分别为n1,n2,则α⊥β⇔n1⊥n2⇔n1·n2=0【设计意图】类比直线、平面平行的向量表示,提出运用向量解空间中的垂直问题,引导学生回顾空间中线线、线面、面面的平行问题的解法方法,类比学习用空间向量解决空间中的垂直问题,进一步体会空间几何问题代数化的基本思想.热身活动1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”. (1)若两条直线的方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )(4)若两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β互相垂直.( )【预设的答案】 (1)× (2)√ (3)× (4)√【设计意图】进一步将空间中线线、线面、面面的位置关系,转化为向量语言。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用空间向量证明立体几何中的平行与垂直问题[考纲要求]1.了解空间直角坐标系,会用空间直角坐标表示点的位置.会简单应用空间两点间的距离公式.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.掌握空间向量的数量积及其坐标表示.能用向量的数量积判断向量的共线和垂直.4.理解直线的方向向量及平面的法向量.能用向量语言表述线线、线面、面面的平行和垂直关系.5.能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理).知识点一:空间向量及其运算1.空间向量及其有关概念(1)空间向量的有关概念(2)2.(1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.3.空间向量的运算及其坐标表示设a=(a1,a2,a3),b=(b1,b2,b3).[基本能力]1.如图,已知空间四边形ABCD ,则13AB ―→+13BC ―→+13CD ―→等于________.答案:13AD ―→2.已知i ,j ,k 为标准正交基底,a =i +2j +3k ,则a 在i 方向上的投影为________. 答案:13.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q +2)共线,则p =________,q =________. 答案:3 24.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若k a -b 与b 垂直,则k =________. 答案:7考法一 空间向量的线性运算[例1] 已知四边形ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O .Q 是CD 的中点,求下列各题中x ,y 的值: (1)O Q ―→=P Q ―→+x PC ―→+y PA ―→; (2)PA ―→=x PO ―→+y P Q ―→+PD ―→.[解] (1)如图,∵O Q ―→=P Q ―→-PO ―→=P Q ―→-12(PA ―→+PC ―→)=P Q ―→-12PA ―→-12PC ―→,∴x =y =-12.(2)∵PA ―→+PC ―→=2PO ―→, ∴PA ―→=2PO ―→-PC ―→.又∵PC ―→+PD ―→=2P Q ―→,∴PC ―→=2P Q ―→-PD ―→.从而有PA ―→=2PO ―→-(2P Q ―→-PD ―→)=2PO ―→-2P Q ―→+PD ―→. ∴x =2,y =-2.考法二 共线、共面向量定理的应用[例2] 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .[证明] (1)如图,连接BG ,则EG ―→=EB ―→+BG ―→=EB ―→+12(BC ―→+BD ―→)=EB ―→+BF ―→+EH ―→=EF ―→+EH ―→,由共面向量定理知:E ,F ,G ,H 四点共面.(2)因为EH ―→=AH ―→-AE ―→=12AD ―→-12AB ―→=12(AD ―→-AB ―→)=12BD ―→,因为E ,H ,B ,D 四点不共线,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH . [方法技巧]1.证明空间三点P ,A ,B 共线的方法 (1)PA ―→=λPB ―→(λ∈R );(2)对空间任一点O ,OP ―→=OA ―→+t AB ―→(t ∈R ); (3)对空间任一点O ,OP ―→=x OA ―→+y OB ―→(x +y =1). 2.证明空间四点P ,M ,A ,B 共面的方法 (1)MP ―→=xMA ―→+yMB ―→;(2)对空间任一点O ,OP ―→=OM ―→+xMA ―→+yMB ―→;(3)对空间任一点O ,OP ―→=xOM ―→+y OA ―→+z OB ―→(x +y +z =1); (4)PM ―→∥AB ―→ (或PA ―→∥MB ―→或PB ―→∥AM ―→).考法三 空间向量数量积的应用[例3] 如图,正方体ABCD -A1B 1C 1D 1中,E ,F 分别是C 1D 1,D 1D 的中点.若正方体的棱长为1.求cos 〈CE ―→,AF ―→〉. [解] ∵|CE ―→|=C 1E 2+CC 21=14+1=52=|AF ―→|, ∴CE ―→·AF ―→=|CE ―→||AF ―→|cos 〈CE ―→,AF ―→〉=54cos 〈CE ―→,AF ―→〉.又∵CE ―→=CC 1―→+C 1E ―→,AF ―→=AD ―→+DF ―→, ∴CE ―→·AF ―→=(CC 1―→+C 1E ―→)·(AD ―→+DF ―→)=CC 1―→·AD ―→+C 1E ―→·AD ―→+CC 1―→·DF ―→+C 1E ―→·DF ―→=|CC 1―→||DF ―→|=1×12=12.∴cos 〈CE ―→,AF ―→〉=25.[方法技巧] 空间向量数量积的3个应用[集训冲关]OA ―→=a ,OB ―→=b ,1.[考法一]已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且OC ―→=c ,用a ,b ,c 表示MN ―→,则MN ―→等于( ) A.12(b +c -a ) B.12(a +b +c ) C.12(a -b +c ) D.12(c -a -b ) 解析:选D MN ―→=MA ―→+AO ―→+ON ―→=12BA ―→+AO ―→+12OC ―→=12(OA ―→-OB ―→)+AO ―→+12OC ―→=-12OA ―→-12OB ―→+12OC ―→=12(c -a -b ).2.[考法二]O 为空间任意一点,若OP ―→=34OA ―→+18OB ―→+18OC ―→,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断解析:选B 因为OP ―→=34OA ―→+18OB ―→+18OC ―→,且34+18+18=1.所以P ,A ,B ,C 四点共面.∠AOC =π3,3.[考法三]如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =则cos 〈OA ―→,BC ―→〉的值为________. 解析:设OA ―→=a ,OB ―→=b ,OC ―→=c , 由已知条件,得〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA ―→·BC ―→=a ·(c -b )=a ·c -a ·b =12|a ||c |-12|a ||b |=0, ∴OA ―→⊥BC ―→,∴cos 〈OA ―→,BC ―→〉=0. 答案:0知识点二: 利用空间向量证明平行与垂直1.两个重要向量2.空间中平行、垂直关系的向量表示设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为n 1,n 2,则一、判断题(对的打“√”,错的打“×”) (1)直线的方向向量是唯一确定的.( )(2)已知AB ―→=(2,2,1),AC ―→=(4,5,3),则平面ABC 的单位法向量是n 0=±⎝⎛⎭⎫13,-23,23.( ) (3)两条不重合的直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是平行.( ) (4)若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β.( ) 答案:(1)× (2)√ (3)√ (4)× 二、填空题1.已知直线l 1的一个方向向量为(-7,3,4),直线l 2的一个方向向量为(x ,y,8),且l 1∥l 2,则x =________, y =________. 答案:-14 62.若平面α的一个法向量为n 1=(-3,y,2),平面β的一个法向量为n 2=(6,-2,z ),且α∥β,则y +z =________. 答案:-33.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-3,0,-6),则l 与α的位置关系是________. 答案:l ⊥α考法一 向量法证明平行与垂直关系[例1] 如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F . (1)证明:PA ∥平面EDB ; (2)证明:PB ⊥平面EFD .证明:如图所示,建立空间直角坐标系,D 是坐标原点, 设DC =a .(1)连接AC 交BD 于G ,连接EG .依题意得A (a,0,0),P (0,0,a ),E ⎝⎛⎭⎫0,a 2,a2.∵底面ABCD 是正方形, ∴G 是此正方形的中心. 故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,且PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, ∴PA ―→=2EG ―→,∴PA ∥EG .又∵EG ⊂平面EDB 且PA ⊄平面EDB , ∴PA ∥平面EDB .(2)依题意得B (a ,a,0),PB ―→=(a ,a ,-a ),DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,∴PB ⊥DE ,又∵EF ⊥PB ,且EF ∩DE =E , ∴PB ⊥平面EFD . [方法技巧]1.利用空间向量证明平行的方法2.[提醒]来证明线面平行时,仍需强调直线在平面外. [针对训练]已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F . 证明:建立空间直角坐标系如图,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1―→=(0,2,1),DA ―→=(2,0,0),AE ―→=(0,2,1). (1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则⎩⎪⎨⎪⎧ n 1⊥DA ―→,n 1⊥AE ―→,即⎩⎪⎨⎪⎧n 1·DA ―→=2x 1=0,n 1·AE ―→=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1―→·n 1=-2+2=0,所以FC 1―→⊥n , 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)∵C 1B 1―→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量,由⎩⎪⎨⎪⎧ n 2⊥FC 1―→,n 2⊥C 1B 1―→,得⎩⎪⎨⎪⎧n 2·FC 1―→=2y 2+z 2=0,n 2·C 1B 1―→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2),因为n 1=n 2, 所以平面ADE ∥平面B 1C 1F .考法二 向量法解决垂直、平行关系中的探索性问题[例2] 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. [解] 依题意,建立如图所示的空间直角坐标系, 设正方体ABCD -A 1B 1C 1D 1的棱长为1,则A 1(0,0,1),B (1,0,0),B 1(1,0,1),E ⎝⎛⎭⎫0,1,12,BA 1―→=(-1,0,1),BE ―→=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量, 则由⎩⎪⎨⎪⎧ n ·BA 1―→=0,n ·BE ―→=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设棱C 1D 1上存在点F (t,1,1)(0≤t ≤1)满足条件,又因为B 1(1,0,1), 所以B 1F ―→=(t -1,1,0). 而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F ―→·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE . [方法技巧]向量法解决与垂直、平行有关的探索性问题的思路(1)根据题设条件中的垂直关系,建立适当的空间直角坐标系,将相关点、相关向量用坐标表示.(2)假设所求的点或参数存在,并用相关参数表示相关点的坐标,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在. [针对训练]在正方体ABCD -A 1B 1C 1D 1中,E 是棱BC 的中点,则在线段CC 1上是否存在一点P ,使得平面A 1B 1P ⊥平面C 1DE ?证明你的结论.解:存在点P ,当点P 为CC 1的中点时,平面A 1B 1P ⊥平面C 1DE .证明如下:如图,以D 点为原点,建立空间直角坐标系. 设正方体的棱长为1,P (0,1,a )(0≤a ≤1),则D (0,0,0),A 1(1,0,1),B 1(1,1,1),E ⎝⎛⎭⎫12,1,0,C 1(0,1,1), ∴A 1B 1―→=(0,1,0),A 1P ―→=(-1,1,a -1), DE ―→=⎝⎛⎭⎫12,1,0,DC 1―→=(0,1,1). 设平面A 1B 1P 的一个法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1B 1―→=0,n 1·A 1P ―→=0,∴⎩⎪⎨⎪⎧y 1=0,-x 1+y 1+(a -1)z 1=0,令z 1=1,则x 1=a -1, ∴n 1=(a -1,0,1).设平面C 1DE 的一个法向量n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧ n 2·DE ―→=0,n 2·DC 1―→=0,∴⎩⎪⎨⎪⎧12x 2+y 2=0,y 2+z 2=0.令y 2=1,得x 2=-2,z 2=-1, ∴n 2=(-2,1,-1). 若平面A 1B 1P ⊥平面C 1DE ,则n 1·n 2=0,∴-2(a -1)-1=0,解得a =12.∴当P 为C 1C 的中点时,平面A 1B 1P ⊥平面C 1DE .[课时跟踪检测]1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c . 其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.的交点.若AB ―→=a ,2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→相等的向量是( ) A .-12a +12b +c B.12a +12b +cC .-12a -12b +c D.12a -12b +c解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→)=c +12(b -a )=-12a +12b +c .3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→,根据共面向量定理知,P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理,设AP ―→=m AB ―→+n AC ―→ (m ,n ∈R ),即OP ―→-OA ―→=m (OB ―→-OA ―→)+n (OC ―→-OA ―→),即OP ―→=(1-m -n )OA ―→+m OB ―→+n OC ―→,即x =1-m -n ,y =m ,z =n ,这组数显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.4.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( ) A .9 B .-9 C .-3D .3解析:选B 由题意设c =x a +y b ,则(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.5.(2019·东营质检)已知A (1,0,0),B (0,-1,1),OA ―→+λOB ―→与OB ―→的夹角为120°,则λ的值为( ) A .±66B .66C .-66D .±6解析:选C OA ―→+λOB ―→=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66. 6.在空间四边形ABCD 中,则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→的值为( ) A .-1 B .0 C .1D .2解析:选B 法一:如图,令AB ―→=a ,AC ―→=b ,AD ―→=c ,则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=AB ―→·(AD ―→-AC ―→)+AC ―→·(AB ―→-AD ―→)+AD ―→·(AC ―→-AB ―→) =a ·(c -b )+b ·(a -c )+c ·(b -a ) =a ·c -a ·b +b ·a -b ·c +c ·b -c ·a =0.法二:在三棱锥A -BCD 中,不妨令其各棱长都相等,则正四面体的对棱互相垂直. 所以AB ―→·CD ―→=0,AC ―→·DB ―→=0,AD ―→·BC ―→=0. 所以AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=0.7.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于________. 解析:设AD ―→=λAC ―→,D (x ,y ,z ), 则(x -1,y +1,z -2)=λ(0,4,-3), ∴x =1,y =4λ-1,z =2-3λ, ∴D (1,4λ-1,2-3λ), ∴BD ―→=(-4,4λ+5,-3λ), ∴4(4λ+5)-3(-3λ)=0,解得λ=-45,∴BD ―→=⎝⎛⎭⎫-4,95,125,∴|BD ―→|=(-4)2+⎝⎛⎭⎫952+⎝⎛⎭⎫1252=5.答案:5 8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB ―→=(2,-1,-4),AD ―→=(4,2,0),AP ―→=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ―→是平面ABCD 的法向量;④AP ―→∥BD ―→.其中正确的是________.解析:∵AP ―→·AB ―→=-2-2+4=0,∴AP ⊥AB ,故①正确;AP ―→·AD ―→=-4+4+0=0,∴AP ⊥AD ,故②正确;由①②知AP ⊥平面ABCD ,故③正确,④不正确.答案:①②③9.(2019·南昌调研)已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG ―→=2GN ―→,现用基底{OA ―→,OB ―→,OC ―→}表示向量OG ―→,有OG ―→=x OA ―→+y OB ―→+z OC ―→,则x ,y ,z 的值分别为________.解析:∵OG ―→=OM ―→+MG ―→=12OA ―→+23MN ―→ =12OA ―→+23(ON ―→-OM ―→) =12OA ―→+23⎣⎡⎦⎤12(OB ―→+OC ―→)-12OA ―→ =16OA ―→+13OB ―→+13OC ―→, ∴x =16,y =13,z =13. 答案:16,13,1310.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =4,AA 1=2.点M 在棱BB 1上,且BM =2MB 1,点S 在DD 1上,且SD 1=2SD ,点N ,R 分别为A 1D 1,BC 的中点.求证:MN ∥平面RSD .M ⎝⎛⎭⎫3,0,43,证明:法一:如图所示,建立空间直角坐标系,根据题意得N (0,2,2),R (3,2,0),S ⎝⎛⎭⎫0,4,23. ∴MN ―→=⎝⎛⎭⎫-3,2,23,RS ―→=⎝⎛⎭⎫-3,2,23,MN ―→=RS ―→. ∴MN ―→∥RS ―→.∵M ∉RS .∴MN ∥RS .又RS ⊂平面RSD ,MN ⊄平面RSD ,∴MN ∥平面RSD .法二:设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则MN ―→=MB 1―→+B 1A 1―→+A 1N ―→=13c -a +12b , RS ―→=RC ―→+CD ―→+DS ―→=12b -a +13c , ∴MN ―→=RS ―→,∴MN ―→∥RS ―→,又∵R ∉MN ,∴MN ∥RS .又RS ⊂平面RSD ,MN ⊄平面RSD ,∴MN ∥平面RSD .11.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC=90°,A 1A ⊥平面ABC ,A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点. 求证:平面A 1AD ⊥平面BCC 1B 1.证明:如图,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),A1(0,0,3),C 1(0,1,3),∵D 为BC 的中点,∴D 点坐标为(1,1,0).∴AA 1―→=(0,0,3),AD ―→=(1,1,0),BC ―→=(-2,2,0),CC 1―→=(0,-1,3).设平面A 1AD 的法向量n 1=(x 1,y 1,z 1),平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧n 1·AA 1―→=0,n 1·AD ―→=0,得⎩⎨⎧ 3z 1=0,x 1+y 1=0. 令y 1=-1,则x 1=1,z 1=0,∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧ n 2·BC ―→=0,n 2·CC 1―→=0,得⎩⎨⎧-2x 2+2y 2=0,-y 2+3z 2=0. 令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝⎛⎭⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2.∴平面A 1AD ⊥平面BCC 1B 1.面边长的2倍,12.如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底点P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.解:(1)证明:连接BD ,设AC 交BD 于点O ,则AC ⊥BD .连接SO ,由题意知SO ⊥平面ABCD .以O 为坐标原点,OB ―→,OC ―→,OS ―→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0,B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0, OC ―→=⎝⎛⎭⎫0,22a ,0,SD ―→=⎝⎛⎭⎫-22a ,0,-62a , 则OC ―→·SD ―→=0.故OC ⊥SD .从而AC ⊥SD .(2)棱SC 上存在一点E ,使BE ∥平面PAC .理由如下:由已知条件知DS ―→是平面PAC 的一个法向量,且DS ―→=⎝⎛⎭⎫22a ,0,62a ,CS ―→=⎝⎛⎭⎫0,-22a ,62a ,BC ―→=⎝⎛⎭⎫-22a ,22a ,0. 设CE ―→=t CS ―→,则BE ―→=BC ―→+CE ―→=BC ―→+t CS ―→=⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE ―→·DS ―→=0⇒t =13. 即当SE ∶EC =2∶1时,BE ―→⊥DS ―→.而BE ⊄平面PAC ,故BE ∥平面PAC .。