圆锥曲线中三角形面积问题

合集下载

圆锥曲线中焦三角面积公式的应用

圆锥曲线中焦三角面积公式的应用

圆锥曲线中焦三角面积公式的应用在圆锥曲线中的椭圆和双曲线里,以曲线上的一点及两个焦点作为顶点的三角形我们称之为焦三角。

焦三角的面积只与b 和曲线上的这点与两个焦点的视角有关。

假设这个视角为θ,F 1、F 2分别是曲线的两个焦点,在椭圆中焦三角的面积S=b 2tan 2θ,在双曲线里焦三角的面积S=b 2cot 2θ。

下面我们给出证明:若P 是椭圆22221x y a b +=(a>b>0)上一点,F 1、F 2是两个焦点,设|PF 1|=r 1,|PF 2|=r 2,三角形PF 1F 2的面积为S ,则S=121sin 2r r θ……(1) 在三角形PF 1F 2中,由余弦定理(2c )2=222121212122cos ()2cos r r r r r r r r θθ+-=+-, (2)又r 1+r 2=2a ,……(3)代入(2)得:4c 2=4a 2-θcos 221r r ∴r 1r 2=θcos 22b 代入(1)中可得S=b 2tan2θ,同理可得双曲线中焦三角的面积S= b 2cot 2θ。

在解决圆锥曲线问题中,适当使用焦三角面积公式使解题变得很简便,运算量少且准确,下面举例予以说明。

例1(2004年高考福州)已知P 是椭圆2214x y +=的一点,F 1、F 2是椭圆的两个焦点,且∠F 1PF 2=600,则△PF 1F 2的面积是___________。

由椭圆的焦三角面积公式,这里θ=600,2θ=300得△PF 1F 2的面积是3。

例2.双曲线221916x y -=的两个焦点分别是F 1、F 2,点P 在双曲线上,且直线PF 1、PF 2倾斜角之差为3π,则△PF 1F 2的面积为( )A. C. 32 D. 42 解:由三角形外角性质可得∠F 1PF 2=3π,即θ=3π,再由双曲线的焦三角面积公式,S=b 2cot2θ=16cot 6π,故选A 。

例3.在椭圆2214520x y +=上求一点P ,使它与两焦点F 1、F 2的连线互相垂直。

圆锥曲线中求三角形面积的几种方法

圆锥曲线中求三角形面积的几种方法

圆锥曲线中求三角形面积的几种方法(宜昌市田家炳高级中学 胡爱斌)圆锥曲线中求三角形面积的问题很常见。

此类题若方法选取不当将直接影响解题的速度与准确率,如下看求三角形面积的几种有效方法。

1、 正弦定理和余弦定理相结合求面积例1:双曲线191622=-y x 上有点P ,F 1、F 2是双曲线的焦点,且∠F 1PF 2=3π,求△F 1PF 2的面积解析:设1PF =m, 2PF =n ,由双曲线的定义可知82==-a n m ,642=-n m即m 2+n 2-2mn=64 (1)在△F 1PF 2中,21F F =10,由余弦定理得m 2+n 2-2mncos3π=100 (2) (2)-(1),整理得mn=36∴21PFF S ∆=21mn ·sin 3π=93 例2:已知F 1、F 2是椭圆16410022=+y x 的两个焦点,P 是椭圆上一点,若∠F 1PF 2=3π,求△F 1PF 2的面积 解析:设1PF =m ,2PF =n ,由椭圆的定义可知m+n=20,在△F 1PF 2中,由余弦定理得m 2+n 2-2mncos3π=21F F 2=144 即()mn n m 32-+=144又m+n=20,∴mn=325621PF F S ∆=211PF ·2PF ·sin ∠F 1PF 2 =21mn ·sin 3π=21⨯3256⨯23 =3364 点评:求解焦点三角形的面积若是结合圆锥曲线的定义,用余弦定理得出三角形边与角的关系式,再用正弦定理算面积,设而不求,往往能事半功倍,极大地减少计算量。

当∠F 1PF 2=2π时用上述解法亦可,不过用圆锥曲线定义与勾股定理,再算两直角边积的一半更简便。

如下例:例3:已知F 1和F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足∠F 1PF 2=2π,求△F 1PF 2的面积 解析:221)(PF PF - =4a 2=16(双曲线第一定义),而由勾股定理得20)2(22221==+c PF PF ,P F 1·P F 2=21[2212221)(PF PF PF PF --+] =21⨯(20-16)=2 ∴21PF F S ∆=21⨯P F 1·P F 2=21⨯2=12、 用分割法求面积例4:一三角形以抛物线y 2=4x 的焦点弦为一边,另一个顶点在原点,若焦点弦所 在直线的斜率为1,求此三角形的面积。

有关圆锥曲线的焦点三角形面积公式的证明及其应用

有关圆锥曲线的焦点三角形面积公式的证明及其应用

圆锥曲线的焦点三角形面积问题比较常见,这类题目常以选择题、填空题、解答题的形式出现.圆锥曲线主要包括抛物线、椭圆、双曲线,每一种曲线的焦点三角形面积公式也有所不同,其适用情形和应用方法均不相同.在本文中,笔者对圆锥曲线的焦点三角形面积公式及其应用技巧进行了归纳总结,希望对读者有所帮助.1.椭圆的焦点三角形面积公式:S ΔPF 1F 2=b 2tan θ2若椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∠F 1PF 2=θ,则三角形ΔF 1PF 2的面积为:S ΔPF 1F 2=b 2tan θ2.对该公式进行证明的过程如下:如图1,由椭圆的定义知||F 1F 2=2c ,||PF 1+||PF 2=2a ,图1可得||PF 12+2||PF 1||PF 2+||PF 22=4a 2,①由余弦定理可得||PF 12+||PF 22-2||PF 1||PF 2cos θ=4c 2,②①-②可得:2||PF 1||PF 2(1+cos θ)=4b 2,所以||PF 1||PF 2=2b 21+cos θ,则S ΔPF 1F2=12|PF 1||PF 2|sin θ=12×2b 21+cos θsin θ,=b 22sin θ2cos 2θ22cos 2θ2=b 2tan θ2.若已知椭圆的标准方程、短轴长、两焦点弦的夹角,则可运用椭圆的焦点三角形面积公式S ΔPF 1F 2=b 2tan θ2来求椭圆的焦点三角形面积.例1.(2021年数学高考全国甲卷理科)已知F 1,F 2是椭圆C :x 216+y 24=1的两个焦点,P ,Q 为椭圆C 上关于坐标原点对称的两点,且||PQ =||F 1F 2,则四边形PF 1QF 2的面积为________.解析:若采用常规方法解答本题,需根据椭圆的对称性、定义以及矩形的性质来建立关于||PF 1、||PF 2的方程,通过解方程求得四边形PF 1QF 2的面积.而仔细分析题意可发现四边形PF 1QF 2是一个矩形,且该矩形由两个焦点三角形构成,可利用椭圆的焦点三角形面积公式求解.解:S 四边形PF 1QF 2=2S ΔPF 1F 2=b 2tan θ2=2×4×tan π2=8.利用椭圆的焦点三角形面积公式,能有效地简化解题的过程,有助于我们快速求得问题的答案.例2.已知F 1,F 2是椭圆C:x 2a 2+y 2b2=1()a >b >0的两个焦点,P 为曲线C 上一点,O 为平面直角坐标系的原点.若PF 1⊥PF 2,且ΔF 1PF 2的面积等于16,求b的值.解:由PF 1⊥PF 2可得∠F 1PF 2=π2,因为ΔF 1PF 2的面积等于16,所以S ΔPF 1F 2=b 2tan θ2=b 2tan π2=16,解得b =4.有关圆锥曲线的焦点三角形面积公式的思路探寻48的面积,2.则ΔF 1PF 如|||PF 1-|得:|||PF 2cos θ即|由②所以则S Δ夹角、例3.双曲线C 是().A.72且)设双曲F 1,F 2,离△PF 1F 2=1.本题.运用该=p 22sin θ,且与抛S ΔAOB =图3下转76页)思路探寻49考点剖析abroad.解析:本句用了“S+Vt+动名词”结构,能用于此结构的及物动词或词组有mind ,enjoy ,finish ,advise ,consider ,practice ,admit ,imagine ,permit ,insist on ,get down to ,look forward to ,put off ,give up 等。

弦长与面积问题

弦长与面积问题

圆锥曲线中弦长与三角形问题 一.知识点:1.直线与椭圆,双曲线,抛物线相交与A ,B 两点,则弦长|AB|=2.(1(21.已知椭圆22221(0)x y a b a b+=>>的离心率为22,过点A (0,-b )和B (a ,0)的直线与原点的距离为36。

(1)求椭圆C 的方程;(2)设直线L 经过定点(0,1),且与椭圆交于M ,N 两点,当|MN|=324时,求直线L 的方程;2.已知椭圆E :22221(0)x y a b a b+=>>的离心率为322,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+42。

(1)求椭圆C 的方程;(2)设直线L 与椭圆E 交于A 、B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求△ABC 的面积的最大值; 作业:1.已知动圆过定点A (p ,0),圆心C 在抛物线y 2=2px (p>0)上运动。

圆C 与y 轴上截得的弦长为MN ,求证:三角形AMN 的面积为定值。

2.设F 1,F 2分别是椭圆E :)10(1222<<=+b by x 的左,右焦点,过F 1的直线L 与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列。

(1)求|AB|长;(2)若直线L 的斜率为1,求b 的值;3.如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°. (1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△PAB 的面积.5.已知中心在原点O ,焦点在x 轴上,离心率为32的椭圆过点⎝⎛⎭⎪⎫ 2,22. (1)求椭圆的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.6.如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D ;(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.(第21题图)。

圆锥曲线系统班12、椭圆、双曲线的焦点三角形面积公式

圆锥曲线系统班12、椭圆、双曲线的焦点三角形面积公式

第12讲椭圆、双曲线的焦点三角形面积公式知识与方法1.如图1所示,1F 、2F 是椭圆的焦点,设P 为椭圆上任意一点,记12F PF θ∠=,则12PF F 的面积2tan2S b θ=.2.如图2所示,1F 、2F 是双曲线的焦点,设P 为双曲线上任意一点,记12F PF θ∠=,则12PF F 的面积2tan2b S θ=.典型例题【例1】设1F 、2F 是椭圆22184x y +=的两个焦点,点P 在椭圆上,1260F PF ∠=︒,则12PF F 的面积为________.【解析】由焦点三角形面积公式,122tan 4tan 302PF F S b θ==⨯︒=【答案】变式1设1F 、2F 是椭圆22218x y b+=(0b <<的两个焦点,点P 在椭圆上,1260F PF ∠=︒,且12F PF 的面积为433,则b =________.【解析】由焦点三角形面积公式,1222tan tan 30223F PF S b b b θ==︒== .【答案】2变式2设1F 、2F 是椭圆22184x y +=的焦点,点P 在椭圆上,且121cos 3F PF ∠=,则12PF F 的面积为________.【解析】设12F PF θ∠=,则21221tan 12cos cos 31tan 2F PF θθθ-∠===+,所以21tan 22θ=,由1cos 03θ=>知02πθ<<,所以024θπ<<,从而2tan 22θ=,故1222tan 422PF F S b θ==⨯=【答案】变式3设1F 、2F 是椭圆22214x y a +=()2a >的焦点,点P 在椭圆上,且1260F PF ∠=︒,则12PF PF ⋅=________.【解析】记12F PF θ∠=,则60θ=︒,12243tan4tan 3023PF F S b θ==⨯︒=,又1212121sin 2PF F S PF PF PF θ=⋅⋅=⋅ ,12433PF ⋅=,故12163PF PF ⋅=.【答案】163变式4设1F 、2F 是椭圆22142x y +=的左、右焦点,点P 在椭圆上,且123PF PF =,则12PF F 的面积为________.【解析】解法1:如图,由题意,1211223341PF PF PF PF PF PF ⎧⎧==⎪⎪⇒⎨⎨+==⎪⎪⎩⎩,易求得12F F =,由余弦定理,222121212121cos 23PF PF F F F PF PF PF +-∠==⋅,所以1222sin 3F PF ∠=,故1212121122sin 31223PF F S PF PF F PF =⋅⋅∠=⨯⨯⨯= 解法2:设()00,P x y ,由焦半径公式,123PF PF =即为002223222x x ⎛⎫+=- ⎪ ⎪⎝⎭,解得:0x =又2200142x y +=,所以22002114x y ⎛⎫=-= ⎪⎝⎭,从而01y =,易求得12F F =1212012PF F S F F y =⋅= .【答案】【反思】不是每一道题都能很方便地代公式计算焦点三角形面积,所以掌握焦点三角形面积公式的推导方法也是有必要的.【例2】已知双曲线22:13y C x -=的左、右焦点分别为1F 、2F ,点P 在C 上,且1260F PF ∠=︒,则12PF F 的面积为________.【解析】由焦点三角形面积公式,1223tan 30tan2PF F b S θ===︒.【答案】变式1已知双曲线22:13y C x -=的左、右焦点分别为1F 、2F ,点P 在C 上,且121cos 3F PF ∠=,则12PF F 的面积为________.【解析】记12F PF θ∠=,则22212222cos sin 1tan 1222cos cos 3cos sin 1tan 222F PF θθθθθθθ--∠====++,所以21tan 22θ=,由1cos 03θ=>知02πθ<<,所以024θπ<<,从而tan 22θ=,故122tan 2PF F b S θ== .【答案】变式2已知1F 、2F 是双曲线22:13y C x -=的左、右焦点,P 为双曲线C 右支上的一点,12120F PF ∠=︒,则1PF =________.【解析】由焦点三角形面积公式,1223tan 60tan2PF F b S θ===︒,又121212121sin 2PF F S PF PF F PF PF =⋅⋅∠=⋅,所以12PF ⋅=故124PF PF ⋅=,由双曲线定义,122PF PF -=,解得:11PF =+【答案】1变式3(2020·新课标Ⅲ卷)双曲线2222:1x y C a b-=()0,0a b >>的左、右焦点分别为1F 、2F ,P 是C 上一点,12F P F P ⊥,若12PF F 的面积为4,则a =()A.1B.2C.4D.8【解析】解法1:22222552ce c c a a b a b a a===⇒=⇒+=⇒=,不妨设P 在双曲线C 的右支上,则122PF PF a -=,因为12F P F P ⊥,所以2221212PF PF F F +=,故()221212122PF PF PF PF F F -+⋅=,从而2212424a PF PF c +⋅=,故22212222PF PF c a b ⋅=-=,所以12212142PF F S PF PF b =⋅== ,解得:2b =,故1a =.解法2:1222242tan 45tan2PF F b b S b b θ====⇒=︒ ,222225512c be c c a a b a a a ===⇒=⇒+=⇒==.【答案】A强化训练1.(★★★)设1F 、2F 是椭圆22154x y +=的两个焦点,点P 在椭圆上,且1230F PF ∠=︒,则12PF F 的面积为________.【解析】()122tan 60tan 45tan 4tan154tan 604548421tan 60tan 45PF F S b θ︒-︒==⨯︒=⨯︒-︒=⨯=-+︒︒【答案】8-2.(★★★)设1F 、2F 是双曲线22:145x y C -=的左、右焦点,P 为C 上一点,若12PF PF ⊥,则12PF F 的面积为________.【解析】由焦点三角形面积公式,12255tan 45tan2PF F b S θ===︒.【答案】53.(★★★)设1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且121cos 3F PF ∠=-,则12PF F 的面积为________.【解析】记12F PF θ∠=,则221221tan 112cos cos tan 23321tan 2F PF θθθθ-∠==-⇒=-⇒=+,由1cos 03θ=-<知2παπ<<,所以422πθπ<<,从而tan 2θ=,故121PF F S == .【答案】4.(★★★)设1F 、2F 是椭圆22142x y +=的左、右焦点,P 是椭圆在第一象限上的一点,且1260F PF ∠=︒,则点P 的坐标为________.【解析】设()00,P x y ()000,0x y >>,一方面,122tan 2233PF F S b θ==⨯=,另一方面,12120001122PF F S F F y =⋅=⋅=0=0y =,又2200142x y +=,结合00x >可得03x =,所以点P的坐标为33⎛ ⎝⎭.【答案】26633⎛ ⎝⎭5.(★★★)已知双曲线22:163x y C -=的左、右焦点分别为1F 、2F ,点P 在C 上,且123cos 4F PF ∠=,则12PF F 的面积为________.【解析】设12F PF θ∠=,则2221tan 312cos tan 4271tan 2θθθθ-==⇒=+,因为0θπ<<,所以022θπ<<,故tan 27θ=,从而122tan 2PF F b S θ== .【答案】6.(★★★)已知双曲线22142x y -=的左、右焦点分别为1F 、2F ,双曲线上一点P 满足12PF F 的面积为2,则12PF F 的周长为________.【解析】122222121222tan190242tantan22PF F b S PF PF F F θθθθ===⇒=⇒=︒⇒+== ,又124PF PF -=,所以22212121212122242164PF PF PF PF PF PF PF PF PF PF -=+-⋅=-⋅=⇒⋅=,从而12PF PF +=,故12PF F的周长1212L PF PF F F =++=.【答案】+7.(★★★)已知1F 、2F 是双曲线22:12x C y -=的左、右焦点,P 为C 在第一象限上的一点,若12120F PF ∠=︒,则点P 的坐标为________.【解析】设()00,P x y ()000,0x y >>,一方面,12120001122PF F S F F y =⋅=⋅=,另一方面,1221tan 60tan2PF F b S θ===︒0=013y =,代入双曲线方程结合00x >可解得:0253x =,所以点P 的坐标为25133⎛⎫ ⎪⎪⎝⎭.【答案】13⎫⎪⎪⎝⎭8.(2020·新课标Ⅰ卷·★★★)设1F 、2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在双曲线C 上且2OP =,则12PF F 的面积为()A.7B.3C.52D.2【解析】如图,设(),P x y ,则222243213x y y y x ⎧+=⎪⇒=⎨-=⎪⎩,由题意,124F F =,所以12134322PF F S =⨯⨯= .解法2:如图,由题意,124F F =,12212121329032tan 45tan 2PF F b OP F F F PF S θ==⇒∠=︒⇒===︒ .【答案】B9.(2010·全国Ⅰ卷·★★★)已知1F 、2F 是双曲线22:1C x y -=的左、右焦点,点P 在C 上,1260F PF ∠=︒,则|12PF PF ⋅=()A.2B.4C.6D.8【解析】一方面,1221tan 30tan2PF F b S θ===︒,另一方面,121212121sin 2PF F S PF PF F PF PF =⋅⋅∠=⋅ ,12PF ⋅=124PF PF ⋅=.【答案】B10.(★★★)设1F 、2F 是椭圆2214x y +=的左、右焦点,点P 在椭圆上,且123PF PF =,则12PF F 的面积为________.【解析】如图,由题意,1211223341PF PF PF PF PF PF ⎧⎧==⎪⎪⇒⎨⎨+==⎪⎪⎩⎩,易求得12F F =,由余弦定理,222121212121cos 23PF PF F F F PF PF PF +-∠==-⋅,所以12sin 3F PF ∠=,故12121211sin 3122PF F S PF PF F PF =⋅⋅∠=⨯⨯⨯ 解法2:设()00,P x y ,由焦半径公式,123PF PF =即为0023222x x ⎛⎫+=- ⎪ ⎪⎝⎭,解得:0x =又220014x y +=,所以22002143x y =-=,从而0y =,易求得12F F =,如图,1212012PF F S F F y =⋅= .【答案】。

圆锥曲线中的三角形问题(含解析)

圆锥曲线中的三角形问题(含解析)

专题12 圆锥曲线中的三角形问题一、题型选讲题型一 、由面积求参数或点坐标等问题例1、(2020·浙江学军中学高三3月月考)抛物线22y px =(0p >)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N (点N 在轴上方),点E 为轴上F 右侧的一点,若||||3||NF EF MF ==,MNE S =△则p =( ) A .1B .2C .3D .9例2、(2020·浙江高三)如图,过椭圆22221x y C a b+=:的左、右焦点F 1,F 2分别作斜率为C 上半部分于A ,B 两点,记△AOF 1,△BOF 2的面积分别为S 1,S 2,若S 1:S 2=7:5,则椭圆C 离心率为_____.例3、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.题型二、与面积有关的最值问题例4、(2020·浙江温州中学高三3月月考)过点()2,1P 斜率为正的直线交椭圆221245x y +=于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP 分别平分ACB ∠,ADB ∠.则PCD ∆外接圆半径的最小值为( )A .5B .5C .2413D .1913例5、【2020年新高考全国△卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.例6、【2019年高考全国△卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.例7、(2020届浙江省温丽联盟高三第一次联考)已知1F ,2F 是椭圆2222:1x y C a b+=的左右焦点,且椭圆C,直线:l y kx m =+与椭圆交于A ,B 两点,当直线l 过1F 时2F AB 周长为8. (△)求椭圆C 的标准方程;(△)若0OA OB ⋅=,是否存在定圆222x y r +=,使得动直线l 与之相切,若存在写出圆的方程,并求出OAB 的面积的取值范围;若不存在,请说明理由.例8、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x =的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,点B 在准线l 上的投影为E ,若C 是抛物线上一点,且AC EF ⊥.(1)证明:直线BE 经过AC 的中点M ;(2)求ABC ∆面积的最小值及此时直线AC 的方程.二、达标训练1、(2020届浙江省杭州市高三3月模拟)设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y是C 上一点,且满足12PF F ∆则0||x 的取值范围是____.2、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3C .D .43、(2020届浙江省宁波市鄞州中学高三下期初)已知抛物线E :24y x =和直线l :40x y -+=,P 是直线上l 一点,过点P 做抛物线的两条切线,切点分别为A ,B ,C 是抛物线上异于A ,B 的任一点,抛物线在C 处的切线与PA ,PB 分别交于M ,N ,则PMN ∆外接圆面积的最小值为______.4、(2020届浙江省嘉兴市5月模拟)设点(,)P s t 为抛物线2:2(0)C y px p =>上的动点,F 是抛物线的焦点,当1s =时,54PF =.(1)求抛物线C 的方程;(2)过点P 作圆M :22(2)1x y -+=的切线1l ,2l ,分别交抛物线C 于点,A B .当1t >时,求PAB △面积的最小值.5、(2020届浙江省绍兴市4月模拟)如图,已知点(0,0)O ,(2,0)E ,抛物线2:2(0)C y px p =>的焦点F为线段OE 中点.(1)求抛物线C 的方程;(2)过点E 的直线交抛物线C 于, A B 两点,4AB AM =,过点A 作抛物线C 的切线l ,N 为切线l 上的点,且MN y ⊥轴,求ABN 面积的最小值.6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线214y x =的焦点为F .()1若点P为抛物线上异于原点的任一点,过点P作抛物线的切线交y轴于点Q,证明:2∠=∠.PFy PQF ()2A,B是抛物线上两点,线段AB的垂直平分线交y轴于点()D(AB不与x轴平行),且0,4+=.过y轴上一点E作直线//6AF BFm x轴,且m被以AD为直径的圆截得的弦长为定值,求ABE△面积的最大值.一、题型选讲题型一、由面积求参数或点坐标等问题例1、(2020·浙江学军中学高三3月月考)抛物线22y px =(0p >)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N (点N 在轴上方),点E 为轴上F 右侧的一点,若||||3||NF EF MF ==,MNE S =△则p =( ) A .1 B .2C .3D .9【答案】C 【解析】设准线与x 轴的交点为T ,直线l 与准线交于R ,||||3||3NF EF MF a ===,则||||3NF EF a ==,||MF a =,过M ,N 分别作准线的垂线,垂足分别为,P Q ,如图,由抛物线定义知,||MP a =,||3NQ a =,因为MP ∥NQ ,所以||||||||PM RM QN RN =, 即||3||4a RM a RM a=+,解得||2RM a =,同理||||||||FT RF QN RN =,即||336FT aa a=,解得 3||2FT a =,又||FT p =,所以32a p =,23a p =,过M 作NQ 的垂线,垂足为G ,则||MG ===,所以1||||2MNES EF MG =⋅=△ 132a ⨯⨯=2a =,故332p a ==. 故选:C.例2、(2020·浙江高三)如图,过椭圆22221x y C a b+=:的左、右焦点F 1,F 2分别作斜率为C 上半部分于A ,B 两点,记△AOF 1,△BOF 2的面积分别为S 1,S 2,若S 1:S 2=7:5,则椭圆C 离心率为_____.【答案】12【解析】作点B 关于原点的对称点B 1,可得S 21'BOF B OF S =,则有11275A B y S S y ==,所以175A B y y =-. 将直线AB 1方程4x c =-,代入椭圆方程后,222241x y c x y a b ⎧=-⎪⎪⎨⎪+=⎪⎩, 整理可得:(b 2+8a 2)y 2﹣b 2cy +8b 4=0,由韦达定理解得12228A B cy y b a+=+,142288A B b y y b a -=+, 三式联立,可解得离心率12c e a ==. 故答案为:12. 例3、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯,则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.题型二、与面积有关的最值问题例4、(2020·浙江温州中学高三3月月考)过点()2,1P 斜率为正的直线交椭圆221245x y +=于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP 分别平分ACB ∠,ADB ∠.则PCD ∆外接圆半径的最小值为( ) A.5B.5C .2413D .1913【答案】D 【解析】如图,先固定直线AB ,设()BM f M AM =,则()()()f C f D f P ==,其中()BPf P AP=为定值, 故点P ,C ,D 在一个阿波罗尼斯圆上,且PCD 外接圆就是这个阿波罗尼斯圆,设其半径为r ,阿波罗尼斯圆会把点A ,B 其一包含进去,这取决于BP 与AP 谁更大,不妨先考虑BP AP >的阿波罗尼斯圆的情况,BA 的延长线与圆交于点Q ,PQ 即为该圆的直径,如图:接下来寻求半径的表达式, 由()2,2AP BP r BP BQ r AP AQ AP AP AQ BP ⋅+==+=+,解得111r AP BP=-, 同理,当BP AP <时有,111r BP AP=-, 综上,111r AP BP=-; 当直线AB无斜率时,与椭圆交点纵坐标为1,1AP BP ==,则1912r =; 当直线AB 斜率存在时,设直线AB 的方程为()12y k x -=-,即21y kx k =-+, 与椭圆方程联立可得()()()22224548129610k x k k x k k ++-+--=,设()11,A x y ,()22,B x y ,则由根与系数的关系有,()()12221224821245961245k k x x k k k x x k ⎧-+=⎪+⎪⎨--⎪=⎪+⎩,211112r AP BP x ∴=-=-,注意到12x -与22x -异号,故1119r ===,设125t k =+,则11121226131919192419r ==≤⋅=,,当15169t =,即1695t =,此时125k =,故1913r ≥,又19191213>,综上外接圆半径的最小值为1913. 故选:D .例5、【2020年新高考全国△卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==,由两点之间距离公式可得||AM ==.所以△AMN的面积的最大值:1182⨯=. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.例6、【2019年高考全国△卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)(i )见解析;(ii )169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k ,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169.例7、(2020届浙江省温丽联盟高三第一次联考)已知1F ,2F 是椭圆2222:1x y C a b+=的左右焦点,且椭圆C,直线:l y kx m =+与椭圆交于A ,B 两点,当直线l 过1F 时2F AB 周长为8. (△)求椭圆C 的标准方程;(△)若0OA OB ⋅=,是否存在定圆222x y r +=,使得动直线l 与之相切,若存在写出圆的方程,并求出OAB 的面积的取值范围;若不存在,请说明理由.【答案】(△)223144x y +=;(△)221x y +=,⎡⎢⎣⎦.【解析】(△)由题意可得,22||48F A F B AB a ++==, 故2a =,又有3c e a ==,∴c = 椭圆的标准方程为223144x y +=;(△)法1:设||OA m =,||OB n =,∵0OA OB ⋅=,∴OA OB ⊥, 设点(cos ,sin )A m m θθ,点(sin ,cos )B n n θθ-,22222222cos 3sin 144cos 3sin 144m m n n θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相加得22131144m n +=+, 2222m n m n +=⋅,222AB OA OB =⋅,∴1r =,442222222111||1111n n AB m n n n n n -+=+===++---,24,43n ⎡⎤∈⎢⎥⎣⎦,∴AB ⎡∈⎢⎣⎦,OABS ⎡∈⎢⎣⎦△. 法2:()2222234136340x y k x kmx m y kx m⎧+=⇒+++-=⎨=+⎩, ()()22222236434131248160k m m k m k ∆=--+=-++>,1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++222444013m k k--==+, ∴221m k =+,∴1r ===,122||13AB xk=-==+当0k=时,||2AB=,当0k≠时,||AB=≤213k=时取到等号,此时243m=符合>0∆∴1,3OABS⎡∈⎢⎣⎦△.例8、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x=的焦点为F,准线为l,过点F 的直线交抛物线于A,B两点,点B在准线l上的投影为E,若C是抛物线上一点,且AC EF⊥.(1)证明:直线BE经过AC的中点M;(2)求ABC∆面积的最小值及此时直线AC的方程.【答案】(1)详见解析;(2)面积最小值为16,此时直线方程为30x y±-=.【解析】(1)由题意得抛物线24y x=的焦点()1,0F,准线方程为1x=-,设()2,2B t t,直线AB:1x my=+,则()1,2E t-,联立1x my=+和24y x=,可得244y my=+,显然40A By y+=,可得212,At t⎛⎫-⎪⎝⎭,因为EFk t=-,AB EF⊥,所以1AC k t=, 故直线AC :2211y x t t t ⎛⎫+=- ⎪⎝⎭, 由224120y xx ty t ⎧=⎪⎨---=⎪⎩, 得224480y ty t---=. ∴4A C y y t +=,248A C y y t =--, 所以AC 的中点M 的纵坐标2M y t =,即M B y y =, 所以直线BE 经过AC 的中点M .(2)所以A C y A C =-== 设点B 到直线AC 的距离为d ,则2212t d ++==.所以1162ABCS AC d ∆=⋅=≥=,当且仅当41t =,即1t =±,1t =时,直线AD 的方程为:30x y --=,1t =-时,直线AD 的方程为:30x y +-=.另解:2221112222ABC A C S BM y y t t t ∆=⋅-=++-3222122t t ⎛⎫=++ ⎪⎝⎭.二、达标训练1、(2020届浙江省杭州市高三3月模拟)设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y是C 上一点,且满足12PF F ∆则0||x 的取值范围是____. 【答案】[]0,1【解析】依题意,122F F =,所以120122PF F S y ∆=⨯=0y =,而2200214x y m +=,所以2200224124144y x m m m ⎛⎫=-=- ⎪-⎝⎭.由于02m <<,204m <<,根据二次函数的性质可知:()(]22424240,4m m m -=--+∈,所以241234m m -≤--,所以22412414x m m =-≤-,解得[]00,1x ∈.故答案为:[]0,12、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和3y x =-联立,求得M,3(,22N -,所以||3MN ==,故选B . 3、(2020届浙江省宁波市鄞州中学高三下期初)已知抛物线E :24y x =和直线l :40x y -+=,P 是直线上l 一点,过点P 做抛物线的两条切线,切点分别为A ,B ,C 是抛物线上异于A ,B 的任一点,抛物线在C 处的切线与PA ,PB 分别交于M ,N ,则PMN ∆外接圆面积的最小值为______. 【答案】258π【解析】设三个切点分别为222(,),(,),(,)444a b c A a B b C c ,若在点A 处的切线斜率存在,设方程为2()4a y a k x -=-与24y x =联立,得,222440,164(4)0ky y a k a k a k a --+=∆=--+=, 即222440,a k ak k a-+=∴=, 所以切线PA 方程为2202a x ay -+= ①若在点A 的切线斜率不存在,则(0,0)A , 切线方程为0x =满足①方程,同理切线,PB MN 的方程分别为2202b x by -+=,2202c x cy -+=,联立,PA PB 方程,22202202a x ay b x by ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得42ab x a b y ⎧=⎪⎪⎨+⎪=⎪⎩,即,42ab a b P +⎛⎫ ⎪⎝⎭同理,,,4242ac a c bc b c M N ++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,(),42a c b c b PM --⎛⎫= ⎪⎝⎭, ()(),,,4242b c a c a c b a b a PN MN ----⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,设PMN ∆外接圆半径为R ,|||||||||PM b c PN a c MN a b =-=-=-,11||||sin ||||22PMN S PM PN MPN PM PN ∆=∠=21||||()2||||PM PN PM PN ===||||||1||||||1622a b b c a c MN PM PN R---==,||||||4PM PN MN R S ⋅⋅==08c =≥时取等号,点P在直线40,4,8422ab a b ab x y a b +-+=∴+=∴+=+,8R =∴≥8==4≥=, 当且仅当1,6,0a b c =-==或6,1,0a b c ==-=时等号成立, 此时PMN ∆外接圆面积最小为258π. 故答案为:258π.4、(2020届浙江省嘉兴市5月模拟)设点(,)P s t 为抛物线2:2(0)C y px p =>上的动点,F 是抛物线的焦点,当1s =时,54PF =.(1)求抛物线C 的方程;(2)过点P 作圆M :22(2)1x y -+=的切线1l ,2l ,分别交抛物线C 于点,A B .当1t >时,求PAB △面积的最小值.【答案】(1)2y x =(2)最小值 【解析】(1)当1s =时,5||24p PF s =+=, 所以12p =,故所求抛物线方程为2y x =. (2)点(),P s t 为抛物线2y x =上的动点,则2s t =,设过点2(,)P t t 的切线为2()x m y t t =-+, 21=, 得22222(1)2(2)(2)10(*)t m t t m t -+-+--=, 12,m m 是方程(*)式的两个根, 所以21222(2)1t t m m t -+=-,2123m m t =-, 设()()221122,,,A y y B y y ,因直线2:()l x m y t t =-+,与抛物线2:C y x =交于点A ,则212()x m y t t y x⎧=-+⎨=⎩得22110y m y m t t -+-=, 所以211ty m t t =-,即11y m t =-,同理22y m t =-,设直线()1212:AB x y y y y y =+-,则12||||AB y y =-,d =,又12122221t y y m m t t -+=+-=-, 2121223()()1t y y m t m t t -=--=-, 所以212121211|||||()|22PAB S AB d y y t t y y y y ==--++22222311t t t t t --=-⨯+--=令210u t=->,4(PAB S u u =++当且仅当2u =,即t =时,PAB S 取得最小值5、(2020届浙江省绍兴市4月模拟)如图,已知点(0,0)O ,(2,0)E ,抛物线2:2(0)C y px p =>的焦点F为线段OE 中点.(1)求抛物线C 的方程;(2)过点E 的直线交抛物线C 于, A B 两点,4AB AM =,过点A 作抛物线C 的切线l ,N 为切线l 上的点,且MN y ⊥轴,求ABN 面积的最小值.【答案】(1)24y x =;(2)【解析】(1)由已知得焦点F 的坐标为(1, 0), 2p ∴=,∴抛物线C 的方程为:24y x =;(2)设直线AB 的方程为:2x my =+,设()11,A x y ,()22,B x y ,()00,M x y ,联立方程224x my y x=+⎧⎨=⎩,消去x 得:2480y my --=, 216320m ∴∆=+>,124y y m +=,128y y =-,设直线l 方程为:()11y y k x x -=-,联立方程()1124y y k x x y x ⎧-=-⎨=⎩,消去x 得:2114440y y y x k k-+-=, 由相切得:112164440k k y x ⎛⎫∆=--= ⎪⎝⎭,112110y x k k ∴-+=, 又2114y x =,21121104y y k k ∴-+=, 21102y k ⎛⎫∴-= ⎪⎝⎭,12k y ∴=, ∴直线l 的方程为:11220x y y x -+=,由4AB AM →→=,得12034x x x +=,12034y y y +=, 将12034y y y +=代入直线l 方程,解得221121888N yy y y x +-==, 所以01212ABN N S x x y y =-⨯-△212112138248x x yy y +-=-⨯-2212121632y y y y ++=⨯-31232y y -=311832y y +=,又118y y +≥ 所以42ABN S △,当且仅当1y =±时,取到等号,所以ABN面积的最小值为6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线214y x =的焦点为F .()1若点P 为抛物线上异于原点的任一点,过点P 作抛物线的切线交y 轴于点Q ,证明:2PFy PQF ∠=∠. ()2A ,B 是抛物线上两点,线段AB 的垂直平分线交y 轴于点()0,4D (AB 不与x 轴平行),且6AF BF +=.过y 轴上一点E 作直线//m x 轴,且m 被以AD 为直径的圆截得的弦长为定值,求ABE △面积的最大值.【答案】()1证明见解析; ()2 【解析】()1由抛物线的方程可得()0,1F ,准线方程:1y =-,设200,4x P x ⎛⎫ ⎪⎝⎭, 由抛物线的方程可得2x y '=,所以在P 处的切线的斜率为:02x k =, 所以在P 处的切线方程为:()200042x x y x x -=-, 令0x =,可得204x y =-, 即2040,Q x ⎛-⎫ ⎪⎝⎭, 所以2014x FQ =+,而P 到准线的距离2014x d =+,由抛物线的性质可得PF d = 所以PF FQ =,PQF QPF ∠=∠,可证得:2PFy PQF ∠=∠.()2设直线AB 的方程为:y kx m =+,()11,A x y ,()22,B x y ,直线与抛物线联立24y kx mx y =+⎧⎨=⎩,整理可得:2440x kx m --=,216160k m ∆=+>,即20k m +>,124x x k +=,124x x m =-,()21212242y y k x x m k m +=++=+,所以AB 的中点坐标为:()22,2k k m +,所以线段AB 的中垂线方程为:()212(2)y k m x k k -+=--,由题意中垂线过()0,4D ,所以2224k m ++=,即222k m +=,① 由抛物线的性质可得:1226AF BF y y +=++=,所以24226k m ++=,即222k m +=,②设()0,E b ,()222114AD x y =+-,AD 的中点的纵坐标为142y +,所以以AD 为直径的圆与直线m 的相交弦长的平方为:2214442y AD b ⎡⎤+⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()()()222112114444444y y x b b y ⎡⎤-+=+--++⎢⎥⎢⎥⎣⎦()221111444434y b b y by b y b b ⎡⎤-+-+=-+-⎣⎦⎡⎤⎣⎦,要使以AD 为直径的圆截得的弦长为定值则可得3b =,时相交弦长的平方为定值12,即()0,3E所以E 到直线AB的距离为:d = 而弦长AB ==,所以1232EAB S AB d =⋅==-将①代入可得2322212ABE S k k =-+=+=设()6424472f k k k k =-+++为偶函数,0k >>的情况即可,()()()()5342222416142126722167f k k k k k k k k k k ++=---=-+=--' 令()0f k '=,6k =当06k <<,()0f k '>,()f k 单调递增;当k 6<<()0f k '<,()f k 单调递减,所以(k ∈且0k ≠上,66f f ⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为最大值9,所以ABE S的最大值为:212+=。

圆锥曲线焦点三角形面积问题

圆锥曲线焦点三角形面积问题

圆锥曲线焦点三角形面积问题
圆锥曲线焦点三角形面积问题指的是在一个圆锥曲线上,给定焦点和一个点P 的坐标,求得由焦点和该点P构成的三角形的面积。

首先,我们需要了解圆锥曲线和焦点的概念。

圆锥曲线是指在三维空间中一个由直线与一个射线共用一个端点且直线在射线上方的几何图形。

常见的圆锥曲线有椭圆、双曲线和抛物线。

焦点是指在一个几何图形或曲线上与该图形或曲线中的点有特殊关系的点。

要计算由焦点和点P构成的三角形的面积,我们可以利用三角形的面积公式。

三角形的面积可以用其底边和高来计算。

在这个问题中,底边是焦点和点P之间的距离,高是点P到焦点所在的直线的垂直距离。

首先,我们可以使用两点间距离公式计算焦点和点P之间的距离。

假设焦点的坐标为F(x1, y1, z1),点P的坐标为P(x2, y2, z2),则焦点和点P之间的距离为
√((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)。

然后,我们需要计算点P到焦点所在的直线的垂直距离。

这个垂直距离也可以被称为焦距。

焦距可以通过焦点到点P之间的线段与焦点所在的直线的垂直距离来计算。

最后,我们可以利用三角形的面积公式:面积 = 1/2 * 底边 * 高,来计算出由焦点和点P构成的三角形的面积。

需要注意的是,在计算过程中,我们要保证点P在圆锥曲线上,以确保三角形的存在。

综上所述,通过给定焦点和点P的坐标,我们可以计算出由这两 points 构成的三角形的面积。

这个问题涉及到了圆锥曲线的性质和三角形面积的计算方法,通过运用相关的几何知识,我们可以解决这个问题。

高中数学之圆锥曲线之焦点三角形面积知识点

高中数学之圆锥曲线之焦点三角形面积知识点

高中数学之圆锥曲线之焦点三角形面积知识点
什么是焦点三角形?
定义:
椭圆(双曲线)上任意一点与两个焦点所组成的三角形叫做焦点三角形,它是由焦距和焦半径构成的特别的三角形。

其中焦点三角形的面积也是一个非常重要的几何量。

怎么求焦点三角形的面积呢?先看一道例题
公式推导:
同样的方法可以也可以证明得到双曲线的焦点三角形面积公式。

公式如下:
接下来在给出关于焦点三角形顶角的一个结论:
这个结论可以借助焦点三角形面积公式的推导过程来继续说明:
实战演练:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.已知椭圆2212x y +=,12,F F 分别是椭圆的左右焦点,过点B(0,-2)作直线1BF 交椭圆于,C D ,求2F CD S ∆(9)4.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为3,短轴一个端点到右焦点的距离为。

(1)求椭圆C 的方程(2213x y +=) (2)设直线l 与椭圆C 交于A,B 两点,坐标原点O 到直线l,求AOB ∆面积最大值。

) ()的方程求直线时当的最大值的条件下求在的面积为记两点、交于与椭圆直线浙江AB ,S AB ,S b k S AOB ,B A y x b kx y 1,2)2(;10,0)1(.1407.122==<<=∆=++= (Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由2214x b +=,解得12x =±, 所以1212S b x x =-221b b =-2211b b +-=≤. 当且仅当b =S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,,得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭,2241k b ∆=-+,211||||AB x x =-22224214k b k -==+. ②设O 到AB 的距离为d ,则21||S d AB ==,又因为d =221b k =+, 代入②式并整理,得42104k k -+=,解得212k =,232b =,代入①式检验,0∆>, 故直线AB 的方程是22y x =+或22y x =-或22y x =-+,或22y x =-- 7.已知方向向量为()3,1=v 的直线l过点()32,0-和椭圆)0(1:2222>>=+b a by a x C 的焦点,且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上.(1)求椭圆C 的方程; (2)是否存在过点()0,2-E 的直线m交椭圆C于点M 、N ,满足().0tan 1364为原点O MONON OM ≠=⋅若存在,求直线m 的方程;若不存在,请说明理由.解:(1)椭圆C 的方程为12622=+y x(2)直线l 的方程为2,33233,33233-=--=+=x x y x y ()的面积的最小值求四边形证明点的坐标为设垂足为且两点、的直线交椭圆于过两点、的直线交椭圆于过、的左、右焦点分别为已知椭圆ABCD y x ,y x P P BD AC ,C A F ,D B F F F y x )2(;123:,)1(.,.123.32020*******2<+⊥=+(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2221222121)(1)()432k BD x xk x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-, 所以,2222111)12332k k AC k k⎫+⎪+⎝⎭==+⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. 21.(本题满分15分)如图,点P (0,−1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D . (Ⅰ)求椭圆C 1的方程;(Ⅱ)求△ABD 面积取最大值时直线l 1的方程.【命题意图】本题考查椭圆的几何性质,直线与圆的位置关系,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力 【答案解析】 (Ⅰ)由题意得⎩⎨⎧b =1,a =2.所以椭圆C 的方程为x 24+y 2=1.(Ⅱ)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx −1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24−d 2=24k 2+3k 2+1 .又l 1⊥l 2,故直线l 2的方程为x +ky +k =0.由⎩⎨⎧x +ky +k =0, x 24+y 2=1. 消去y ,整理得(4+k 2)x 2+8kx =0故x 0=−8k 4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12|AB |⋅|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3 ⋅134k 2+3=161313,当且仅当k =±102时取等号 所以所求直线l 1的方程为y =±102x −1题目:已知圆221:(1)F x y r ++=与圆2222:(1)(4)F x y r -+=-(04)r <<的公共点的轨迹为曲线E ,且曲线E 与y 轴的正半轴相交于点M .若曲线E 上相异两点,A B 满足直线,MA MB 的斜率之积为14.(1)求曲线E 的方程;(2)证明直线AB 恒过定点,并求定点的坐标; (3)求ABM 面积的最大值.解:(1)设12,F F 的公共点为Q ,由已知得,12||2=F F ,1||QF r =,2||4QF r =-.故1212||||4||QF QF F F +=>, 因此,曲线E 是长轴长24a,焦距22c的椭圆,且2223b a c .所以,曲线E的方程为22143x y .(2)由曲线E 的方程,得上顶点M ,记1122(,),(,)A x y B x y ,由题意知,120,0x x ≠≠. 若直线AB 的斜率不存在,则直线AB 的方程为1xx ,故12y y ,且222112314x yy ,因此2121212133334MA MB y y y k k x x x ,与已知不符,因此直线AB 的斜率存在,设:AB ykxm ,因为直线AB 与曲线E 有公共点,A B ,由22143ykx m x y 得方程222(34)84(3)0k x kmxm 有两非零不等实根12,x x ,所以2221222122(8)4(34)4(3)08344(3)034km k m kmx x k m x x k;又112211223333,MA MBy kx m y kx m k k x x x x ,且14MA MBk k , 故12124(3)(3)x x kx mkx m , 即221212(41)4(3)()4(3)0k x x k mx x m,则22224(3)(41)4(3)(8)4(3)(34)0mk k m km mk ,整理得,23360m m ,即3m 或23m .由120x x ≠知,23m ,即直线AB 恒过定点(0,N . (3)由0∆>且23m得32k >或32k <-, 又212121213||||||()422ABMANMBNMSSSMN x x x x x x22222222384(3)64963412234343424949km m k k k kk k . 所以,当且仅当24912k -=,2k =±时,ABM 的面积最大为2. 考查目标 本题考查的知识点主要有椭圆的定义、直线与椭圆的位置关系、圆锥曲线中的定点问题及基本不等式的简单应用;同时考查学生的运算求解能力与分类讨论及解析几何计算中的设而不求、整体运算等基本思想方法.22.如图所示,椭圆22122:1(0)x y C a b a b+=>>的离心率为2,曲线22:C y x b =-经过椭圆1C 的右焦点. (1)求12,C C 的方程;(2)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点,A B .直线,MA MB分别与1C 相交于,D E . (i )证明:MD ME ⊥;(ii )记,MAB MDE ∆∆得面积分别是12,S S .问:是否存在直线l ,使得1258S S =?请 说明理由.22.(1)由题意知:2c e b c a ==∴=,又从而1a b ==,故12,C C 的方程分别为2221,12x y y x +==-. (2)(i )由题意知:直线l 的斜率存在,设为k ,则直线l 的方程为y kx =,由21y kx y x =⎧⎨=-⎩,消去y 得:210x kx --=,设1122(,),(,)A x y B x y ,则 1212,1x x k x x +=⋅=-, 又点M 的坐标为(0,1)-,所以21212121212121211(1)(1)()11MA MB y y kx kx k x x k x x k k x x x x x x ++++⋅+++⋅=⋅===-⋅⋅所以 MA MB ⊥,即MD ME ⊥.(ii )设直线MA 的斜率为1k ,则直线MA 的方程为11y k x =-由1211y k x y x =-⎧⎨=-⎩,消去y 得:210x k x -⋅=,解得01x y =⎧⎨=-⎩,或1211x k y k =⎧⎨=-⎩ 即点A 的坐标为211(,1)A k k -.又直线MB 的斜率为11k -,同理可得点B 的坐标为21111(,1)B k k --于是21111122k S MA MB k +===由122112y k x x y =-⎧⎪⎨+=⎪⎩,消去y 得:2211(12)40k x k x +-⋅=,解得01x y =⎧⎨=-⎩,或12121214122112k x k k y k ⎧=⎪+⎪⎨-⎪=⎪+⎩,即点D 的坐标为2112211421(,)1212k k D k k -++ 因为直线MB 的斜率为11k -,同理可得点E 的坐标为211221142(,)22k k E k k --++.于是211222118(1)12(12)(2)k k S MD ME k k +===++ 因此:22421111122211(12)(2)1(252)1616S k k k k S k k ++==++ 由题意知424211112115(252),2520168k k k k k ++=∴-+=,212k ∴=或2112k =. 又由点,A B 的坐标可知21211111111k k k k k k k -==-+,2k ∴=± 故满足条件的直线l存在且有两条,其方程分别为,y x y x ==. 22.(本题满分15分)已知斜率为(0)k k的直线l 交椭圆22:14x C y 于1122(,),(,)M x y N x y 两点.(1)记直线,OM ON 的斜率分别为12,k k ,当123()8k k k 时,证明:直线l 过定点;(2)若直线l 过点(1,0)D ,设OMD ∆与OND ∆的面积比为t ,当2512k <时,求t 的取值范围.(3)在(2)的条件下,求OMN ∆面积的最大值. 解: (1)解法1:依题意可设直线l 的方程为y kx n ,其中0k .代入椭圆方程得:222(14)8440k x knxn ,则有12221228144414kn x x k n x x k .……………2分 则121221211212121212()()y y y x y x x kx n x kx n k k x x x x x x12122122()844kx x n x x kx x n .……………5分由条件有224844k k n ,而0k,则有12n, 从而直线l 过定点1(0,)2或1(0,)2-.……………8分 解法2:依题意可设直线l 的方程为x myn ,代入椭圆方程得:222(4)240my mnyn ,则有12221222444mn y y m n y y m .……………2分 则121221122112121212()()()()y y y x y x y my n y my n k k x x x x my n my n1212222212122()2()my y n y y mm y y mn y y n m n .……………5分由条件有2268mm n m ,得12n m .……………7分 则直线l 的方程为12x my m ,从而直线l 过定点1(0,)2或1(0,)2-.……………8分(2)依题意可设直线l 的方程为(1)y k x ,其中0k .代入椭圆方程得:2222(14)8440k x k xk ,则有212221228144414k x x k k x x k .……………9分从而有121222(2)14ky y k x x k …………① 2221212121223(1)(1)()114k y y k x x k x x x x k…………② 由①②得212212()43(14)y y y y k ,……………11分由25012k <<,得244133(14)2k .……………13分 又12OMD OND y St S y ∆∆==,因120y y ,故12y ty ,又212121221()122y y y y ty y y y t,从而有411232tt,得22310302520t t t t ⎧-+<⎨-+>⎩, 解得23t <<或1132t <<.……………15分 解法2:依题意可设直线l 的方程为x my n ,代入椭圆方程得:22(4)230my my ,则有1221222434m y y m y y m .……………2分由①②得22212212()4(1)3(4)y y m t y y m t,……………11分 222222444448,1,13(1)3(1)3(1)3m ttt m t m t t 从而有411232tt,得22310302520t t t t ⎧-+<⎨-+>⎩, 解得23t <<或1132t <<.……………15分 21.(本小题满分15分)已知椭圆222210)x y a b a b+=>>(的离心率3e =,过点A (0,)b -和B (,0)a的直线与原点的距离为2. (1)求椭圆的方程;(2)设12F F 、为椭圆的左、右焦点,过2F 的内切圆半径r 的最大值.21、(理)()221 1 3xy += ()22213x PQ x ty y =++=设:并整理得22(3)10t y ++-=,22)4(3)0t ∆=++>()()1,12,2,P x y Q x y 设,1212213y y y y t +=-+则 =12|y y -==|==212max2111|34t y y t ∴==-=+当,即时,|1121211|||22PQF s F F y y ∆∴=-≤⋅=|11111(||||||)22PQF s PF QF PQ r ∆=++=⋅=又,max 12r ∴==。

相关文档
最新文档