无机化学 第五章 电化学与氧化还原平衡
化学反应中的电化学平衡和电极电势

化学反应中的电化学平衡和电极电势电化学是研究电现象与化学变化之间相互关系的学科。
在化学反应中,电化学平衡和电极电势是两个重要的概念。
本文将详细介绍电化学平衡和电极电势,并探讨它们在化学反应中的作用。
一、电化学平衡电化学平衡是指在电化学反应中,电子传递和离子迁移速率达到平衡状态的情况。
在化学平衡条件下,氧化和还原反应同时进行,电荷转移速率相等。
电化学平衡与能量平衡紧密相关,通过控制电极上的电势差,可以调节反应速率和化学平衡。
1.1 氧化反应氧化反应是指物质失去电子的过程,通常与还原反应同时进行。
在电化学反应中,氧化和还原反应共现,氧化半反应是指失去电子的反应。
氧化反应的通常特征是物质电离能随反应进行而增加。
1.2 还原反应还原反应是指物质获得电子的过程,通常与氧化反应同时进行。
在电化学反应中,还原半反应是指获得电子的反应。
还原半反应中,物质的电离能随反应进行而降低。
1.3 Nernst方程Nernst方程是描述非标准电极电势的数学关系式。
Nernst方程可用于计算电极的标准还原电势与非标准电势之间的关系。
在电化学反应中,Nernst方程用于计算电极的电势差,从而得出反应进行的方向和速率。
Nernst方程的数学表达式如下:E = E0 - (0.059/n) * log(Q)其中,E为电极电势,E0为标准还原电势,n为电子转移的数量,Q为反应物和生成物浓度的比值。
二、电极电势电极电势是指相对于参比电极的电势差,用来描述电极上的电化学反应。
电极电势是评价电化学反应以及化学物质氧化还原能力的重要指标。
2.1 参比电极参比电极是一个标准电极,其电势被定义为零。
常见的参比电极有标准氢电极和齐次参比电极。
标准氢电极的电势被定义为0V,齐次参比电极的电势在不同的溶液中具有固定值。
2.2 电极电势的测定测定电极电势的方法主要有电动势测量和电位差测量两种。
电动势测量是通过建立一个与待测电极电势相等但方向相反的电势的系统来测定电极电势。
无机化学中的氧化还原反应和电化学

无机化学中的氧化还原反应和电化学无机化学是研究无机物质结构、性质和变化规律的科学分支。
其中,氧化还原反应和电化学是无机化学中重要且广泛应用的领域。
本文将探讨氧化还原反应和电化学的基本概念、应用和未来发展。
一、氧化还原反应的基本概念氧化还原反应是指物质中电子的转移过程。
在氧化还原反应中,被氧化的物质失去电子,而被还原的物质获得电子。
这种电子的转移导致了物质的化学变化。
氧化还原反应可以通过氧化态的变化来描述。
在反应中,氧化剂接受电子,其氧化态减少,而还原剂失去电子,其氧化态增加。
例如,氯气(Cl2)和氢气(H2)的反应可以表示为:Cl2 + 2e- -> 2Cl- (氯气被还原,氧化态减少)H2 -> 2H+ + 2e- (氢气被氧化,氧化态增加)氧化还原反应在生活和工业中有广泛的应用。
例如,电池的工作原理就是基于氧化还原反应。
电池中的正极和负极之间发生氧化还原反应,产生电流。
此外,氧化还原反应还可以用于金属的防锈和清洁等领域。
二、电化学的基本概念电化学是研究电与化学反应之间相互关系的学科。
它主要研究电解过程和电化学反应的机理。
在电化学中,电解是指通过外加电压将化学反应逆转的过程。
电解可以分为电解质溶液和电解固体两种情况。
在电解质溶液中,电解质分子或离子在电场的作用下发生氧化还原反应。
而在电解固体中,固体物质通过电子转移发生氧化还原反应。
电化学反应是指在电化学过程中发生的化学反应。
电化学反应可以是氧化还原反应,也可以是非氧化还原反应。
电化学反应的速率和方向可以通过电极电势来控制。
正电势的电极是发生氧化反应的位置,负电势的电极是发生还原反应的位置。
电化学在能源存储和转换、电解水制氢、电镀和电解池等领域有着广泛的应用。
例如,锂离子电池和燃料电池是电化学能源存储和转换的重要设备。
它们利用氧化还原反应将化学能转化为电能,实现能源的高效利用。
三、氧化还原反应和电化学的应用氧化还原反应和电化学在生活、工业和环境保护等领域有着广泛的应用。
无机化学-氧化还原反应及电化学基础

6-3 电池电动势和电极电势
第二十七页,共69页。
6-3 电池电动势和电极电势
E 甘汞参比电极
构成: 由Hg/Hg2Cl2/KCl溶液组成;
2) 电极反响: H 2 C 2 g (s )l 2 e 2 H (l) g 2 C (a l)q 3) 电极电势:
-3,
; E 0.280V
电极符号:Pt2, H H2︱H2 +e(c ) H2PtC , C2l2l (p2 )︱eC l- (2c)Cl
“︱〞表示气体与溶液之间的界面,即气液界面
(p) 表示压力;
第十四页,共69页。
6-2 原电池
2 电极的类型和电池符号:
C 离子电极 组成:由同一种元素的不同氧化态的两种离子的溶液; 例:Fe3+/Fe2+电极
第十九页,共69页。
6-2 原电池
2.2 电池符号:
负极: 离子电极
电池反响:
电M 池符号4 : 8 n H O 5 F 2 e M 2 5 F n 3 4 e H 2 O
(-) Pt︱Fe2+ (c1), Fe3+(c2)‖MnO4+ (c3), H+(c4),Mn2+(c5)︱Pt (+)
和绿色Cr2(SO4)3,配平反响方程;
氧化数确定:
反响物: K2Cr2O7 [+6] FeSO4
[+2]
A
生成物: Cr2(SO4)3 [+3] Fe2(SO4)3 [+3]
每个Cr原子变化数=3
B
每个Fe原子变化数=1
C 总氧化数降低(2x3)x1
D
C 2 O 4 2 r 2 3 F 2 1 e H 4 2 C 3 2 r 3 F 3 7 e H 2 O
大学无机化学第五章 氧化还原

解:① 把此反应改写为离子反应方程式:
2MnO4- + 16H+ +10 Cl - ≒ 2Mn2+ +5Cl2 + 8H2O ② 根据离子反应式写出电极反应 正极(还原): MnO4- + 8H+ + 5e ≒ Mn2+ + 4H2O 负极(氧化): 2Cl- - 2e ≒ Cl2
3. 标准电极电势表(298.15K,酸性溶液中)
氧化态 电子数 还原态
氧 化 剂 的 氧 化 能 力 增 强 K+ + e Na+ + e Zn2+ +2e Fe2+ +2e Sn2+ +2e Pb2+ +2e 2H+ +2e Cu2+ +2e I2 +2e Fe3+ + e Ag+ + e MnO4-+8H+ +5e F2 + 2e ≒ ≒ ≒ ≒ ≒ ≒ ≒ ≒ ≒ ≒ ≒ ≒ ≒ EΘ/V K -2.931 Na -2.710 Zn - 0.762 Fe - 0.447 Sn - 0.14 Pb - 0.126 H2 +0.000 Cu +0.342 2I+0.536 Fe2+ +0.771 Ag +0.800 Mn2++4H2O +1.507 2F+2.866 还 原 剂 的 还 原 能 力 增 强
(3) 电极符号:Pt(s) ︳H2 (P θ) ︳H+ (c=1)
氢电极作为标准电极,使用条件非常严格,制作和纯化 复杂故在实际测定时,常采用甘汞电极作为参比电极。
饱和甘汞电极:
《无机化学》第五章 氧化还原反应和电化学基础

二、氧化还原反应方程式的配平
1. 氧化值法
配平原则:氧化剂中元素氧化值降低的总数等 于还原剂中元素氧化值升高的总数。
配平步骤: (1)写出反应方程式,标出氧化值有变化 的元素,求元素氧化值的变化值。
(2)根据元素氧化值升高总数和降低总数相等 的原则,调整系数,使氧化值变化数相等。
(3)用观察法使方程式两边的各种原子总数相 等。
酸表。
(4)E是电极处于平衡状态时表现出来的特
征,与反应速率无关。
(5)E仅适用于水溶液。
5.饱和甘汞电极:
Hg | Hg2Cl2(s) |KCl (饱和)
Hg2Cl2 (s) + 2e
2Hg(l) +2Cl-
E (Hg2Cl2/Hg)=0.245V
三、 影响电极电势的因素
1.影响 因素
(1)电极的本性:即电对中氧化型或还 原型物质的本性。
还原型:在电极反应中同一元素低氧化值的物质。)
电对:氧化型/还原型
例:MnO2 +4H+ + 2e
Mn2+ +2H2O
电对:MnO2 / Mn2+
(2)E与电极反应中的化学计量系数无关。
例:Cl2 + 2e 1/2Cl2 + e
2Cl- E(Cl2/Cl-)=1.358V Cl-
(3)电极反应中有OH- 时查碱表,其余状况查
(3)分别配平两个半反应,使等号两边的原子 数和电荷数相等。
(4)根据得失电子数相等的原则,给两个半 反应乘以相应的系数,然后合并成配平的离子 方程式。
(5)将离子方程式写成分子方程式。
离子电子法配平时涉及氧原子数的增加和减 少的法则:
大学无机化学课件氧化-还原

目录
CONTENTS
• 氧化-还原反应的基本概念 • 氧化-还原反应的原理 • 氧化-还原反应的实例 • 氧化-还原反应的应用 • 氧化-还原反应的实验操作
01 氧化-还原反应的基本概念
CHAPTER
定义与分类
定义
氧化-还原反应是电子在两个不同原 子间转移的反应,其中氧化是指电子 损失的过程,还原则是电子获得的过 程。
ABCD
还原剂是能够提供电子的 物质,通常是具有较低氧 化数的元素或化合物。
常见的氧化剂包括氧气、 高锰酸钾、硝酸等,常见 的还原剂包括氢气、金属、 碳等。
氧化数的变化与电子转移的关系
氧化数表示元素或化合物在氧化-还原状态下的电荷数, 可以用来描述电子转移的过程。
当电子从还原剂转移到氧化剂时,还原剂的氧化数升高, 而氧化剂的氧化数降低。
通过双线桥法或单线桥法表示电子转移的方向和数量,清晰地展示出氧化剂、还 原剂以及电子转移的过程。
电极反应式表示法
将氧化-还原反应拆分为两个半反应,分别表示为阳极和阴极反应式,有助于理 解和分析反应机理。
02 氧化-还原反应的原理
CHAPTER
电子转移过程
01 02 03 04
电子转移是氧化-还原反应的核心,它决定了反应的进行方向和速率 。
金属与酸反应
金属与酸反应,通常会生 成氢气和对应的金属盐, 同时金属被氧化。
非金属的氧化
非金属氧化物生成
非金属与氧气反应,生成非金属氧化物,如二氧化碳 的生成。
非金属燃烧
非金属在氧气中燃烧,如硫在空气中燃烧生成二氧化 硫。
非金属与碱反应
非金属与碱反应,通常会生成盐和水,同时非金属被 氧化。
氧化还原平衡电化学基础

拓展电化学技术的应用领 域
将电化学技术应用于其他领域 ,如生物医学、传感器、电子 器件等,可以开拓新的应用领 域并促进相关领域的发展。
THANKS
感谢观看
保持实验室通风良好
注意电源安全
在实验过程中,可能会产生有毒或刺激性 气体,因此应保持实验室通风良好,及时 排出有害气体。
在接通电源进行实验时,应注意电源安全 ,避免电极短路或过载,以免发生意外事 故。
实验结果分析
记录实验数据
在实验过程中,应认真观察并 记录电极反应的现象、电流的
变化情况等数据。
整理数据
电解过程
电解池
电解过程是在外加电源的作用下,在电解池中发生的氧化还 原反应。
电解产物
电解过程中,根据电解质的性质和电解条件的不同,会产生 不同的电解产物。
电镀过程
电镀原理
电镀过程是通过电解方法,在金属表 面沉积金属或合金的过程。
电镀应用
电镀广泛应用于工业、电子、航空航 天、汽车、建筑等领域,用于提高材 料表面的耐磨性、耐腐蚀性和美观度 等。
深入研究反应机理和动力 学过程
通过理论计算和实验手段,深 入揭示氧化还原反应的微观机 制和动力学过程,有助于优化 电化学反应过程和提高能源转 换效率。
发展新型电化学储能技术
针对可再生能源的间歇性特点 ,发展高效、长寿命、低成本 的新型电化学储能技术,如锂 硫电池、钠离子电池等,对于 实现可再生能源的高效利用具 有重要意义。
还原态
表示某元素被还原的状态,通常用负 号“-”表示,例如Fe0的还原态为0。
氧化还原反应的方向
氧化反应
物质失去电子的反应,通常需要外界提供能量。
还原反应
物质得到电子的反应,通常释放能量。
无机化学习题解答第五章

第五章氧化-还原反应无机化学习题解答(5)思考题1.什么是氧化数如何计算分子或离子中元素的氧化数氧化数是某一原子真实或模拟的带电数。
若某一原子并非真实得到若失去电子而带电荷,可以认为得到与之键合的电负性小于它的原子的电子或给予与之键合的电负性大于它的原子电子,然后计算出来的带电情况叫氧化数。
已知其他原子的氧化数,求某一原子的氧化数时可用代数和的方法,中性分子总带电数为零;离子总带电数为离子的电荷。
2.指出下列分子、化学式或离子中划线元素的氧化数:As2O3 KO2 NH4+ Cr2O72- Na2S2O3 Na2O2 CrO5 Na2PtCl6 N2H2 Na2S52.As2O3 +3,KO2 +1,NH4+ -3,Cr2O72-+3,Na2S2O3 +2,Na2O2 -1,CrO5 +10,Na2PtCl6 +4,N2H2 -1,Na2S5 -2/5,3.举例说明下列概念的区别和联系:⑴氧化和氧化产物⑵还原和还原产物⑶电极反应和原电池反应⑷电极电势和电动势3.⑴氧化是失去电子氧化数升高,所得氧化态较高产物即为氧化产物。
⑵还原是得到电子氧化数降低,所得氧化态较较产物即为还原产物。
⑶在某个电极上发生的反应为电极反应,分为正极的还原反应和负极的氧化反应,总反应为原电池反应。
⑷固体电极材料与所接触的溶液间的电势差即为该原电池的电极电势。
两电极构成原电池时两电极间的电势差为该原电池的电动势。
4.指出下列反应中何者为氧化剂,它的还原产物是什么何者为还原剂,它的氧化产物是什么⑴2FeCl3+Cu→FeCl2+CuCl2⑵Cu+CuCl2+4HCl→2H2[CuCl3]⑶Cu2O+H2SO4→Cu+CuSO4+H2O4.⑴氧化剂:FeCl3,还原产物:FeCl2,还原剂:Cu,氧化产物:CuCl2。
⑵氧化剂:CuCl2,还原产物:2H2[CuCl3],还原剂:Cu,氧化产物:2H2[CuCl3]。
⑶氧化剂:Cu2O,还原产物:Cu,还原剂:Cu2O,氧化产物:CuSO4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 氧化还原电对
同一元素的氧化型和还原型构成的共轭体 系称为氧化还原电对。
用“氧化型/还原型”表示。
例:Cl2/Cl-,I2/I-
氧化还原电对的书写形式与反应式有关。
半反应
电对
MnO4-+8H++5e=Mn2++4H2O MnO4-/Mn2+ MnO4-+2H2O+3e=MnO2+4OH- MnO4-/Mn2O
还原:在氧化和还原反应中,元素 氧化数降低的过程称为还原。
特征: 反应中氧化过程和还原过程同时发生 5
氧化剂:得电子的物质,氧化数降低。 还原剂:失电子的物质,氧化数升高。 氧化反应:失电子的过程 还原反应:得电子的过程 氧化性:得电子的能力 还原性:失电子的能力
6
反应物 电子 发生反 氧化数 呈现
12
2) 离子-电子法 电荷守恒 质量守恒
酸性介质
多1个O
+ 2H+H2O
碱性介质
+ H2O 2OH-
13
例:配平反应KMnO4 + Na 2SO3+H2SO4
Mn2++SO42-+H2O
1)写出离子反应式
2)写成两个半反应
3)分别配平两个半反应式中的H和O。
14
4)根据“氧化剂得电子总和等于还原剂失 电子总和”的原则,在两个半反应前面乘 上适当的系数相减并约化。
元素原子
概 念 表观电荷
数
某元素一个原子同 两原子间共用 H原子化合(置换) 电子对数
的能力
数值
0,正负整 数。正负
0、正、负整数 正整数
分数
实例
CO
C O
+ 2 +2价 - 2 -2价
3
4
2. 氧化与还原
0
-1
-1 0
Cl2 2K I 2K C l I2
氧化:在氧化和还原反应中,元素 氧化数升高的过程称为氧化。
17
电极反应:正、负极上发生的半反应,称为电极反应。
负极(锌极):Zn-2e Zn2+ (氧化反应) 正极(铜级):Cu2++2e Cu (还原反应)
电池反应:由正极反应和负极反应所构成的总反应。 Zn + Cu2+ Zn2+ + Cu
18
原电池符号
(-) Zn|ZnSO4(c1)||CuSO4(c2)|Cu (+) 1) 左边表示负极,右边表示正极 2) “|”表示界面,“||”表示盐桥 3) c1,c2表示各溶液浓度,若有气体,注明气
写出化学反应方程式
确定有关元素氧化态升高及降低的数值
确定氧化数升高及降低的数值的最小公倍数。找出 氧化剂、还原剂的系数。
核对,可用H+, OH–, H2O配平。
11
例: As2S3 + HNO3 H3AsO4 + H2SO4 + NO
氧化数升高的元素:
2As3+ → 3S2– →
2As5+ 3S6+
5)检查质量平衡及电荷平衡。
15
5.2 电极电势
1.原电池:由氧化还原反应
产生电流,把化学能变为电能的装 置。通常由两个半电池用盐桥连接 构成。
Cu-Zn原电池
16
电极(半电池)
正极—— 流入电子的电极。 即发生还原反应的电极
负极—— 流出电子的电极。 即发生氧化反应的电极
铜-锌原电池: 锌(阳)极为负极; 铜(阴)极为正极。
第5章 电化学与氧化还原平衡
1
5.1 氧化还原反应
1. 氧化数
假设在形成化学键时成键电子转移给电负性大 的原子时所求得的原子所带的电荷数。
规定:
1)单质中元素的氧化数为零 2)简单离子中元素的氧化数为电荷数
2
3)中性分子中各元素氧化数的代数和为 零,复杂离子中各元素氧化数的代数 和等于 离子所带电荷数。
(-)Pt| Sn2+(c1) , Sn4+ (c2) Fe2 + (c3) , Fe3+(c4) |Pt(+)
20
例
MnO4-+5Fe2++8H+=Mn2++5Fe3++4H2O 电极反应:(-)Fe2++e=Fe3+
(+)MnO4-+8H++5e=Mn2++H2O 符号:
(-)Pt|Fe2+(c1),Fe3+(c2)|| MnO4-(c3),Mn2+(c4),H+(c5)|Pt(+)
4)在化合物中,氢的氧化数一般为+1 (在 活泼金属氢化物中为-1) ; 氧的氧化数一般为
-2 (在过氧化物中为-1; 在超氧化物 KO2中为1/2; 在OF2中为+2 ) ; 碱金属 元素氧化数为 +1; 氟的氧化数为 –1 。
3
元素的氧化数、化合价、共价键数的区别
氧化数 化 合 价 共 价 键 数
体分压。 4) 若没有金属参加,引入惰性金属(如Pt)作
导体,构成电极。
19
5)相同聚集状态(相同相态)的同一元素不 同价态物质可组成氧化还原电对如Fe2+(c) 和Fe3+(c),PbSO4(s)和PbO2 (s)在电池符 号表示中两者用","号隔开
反应:2Fe3++Sn2+=Sn4++2Fe2+ 的电池符号为:
凡有参加氧化还原反应及电极反应的物质有的自
身虽无发生氧化还原反应,在原电池符号中仍需
表示出来
21
例
(-)Pt|HNO2(c1),NO3-(c2),H+(c3) ||Fe3+(c4),Fe 2+(c5)|Pt(+)
电极反应: 负极:HNO2+H2O-2e=NO3-+3H+ 正极:Fe3++e=Fe2+ 电极反应:2Fe3++HNO2+H2O=2Fe2++NO3-+H+
升高 4 共升高28
升高24
N5+ →
N2+
降低3
3As2S3 + 28HNO3 6H3AsO4 + 9 H2SO4 +
28NO
左边28个H, 84个O ;右边36个H,88个 O
左边比右边少8个H,少4个O
3As2S3 + 28HNO3 + 4 H2O
6H3AsO4 + 9 H2SO4 + 28NO
9
在氧化还原电对中,氧化型的氧化能力 越强,则其共轭还原型的还原能力越 弱;反之,还原型的还原能力越强,则 其共轭氧化型的氧化能力越弱。氧化还 原反应是两个氧化还原电对共同作用的 结果,反应一般按照较强的氧化剂和较 强的还原剂相互作用的方向进行。
10
5. 氧化还原方程式的配平
1) 氧化数法
原则:还原剂氧化数升高数和氧化剂氧化数降低数相 等(得失电子数目相等)
得失 应
变化 性质
物质
氧化剂 得 还原 降低 氧化性 活泼非金 属,高价 离子
还原剂 失 氧化 升高 还原性 活泼金属 低价离子
7
3. 氧化还原半反应
Cl2+2KI = 2KCl+I2
Cl2+2e 2Cl2I--2e I2
氧化还原半反应
氧化还原半反应式中,氧化数较高的物质称 为氧化型物质,氧化数较低的物质称为还原 型。