五年级奥数第最大最小

合集下载

小学五年级奥数关于最值问题的讲解

小学五年级奥数关于最值问题的讲解

【导语】“最⼩、最多最少、最长最短等问题”称之为“最值问题”,最值问题是普遍的应⽤类问题,主要解决有“最”字的描述的问题,涉及类⽬⼴泛,是数学、物理中常见的类型题⽬。

以下是整理的相关资料,希望对您有所帮助!【篇⼀】 最值问题 【含义】科学的发展观认为,国民经济的发展既要讲求效率,⼜要节约能源,要少花钱多办事,办好事,以最⼩的代价取得的效益。

这类应⽤题叫做最值问题。

【数量关系】⼀般是求值或最⼩值。

【解题思路和⽅法】按照题⽬的要求,求出值或最⼩值。

例1在⽕炉上烤饼,饼的两⾯都要烤,每烤⼀⾯需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟? 解先将两块饼同时放上烤,3分钟后都熟了⼀⾯,这时将第⼀块饼取出,放⼊第三块饼,翻过第⼆块饼。

再过3分钟取出熟了的第⼆块饼,翻过第三块饼,⼜放⼊第⼀块饼烤另⼀⾯,再烤3分钟即可。

这样做,⽤的时间最少,为9分钟。

答:最少需要9分钟。

例2在⼀条公路上有五个卸煤场,每相邻两个之间的距离都是10千⽶,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。

现在要把所有的煤集中到⼀个煤场⾥,每吨煤运1千⽶花费1元,集中到⼏号煤场花费最少? 解我们采⽤尝试⽐较的⽅法来解答。

集中到1号场总费⽤为1×200×10+1×400×40=18000(元) 集中到2号场总费⽤为1×100×10+1×400×30=13000(元) 集中到3号场总费⽤为1×100×20+1×200×10+1×400×10=12000(元) 集中到4号场总费⽤为1×100×30+1×200×20+1×400×10=11000(元) 集中到5号场总费⽤为1×100×40+1×200×30=10000(元) 经过⽐较,显然,集中到5号煤场费⽤最少。

小学五年级奥数第38讲 最大最小问题(含答案分析)

小学五年级奥数第38讲 最大最小问题(含答案分析)

第38讲最大最小问题一、专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。

解答最大最小问题通常要用下面的方法:1、枚举比较法。

当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2、着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。

二、精讲精练例题1把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。

问这个和最大值是多少?练习一1、将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2、把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。

例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。

把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?练习二1、一把钥匙只能开一把锁。

现有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁。

最多要试开多少次才能配好全部钥匙和锁?2、如果四个人的平均年龄是25岁,其中没有小于17岁的,且四人年龄都不相同。

那么年龄最大的最多是几岁?例题3 一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)练习三1、一个三位数除以43,商a余数是b(a、b都是整数),求a+b的最大值。

2、如下图,有两条垂直相交的线段AB、CD,交点为E。

已知DE=2CE,BE=3AE。

在AB和CD取3个点画三角形,问:怎样取三个点,画出的三角形面积最大?例题4一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。

五年级奥数上册第四讲.最大公约数和最小公倍数

五年级奥数上册第四讲.最大公约数和最小公倍数

分类讨论
• • • • • • 如果d=1时: 由d(a1-b1)=4得a1-b1=4; 由d×da1b1=252可得a1b1=252 252=1×252=4×63=7×36=9×28 但此时都不满足a1-b1=4 所以d≠1
• • • • • • • • • • •
如果d=2时: 由d(a1-b1)=4得 a1-b1=2; 由d×da1b1=252可得 a1b1=63 63=1×63=7×9 此时63-1=62≠2不满足a1-b1=2 , 9-7=2满足a1-b1=2 所以d=2并且a1=9、b1=7 所以a=18、b=14 答:这两个数为18和14。
(二)已知最大公约数和最小公倍数求两个数
• 例2、已知两数的最大公约数是21,最小公倍数 是126。求着两个数的和是多少? • 分析:思路1,由最大公约数与最小公倍数的积等 于两个数的积可得到两个数的积为 • 21×126=2646, • 再利用分解质因数后重新组合即可 • 2646=2×3×3×3×7×7 • =(3×7×2)×(3×7×3)=42×63 • 或 =(3×7)×(3×7×2×3)=21×126
如果d =1则a1+b1=54 a1×b1-1=114 即a1×b1=115 115=1×115=5×23 但是1+115=116≠54 5+23=28≠54 d≠1 下面分别讨论d=2、3、6的情况得到: d=6是成立,此时a1=4,b1=5 a=6×4=24 b=6×5=30
• 例6、已知两个自然数的差为4,它们的最 大公约数与最小公倍数的积为252,求这两 个自然数 • 分析:差为4即a-b=4即d(a1-b1)=4 • 最大公约数与最小公倍数的积为252即 • d×da1b1=d×da1b1=252=2×2×3×3×7 • 所以d是6的约数,即d是4与6的公约数, d=1或2

五年级奥数基础教程最大公约数与最小公倍数小学

五年级奥数基础教程最大公约数与最小公倍数小学

五年级奥数基础教程最大公约数与最小公倍数小学如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。

如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。

自然数a1,a2,…,a n的最大公约数通常用符号(a1,a2,…,a n)表示,例如,(8,12)=4,(6,9,15)=3。

如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。

在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。

自然数a1,a2,…,a n的最小公倍数通常用符号[a1,a2,…,a n]表示,例如[8,12]=24,[6,9,15]=90。

常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。

例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。

现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?分析与解:因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。

题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是144,180,240的最大公约数。

所以(144,180,240)=2×2×3=12,即每60元的茶叶分装成12袋,每袋的价格最低是60÷12=5(元)。

为节约篇幅,除必要时外,在求最大公约数和最小公倍数时,将不再写出短除式。

例2 用自然数a去除498,450,414,得到相同的余数,a最大是多少?分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。

498-450=48,450-414=36,498-414=84。

五年级奥数-最大公因数和最小公倍数

五年级奥数-最大公因数和最小公倍数

五年级奥数-最大公因数和最小公倍数大,问最大能剪成多大的正方形?基本概念公约数和最大公约数是数学中常见的概念。

几个数公有的约数称为这几个数的公约数,其中最大的一个称为这几个数的最大公约数。

同样地,几个数公有的倍数称为这几个数的公倍数,其中最小的一个称为这几个数的最小公倍数。

如果两个数的最大公约数是1,那么这两个数就是互质数。

例题分析例1:求能整除30、60、75的最大正整数。

解:30=2×3×5,60=2×2×3×5,75=3×5×5,这三个数的公约数是3和5,所以它们的最大公约数是15.例2:求能被3、4、5整除的最小正整数。

解:3、4、5的最小公倍数是60,所以这个数是60的倍数,且它还要被3、4、5整除,所以这个数是120.例3:将120厘米、180厘米和300厘米的铁丝截成相等的小段,每根铁丝都不能有剩余,每小段最长多少厘米?一共可以截成多少段?解:这三根铁丝的最大公约数是60,所以每小段最长的长度是60厘米。

将每根铁丝都截成长度为60厘米的小段,可以得到2段、3段和5段,一共可以截成10段。

例4:加工某种机器零件需要三道工序,第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个零件,第三道工序每个工人每小时可完成5个零件,要使加工生产均衡,三道工序至少各分配几个工人?解:设第一道工序分配的工人数为x,第二道工序分配的工人数为y,第三道工序分配的工人数为z,则有3x=10y=5z。

因为要使加工生产均衡,所以x、y、z都要是正整数,且它们的比值要尽可能接近,所以x:y:z=10:3:6,所以至少要分配10个工人。

例5:一次会餐供有三种饮料,餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料。

问参加会餐的人数是多少人?解:设A、B、C饮料分别用了a、b、c瓶,则有a+b+c=65.由题意可知,A饮料每2人饮用1瓶,所以a=2x;B饮料每3人饮用1瓶,所以b=3y;C饮料每4人饮用1瓶,所以c=4z。

小学数学奥数基础教程(五年级)--18

小学数学奥数基础教程(五年级)--18

小学数学奥数基础教程(五年级)本教程共30讲本教程共30讲最大最小同学们在学习中经常能碰到求最大最小或最多最少的问题,这一讲就来讲解这个问题。

例1两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?分析与解:将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:15=1+14,1×14=14;15=2+13,2×13=26;15=3+12,3×12=36;15=4+11,4×11=44;15=5+10,5×10=50;15=6+9,6×9=54;15=7+8,7×8=56。

由此可知把15分成7与8之和,这两数的乘积最大。

结论1如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。

特别地,当这两个数相等时,他们的乘积最大。

例2比较下面两个乘积的大小:a=57128463×87596512,b=57128460×87596515。

分析与解:对于a,b两个积,它们都是8位数乘以8位数,尽管两组对应因数很相似,但并不完全相同。

直接计算出这两个8位数的乘积是很繁的。

仔细观察两组对应因数的大小发现,因为57128463比57128460多3,87596512比87596515少3,所以它们的两因数之和相等,即57128463+87596512=57128460+87596515。

因为a的两个因数之差小于b的两个因数之差,根据结论1可得a>b。

例3用长36米的竹篱笆围成一个长方形菜园,围成菜园的最大面积是多少?分析与解:已知这个长方形的周长是36米,即四边之和是定数。

长方形的面积等于长乘以宽。

因为长+宽=36÷2=18(米),由结论知,围成长方形的最大的面积是9×9=81(米2)。

例3说明,周长一定的长方形中,正方形的面积最大。

例4两个自然数的积是48,这两个自然数是什么值时,它们的和最小?分析与解:48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。

五年级奥数-最大公约数与最小公倍数(1-3)

五年级奥数-最大公约数与最小公倍数(1-3)

五年级奥数-最大公约数与最小公倍数(1)1.五年一班去划船,他们算了一下,如果增加一条船,正好每船坐6个,如果减少一条船,正好每船坐9人,这个班有多少人?2.有一个电子表,每走9分钟这一次灯,每到整点响一次铃,中午12点整,电子表既响铃又灯,请问下一次既响铃又亮灯是几点钟?3.两个整数的最小公倍数为140,最大公约数为4,且小数不能整除大数,求这两个数。

4.一个数被2除余1,被3除余2,被4除余3,被5除余4,被6除余5,此数最小是几?5.一次会餐提供三种饮料,餐后统计,三种饮料共用65瓶,平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料,请问参加会餐的有多少人?6.已知A与B的最大公约数为6,最小公倍数为84,且A×B=42,求B。

7.两个数的最大公约数为12,最小公倍数为180,且较大数不能被较小数整除,求这两个数,8.甲乙两数的最大公约数为75,最小公倍数为450,当这两个数分别为何值时,它们差最小。

9.已知A和B的最大公约数是31,且A×B=5766,求A和B。

10.有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问这个盘子里最少有多少个水果?11.有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?12.一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最小有多少枝?五年级奥数-最大公约数与最小公倍数(2)13.把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?14.把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块?15.用96朵红花和72朵白花做成花束,如果各花束里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花?16.从小明家到学校原来每隔50米安装一根电线杆,加上两端的两根一共是55根电线杆,现在改成每隔60米安装一根电线杆,除两端的两根不用移动外,中途还有多少根不必移动?17.在一根长100厘米的木棍上,自左到右每隔6厘米染一个红点,同时自右到左每隔5厘米染一个红点,染后沿红点将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?18.每筐梨,按每份两个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?19.现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?20.有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?21.有一个商店今年7月1日开业,有三个批发商从这个商店批货,甲每隔6天来一次,乙每隔8天来一次,丙每隔9天来一次,问这三个批发商在7月1日在碰面后,再过多少天他们还在这家商店碰面?到明年7月1日,他们一共碰面多少次?五年级奥数-最大公约数与最小公倍数(3)1.两个自然数的最大公约数是6,最小公倍数是72。

五年级奥数第24讲——最大公因数与最小公倍数

五年级奥数第24讲——最大公因数与最小公倍数

学生课程讲义最大公因数与最小公倍数是小学数学的基本内容,求几个数的最大公因数或最小公倍数的基本方法有因数分解法、短除法、辗转相除法等,在课外活动及竞赛中经常出现这两个概念及用其求解方法处理的问题,a1,a2,...an这n个数的最大公因数用记号(a1,a2,...an)表示,最小公倍数用[a1,a2,...an]表示。

【例1】求2520,14850,819的最大公因数和最小公倍数。

随堂练习1求35,98,112的最大公因数和最小公倍数,(用因数分解法)【例2】求36,108,126的最大公因数和最小公倍数。

随堂练习2求403,527,713的最大公因数和最小公倍数。

【例3】夜里下了一场大雪,早上,小龙和爸爸一起步测花园里一条环形小路的长度,他们从同一点同向行走,小龙每步长54厘米,爸爸每步长72厘米,两人各走完一圈后又都回到出发点,这时雪地上只留下60个脚印,那么这条小路长()米。

随堂练习3甲、乙、丙三人到图书馆去借书,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果3月5日他们三人在图书馆相遇,那么下一次都到图书馆是几月几日?【例4】a=36,b=54,证明(a,b)×[a,b]=a×b随堂练习4设a=108,b=720,验证:(a,b)×[a,b]=a×b 【例5】现有4个不同的自然数,它们的和是1111,如果要使这4个数的公因数尽可能大,那么,这4个数的公因数最大是()随堂练习5有很多方法可以将2001写成25个自然数(可以相同,也可以不同)的和,对于每一种分法,这25个自然数均有相应的最大公因数,那么这些最大公因数最大值是多少?【例6】某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大最小
例1两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?
结论1如果两个整数的和一定,那么这两个整数的(),他们的乘积越大。

特别地,当这两个数相等时,他们的乘积最大。

例2比较下面两个乘积的大小:
a=57128463×87596512,
b=57128460×87596515。

例3用长36米的竹篱笆围成一个长方形菜园,围成菜园的最大面积是多少?
例4、用1、2、3、4、5、6这六个数字组成两个三位数,使这两个三位数的积最小,最小的积是多少?如果要最大有是多少?
思考:用1、2、3、4、5、6、7这七个数字组成四位数乘三位数,使积最小,最小的积是多少?如果要最大有是多少?
例5要砌一个面积为72米2的长方形猪圈,长方形的边长以米为单位都是自然数,这个猪圈的围墙最少长多少米?
例6把17分成几个自然数的和,怎样分才能使它们的乘积最大?
结论把一个数拆分成若干个自然数之和,如果要使这若干个自然数的乘积最大,那么这些自然数应全是()或( ),且( )最多不超过( )个。

例7把49分拆成几个自然数的和,这几个自然数的连乘积最大是多少?
作业
1、试求和为8,积为最大的两个自然数。

2、试求和为13,积为最大的两个自然数。

3、用2到9这八个数字分别组成两个四位数,使这两个四位数的乘积最大。

4、试比较下列两数的大小:
a=8753689×7963845
b=8753688×7963846
5.把19分成几个自然数的和,怎样分才能使它们的积最大?
6.1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。

那么这两个四位数各是多少?
7、用2、3、4、5这四个数字组成两个两位数,使这两个两位数的积最小,最小的积是( )。

8、用1、2、3、4这四个数字组成两个两位
数,使这两个两位数的积最大,最大的积是( )。

9、用3、5、6、8这四个数字组成两个两位数,使这两个两位数的积尽可能大,最大的积是( )。

10、将数字5、6、7、8、9、0填入下面的算式中,使乘积最大。

作业二
一、用一只平底锅煎饼,每次能同时放两个饼。

如果煎一个饼需要4分钟(假定正、反面各需2分钟),问煎m个饼至少需要几分钟?
二、小明、小华、小强同时去卫生室找张大夫治病。

小明打针要5分钟,小华换纱布要3
分钟,小强点眼药水要1分钟。

问张大夫如何安排治病次序,才能使他们耽误上课的时间总和最少?并求出这个时间。

三、赵师傅要加工某项工程急需的5个零件,如果加工零件A、B、C、D、E所需时间分别是5分钟、3分钟、4分钟、7分钟、6分钟。

问应该按照什么次序加工,使工程各部件组装所耽误的时间总和最少?这个时间是多少?
四、学校医务室里有三名同学等候医生治病。

甲需要打针5分钟,乙需要换纱布8分钟,丙需要点眼药水2分钟,怎安排他们在医务室等候的时间和最少?最少是几分钟?
五、甲、乙、丙三人分别拿着2个,3个,1个热水瓶同时到达开水供应点打开水,热水水龙头只有一个,要怎样安排他们打开水的顺序,可以使他们打开水用去的总时间(包括等的时间)最少?总时间是多少?(假设打满一瓶水要1分钟。


六、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。

因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。

现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。

最短时间是多少分钟呢?
七、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。

问:要把4头牛都赶到对岸去,最少需要多长时间?
八、用5 ~~ 8这四个数字分别组成两个两位数,使这两个两位数的乘积最小。

九、用18厘米的铁丝围成各种长方形,要使长和宽的长度都是整厘米数,围成的长方形的面积最大是多少平方厘米?。

相关文档
最新文档