5一元二次方程的应用尖子班讲义

合集下载

一元二次方程的应用课件

一元二次方程的应用课件
一元二次方程的应用ppt 课件
本课件将介绍一元二次方程的定义和基本概念,探讨一元二次方程在几何、 物理和经济问题中的应用,并举例说明一元二次方程在生活中的实际应用。
方程的定义和基本概念
1 方程的含义
介绍方程是什么以及它在 数学中的重要性。
2 一元二次方程
解释一元二次方程的定义 和一般形式。
3 方程的解法
2
抛体运动
探讨如何利用一元二次方程描述抛体运动的轨迹和速度。
3
弹射物问题
介绍如何应用一元二次方程解决弹射物问题,如抛物线运动或发射角度问题。
一元二次方程在经济问题中的应用
成本和利润
解释如何使用一元二次方程计算成本和利润的关系。
销售预测
探讨如何利用一元二次方程进行销售预测和市场分析。
投资回报率
介绍如何应用一元二次方程计算投资项目的回报率。
探讨解一元二次方程的常 见方法。
一元二次方程在几何问题中的应用
抛物线
介绍抛物线的定义、性质以及与 一元二次方程的关系。
根与解
讨论一元二次方程的根与解在几 何问题中的意义。
矩形的面积
探究如何用一元二次方程计算矩 形的面积。
一元二次方程在物理问题中的应用
1
自由落体运动
解释如何使用一元二次方程描述自由落体运动的高度和时间之间的关系。
演示一个实际问题,如通过一元二次方程解决的房地产开发项目。
3
课堂练习
提供一些练习题供学生实践运用所学的一元二次方程知识。
一元二次方程在生活中的实际应用
建筑设计
讨论如何应用一元二次方程在建 筑设计中计算房间面积、拱门高 度等。
投射物运动
介绍如何利用一元二次方程描述 投射物的轨迹和速度。

一元二次方程及其应用讲义

一元二次方程及其应用讲义

《一元二次方程及其应用》讲义一、一元二次方程的定义【例题】1、关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。

2、下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3、关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________.【习题】1、下列方程中是一元二次方程的是( ).A.xy +2=1B. 09212=-+xx C. x 2=0 D.02=++c bx ax 2、下列方程中,不是一元二次方程的是( ) A.2x 2+7=0 B.2x 2+23x +1=0 C.5x 2+x 1+4=0 D.3x 2+(1+x ) 2+1=03、关于x 的方程(m -4)x 2+(m +4)x +2m +3=0,当m __________时,是一元二次方程,当m __________时,是一元一次方程.4、下列说法正确的是( )A .一元二次方程的一般形式是20ax bx c ++= B .一元二次方程20ax bx c ++=的根是242b b ac x a -±-= C .方程2x x =的解是x =1D .方程(3)(2)0x x x +-=的根有三个 二、一元二次方程的根【例题】1、若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值是( )A 、1B 、2C 、-1D 、-22、若x =1是方程ax 2+bx +c =0的解,则( )A.a +b +c =1B.a -b +c =0C.a +b +c =0D.a -b -c =03、已知0和1-都是某个方程的解,此方程是( )A. 012=-xB. 0)1(=+x xC. 02=-x xD. 1+=x x4、如果21x -2x -8=0,则1x 的值是________.5、已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根是( )A. 0B. 1C. -1D. 2【习题】1、若x =-1是方程ax 2+bx +c =0的解,则( )A.a +b +c =1B.a -b +c =0C.a +b +c =0D.a -b -c =02、已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ).A .-5或1B .1C .5D .5或-13、已知m 是一元二次方程x 2–2005x +1=0的解,求代数式22200520041m m m -++的值.4、已知x = –5是方程x 2+mx –10=0的一个根,求x =3时,x 2+mx –10的值.三、一元二次方程的解法【例题】1、填写解方程3x (x +5)=5(x +5)的过程解:3x (x +5)__________=0(x +5)(__________)=0x +5=__________或__________=0∴x 1=__________,x 2=__________2、用配方法解方程x 2+2x -1=0时①移项得__________________②配方得__________________即(x +__________)2=__________③x +__________=__________或x +__________=__________④x 1=__________,x 2=__________3、方程2(x+2)2-8=0的根是 。

一元二次方程讲义

一元二次方程讲义
首页 上页 下页
1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件, 全组共互赠了182件,问该生物兴趣小组共有多少名学生?
2.一个多边形有9条对角线,这个多边形有多少条边? 3.某旅游团结束旅游时,其中一位旅客建议,大家互相言别,细心的小
明发现,每两个参加旅游的人互握一次手,所有人共握手66次,这次旅 游的旅客有多少人? 4.有一个人用手机发短信,获得信息的人也按他的发送人数发送该条短 信,经过两轮转发后共有56人收到同一短消息,每轮发送短信平均一 个人向多少人发送短信? 5.我校组织了一次篮球单循环比赛(每两队之间只进行了一次比赛), 共进行了6场比赛,那么我校有几个球队参加了这次比赛?若进行双循 环比赛呢? 6.张老师有急事要电话通知全班60名同学,已知一分钟每人只能通知3人, 问:3分钟能否完成任务?
小 分
小 分


x
…… 枝干
解:设每个支干长出x个小分支,则
1+x+x·x=91

x2+x-90=0
解得,x1=9,x2=-10(不合题意,舍去) 答:每个支干长出9个小分支.
x

干首页 上页 下页来自1.本节课我们学习了哪些知识? 2.在学习过程中掌握了哪些方法? 3.通过本节课的学习,你有什么体会?
返回
②在第二轮传染中,传染源是 x+1人,这些人中每一个人又传染了 x 人,那么第二轮传染了 (x+1)x 人,第二轮传染后,共有 1+x+(1+x)x 人患流感.
(3)题目中的等量关系是什么?
解:设每轮传染中平均一个人传染了x人,根据题意得方程:
1+x+(1+x)x=121.

一元二次方程的应用课件

一元二次方程的应用课件
34
运用求根公式就可以解每一个具体的一元二 次方程,取得一通百通的效果,于是解一元二次 方程的算法如下:
35
一元二次方程
是否可以
直接用因式分解法或直接开
平方法
写成一般形式
ax2+bx+c=0(a≠0)
解两个一元一次方程
计算b2-4ac
b2-4ac≥0
用求根公式:
x b
b24ac 2a
无实数解
36
38
中考 试题
营销问题
例:课本P30 B4T
例1 某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天
可售出20件,每件盈利40元,为了迎接“六一”国际儿童节,商 场决定采取适当的降价措施,扩大销量,增加盈利,减少库存. 经市场调查发现:如果每件童装每降价4元,那么平均每天就可 多售出8件,要想平均每天在销售这种童装上盈利1200元,那么 每件童装应降价多少元?
27
例6 某校图书馆的藏书在两年内从5万册增加到7.2
万册,平均每年增长的百分率是多少?
解: 设平均每年增长的百分率是x.
根据题意,得 5(x+1)2 = 7.2. 整理,得 x2+2x -0.44=0. 解得,x1=0.2,x2=-2.2(不合题意,舍去). 答:该校图书馆的藏书平均每年增长的百
本课内容 一元二次方程的应用 1.3 第一课时
学习目标: 1、能运用一元二次方程解决一些简单
的代数问题 2、一元二次方程的根的判别式的应用
1
一、建立一元二次方程模型解数与代数问题
例1 当x取什么值时,一元二次多项式x2-x-2与
一元一次多项式2x-1的值相等?
例2 当y取什么值时,一元二次多项式

一元二次方程的应用讲义

一元二次方程的应用讲义

面积的一半。

的长方形养鸡场,为了节约材料,鸡场的一另三边用竹篱笆围成,已知篱笆总长为
越过点C,不合要求.
25
2
+x.
)
2(=
解析:考察一元二次方程的面积问题,可以适当的平移图中的道路,将图形转化成更方便、更直接的得出答案的形式。

励志小故事——相信自己是一只雄鹰
一个人在高山之巅的鹰巢里,抓到了一只幼鹰,他把幼鹰带回家,养在鸡笼里。

这只幼鹰和鸡一起啄食、嬉闹和休息。

它以为自己是一只鸡。

这只鹰渐渐长大,羽翼丰满了,主人想把它训练成猎鹰,可是由于终日和鸡混在一起,它已经变得和鸡完全一样,根本没有飞的愿望了。

主人试了各种办法,都毫无效果,最后把它带到山顶上,一把将它扔了出去。

这只鹰像块石头似的,直掉下去,慌乱之中它拼命地扑打翅膀,就这样,它终于飞了起来!。

应用一元二次方程资料课件

应用一元二次方程资料课件
电磁学
在电磁学中,一元二次方程被用来描述电场和磁场的行为。
量子力学
在量子力学中,一元二次方程被用来描述粒子的能量和波函数。
04
CATALOGUE
一元二次方程的拓展知识
一元高次方程的概念
一元高次方程的定义
一元高次方程是指含有一个未知数,且未知数的最高次数为n次的方程。其中n 大于等于3。
一元高次方程的标准形式
使用说明
在使用公式法时,需要注意判 别式的定义域,以及根号中的
数值必须是非负数。
因式分解法
总结词
详细描述
通过因式分解将一元二次方程转化为两个 一次方程,从而求解。
因式分解法是一种基于因式分解的一元二 次方程求解方法,通过因式分解将一元二 次方程转化为两个一次方程,从而求解。
公式示例
使用说明
对于方程 $ax^2 + bx + c = 0$,通过因 式分解可以得到 $(x + m)(x + n) = 0$,进 而得到 $x = -m$ 或 $x = -n$。
牛顿迭代法
通过牛顿迭代公式,逐步逼近一元高次方程的解 。
一元高次方程的应用举例
求解实际问题中的一元高次方程
01
例如,求解一个工程问题的数学模型,该模型包含一个一元高
次方程。
在物理学中的应用
02
例如,在研究物体的运动时,需要求解一个一元高次方程来描
述物体的轨迹。
在经济学中的应用
03
例如,在研究商品价格与需求量的关系时,需要求解一个一元
配方法例题解析
总结词
配方法是解一元二次方程的一种常用方法,通过配方将二 次方程转化为一次方程,从而求解出方程的根。
详细描述

讲义精品一元二次方程讲义精品

讲义精品一元二次方程讲义精品

讲义精品一元二次方程讲义精品(总9页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除考点一、概念(1)内容:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax(3)关键点:强调对最高次项的讨论:①次数为“2”;②系数不为“0”。

典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

针对练习:1、方程782=x 的一次项系数是 ,常数项是 。

2、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

考点二、方程的解⑴内容:使方程两边相等的未知数的值,就是方程的解。

⑵应用:①利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。

例4、已知b a ≠,0122=--a a ,0122=--b b ,求=+b a变式:若0122=--a a ,0122=--b b ,则ab b a +的值为 。

针对练习:1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

一元二次方程讲义

一元二次方程讲义

一元二次方程讲义1.解方程2(2)9x -=. 2(3x ﹣1)2=8.例题3:配方法1.已知方程260xx q +=-可以配方成27x p =(-)的形式,那么262x x q +=-可以配方成下列的( ) A. 25x p =(-) B. 29x p =(-) C. 229x p +=(-) D. 225x p +=(-) 2.用配方法解方程:2420x x ++=练习:1. 用配方法解方程:x 2﹣7x+5=0. 2x 2﹣3x+1=0.x 2﹣6x ﹣7=0.例题4.公式法1.一元二次方程4x 2﹣2x+=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断2.用公式法解方程:03822=+-x x.练习:1.用公式法解方程:3x 2+5(2x+1)=0.练习:1.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.”互联网+”时代,中国的在线教育得到迅猛发展.根据中国产业信息网数据统计分析,2015年中国在线教育市场产值约为1600亿元,2017年中国在线教育市场产值在2015年的基础上增加了900亿元.(1)求2015年到2017年中国在线教育市场产值的年平均增长率;(2)若增长率保持不变,预计2018年中国在线教育市场产值约为多少亿元?例题2:利润问题1.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?练习:1.今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式;(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(销售利润=销售价﹣成本价)例题3:面积问题1.某中学标准化建设规划在校园内的一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草(如图所示),若使每一块草坪的面积都为96平方米.求人行道的宽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根与系数关系及应用题(讲义)
一、知识点睛
1.从求根公式中我们发现12x x +=_______,12x x ⋅=_________, 这两个式子称为_____________,数学史上称为___________. 注:使用___________________的前提是_________________. 2.一元二次方程应用题的常见类型有:
①______________;②______________;③______________. 增长率型 例如:原价某元,经过两次连续降价(涨价);
1人患了流感,经过两轮传染.
经济型 例如:“每涨价××元,则销量减少××件”. 3.应用题的处理流程: ① 理解题意,辨析类型; ② 梳理信息,建立数学模型; ③ 求解,结果验证.
二、精讲精练
1. 若x 1,x 2是一元二次方程2274x x -=的两根,则x 1+x 2与12x x ⋅的值分别是
( )
A .7错误!未找到引用源。

,4
B .7
2-,2
C .7
2,2
D .72

-2
2. 若x
1
=2是一元二次方程210x ax ++=的一个根,则
该方程的另一个根x 2=_________,a =________.
3. 若关于x 的方程2210x x a ++-=有两个负根,则a 的取值范围是
____________________.
4. 若关于x 的方程2220x x m +-=的两根之差的绝对值是则m =________.
5. 某商品原售价289元,经过连续两次降价后售价256元.设平均每次降价的
百分率为x ,则下面所列方程正确的是( )
A .2289(1)256x -=
B .2256(1)289x -=
C .289(12)256x -=
D .256(12)289x -= 6. 据调查,某市2013年的房价为6 000元/米2,预计2015年将达到8 840元/
米2,求该市这两年房价的年平均增长率.设年平均增长率为x ,根据题意,所列方程为_______________.
7. 有一人患了流感,经过两轮传染后共有121人患了流感,则每轮传染中平均
一个人传染了________________个人.
8.若x 1,x 2是方程22430x x +-=的两个根,不解方程,求下列各式的值.
(1)12
11
x x +; (2)2212x x +.
解:由原方程知
a =_____,
b =_____,
c =_____,
2Δ4 0
b a
c _____=-==∵
∴12x x += ,12x x ⋅= . (1)原式=
= =
8. 已知关于x 的方程2(1)20m x x ---=.若x 1,x 2是该方程的两个根,且
2212121
8
x x x x +=-,求实数m 的值.
9. 如图,在一块长92 m ,宽60 m 的矩形耕地上挖三条水渠(水渠的宽都相等),
若水渠把耕地分成面积均为885 m 2的6个矩形小块,则水渠应挖多宽?
10.,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经
调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元,据此规律,请回答:
(1)商场日销售量增加______件,每件商品盈利_____元(用含x的代数式表示);
(2)在上述条件不变、销售正常的情况下,每件商品降价多少元时,商场日盈利可达到2 100元?
【分析】
11.某商店将进价为8元/件的商品按10元/件售出,每天可销售200件.现在采
用提高商品售价减少销售量的办法增加利润,并尽量使顾客得到实惠,如果这种商品的售价每提高0.5元其销售量就减少10件,则将每件售价定为多少元时,才能使每天的利润达到640元?
【分析】
12.我市高新技术开发区的某公司,用320万元购得某种产品的生产技术后,进
一步投入资金880万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.当销售单价定为100元时,年销售量为20万件,调查表明:在100~200元范围内,新产品的销售单价每增加10元,年销售量将减少1万件.为了实现年获利240万元,产品的销售单价应定为多少元?
(年获利=年销售额-生产成本-投资成本)
【分析】
解:Array
三、回顾与思考
_____________________________________________________________________ _____________________________________________________________________
______________________________
一、知识点睛
1. b c
a a
,-;根与系数的关系;韦达定理;韦达定理,Δ0≥.
2. ①增长率型;②面积型;③经济型. 二、精讲精练 1.D 2
.2,-4
3.12a <≤
4.2±
5.A
6.6000(1+x )2=8840
7.10
8.解:由原方程知: a =2,b =4,c =-3,
()22Δ4446400b ac =-=-⨯-=>∵ ∴122x x +=-,1232
x x ⋅=-.
(1)原式1212
24
332
x x x x +-==
=-; (2)7 9.5m = 10.水渠应挖1m 宽.
11.
50x -(2)每件商品降价20元时,商场日盈利可达到2 100元. 12.
13.
产品的销售单价应定为120元.
一元二次方程根与系数关系及应用题
(随堂测试)
1. 先验证方程22410x x --=有两个实数根1x ,2x ,然后不解方程,求下列各
式的值.
(1)12(1)(1)x x ++;
(2)2212x x +.
2. 某商场将进货单价为30元的台灯以40元售出,平均每月能售出600个.调
查表明:在40~60元范围内,这种台灯的销售单价每上涨1元,其销售量将减少10个,为实现平均每月10 000元的销售利润,这种台灯的销售单价应定为多少元? 【分析】
解:
【参考答案】
1.∵2Δ(4)42(1)240=--⨯⨯-=>,
∴方程22410x x --=有两个实数根1x ,2x . (1)
52
; (2)5;
2.这种台灯的销售单价应定为50元.
一元二次方程根与系数关系及应用题(作业)
1. 某品牌服装原售价为173元,经过连续两次降价后售价为127元,设平均每
次降价x %,则所列方程为_______________.
2. 小丽要在一幅长为80 cm ,宽为50 cm 的矩形风景画的四周外围镶上一条宽
度相同的金色纸边,制成一幅矩形挂图,使整幅挂图的面积是5 400 cm 2,设金色纸边的宽度为x cm ,则x 满足的方程是_______________.
3. 一种商品经连续两次降价后,价格是原来的1
4
,若两次降价的百分率相同,
则这个百分率为_______________. 4. 若1x ,2x 是一元二次方程23540x x --=的两个根,则12x x +与12x x ⋅的值分
别是_____________.
5. 若关于x 的方程2250x x a -+-=有两个正根,则a 的取值范围是
_______________.
6. 设1x ,2x 是方程23620x x +-=的两个根,利用根与系数的关系,求下列各
式的值.
(1)12(1)(1)x x ++;
(2)221212x x x x +;
(3)
12
11
x x +;
(4)212()x x -.
7. 某市为争创全国文明卫生城市,2012年市政府对市区绿化工程投入的资金是2
000万元,2014年投入的资金是2 420万元,且从2012年到2014年,每年投入资金的年平均增长率相同.
(1)求该市政府对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市政府在2016年需投入多少万元?
8.小明家有一块长为8 m,宽为6 m的矩形空地,妈妈准备在该空地上建造一
个花园,并使花园面积为空地面积的一半.小明设计了如下的两种方案供妈妈挑选,请你选择其中的一种方案帮小明求出图中的x值.
方案一
9.某商店进购某种商品出售,若按每件盈利2元售出,每天可售出200件.现
在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的售价每提高0.5元,其销售量就减少5件,则将每件商品提高多少元出售时,才能使每天的利润为1 210元?
10.汽车站水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500
千克.经市场调查发现,在进价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.如果市场每天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果盈利了多少元?
11. 【参考答案】 1.2173(1%)127x -=
2.()()5028025400x x ++=
3.50%
4.5433-,
5.4158
a <≤. 6.(1)53-; (2)43; (3)3; (4)20
3

7.(1)10%; (2)2 928.2万元.
8.方案一中2x =,方案二中2x =.
9.将每件商品提高9元出售时,才能使每天的利润为1 210元. 10.每千克这种水果盈利了15元.。

相关文档
最新文档