5.1认识分式PPT课件

合集下载

北师大版数学八年级下册5.1认识分式课件(共24张PPT)

北师大版数学八年级下册5.1认识分式课件(共24张PPT)

3
10
3÷4= 4 , 10 ÷ 3= 3 ,
2、在代数式中,整式的除法也可以类似地表示。
试用用类似分数的形式表示下列整式的除法:
90
⑴ 90÷x 可以用式子
x 60 来表示。
60÷(x-6)可以用式子 x 6 来表示。
(2) n公顷麦田共收小麦m吨,
m
平均每公顷产量可以用式子 n 吨来表示.
从环境保护说起
③分母不能为零。
分式无意义的条件 分母等于零
三个条件 分式有意义的条件 分母不等于零
分式的值为零的条件 分子等于零 且分母不等于零
强调: 中,B 中一定要有字母
作 所以当 x≠- 时,
这些式子与分数一样都是 (即A÷B)的形式 例2:把甲、乙两种饮料按质量比x:y混合在一起,可以调制成一种混合饮料。 我们知道:除数不能为0,那么分式中的分母应满足什么条件呢? 下列各式中,哪些是整式?哪些是分式?
叫做分式(fraction),其中A是分式的分
子,B是分式的分母。
1)分母中含有字母是分式的一大特点!
2)分式比分数更具有一般性,如:分数 5 仅表示
x 5÷3的商,而分式 y
则可以表示任意3两个整式
相除的商(除式不等于零),其中包括 5÷3 .
例1、下列各有理式中,哪些是整式?哪些是分式?
(1)1;(2)x;(3) 2xy;(4)2xy.
(2)把体积为200cm3的水倒入底面积为33cm2的圆柱
200
形容器中,水面的高度为 33
cm;把体积为v
的水倒入底面积为S的圆柱形容器中,水面的高度为
V
S
cm.
议一议 分式、有理式的定义
1、上面的问题出现了代数式:

《认识分式》课件

《认识分式》课件

通分的目的是使不同分式的分母相同,因此需要确定最简公分
母。最简公分母通常是各分母的最小公倍数。
将各分式的分子与最简公分母相乘
02
将各分式的分子与最简公分母相乘,使各分式的分母都变成最
简公分母。
通分的步骤
03
先确定最简公分母,再将各分式的分子与最简公分母相乘,得
到通分后的分式。
分式约分与通分的比较
目的不同
当分母保持不变时,分式的值随着 分子中变量的变化而变化。
分式的值域通常与分式的分母和分 子中的变量有关。
当分子保持不变时,分式的值随着 分母中变量的变化而变化。
分式的化简
分式的化简是指将分式转化为更简单或更易于理解的 形式。
通过约分可以将分子或分母中的公因式消去,从而简 化分式。
分式的化简可以通过约分、通分、分子分母有理化等 方法进行。
函数值等。
04
分式的基本应用
分式在生活中的应用
测量单位换算
分式可以用于测量单位的换算 ,例如时间、长度、面积等。
比例关系
分式可以用于描述两个量之间的 比例关系,例如人口比例、男女 比例等。
金融计算
分式可以用于金融计算,例如计算 利率、本金与利息的关系等。
分式在数学中的应用
代数方程
分式可以用于解代数方程,特别是分式方程。
《认识分式》课件
2023-11-04
目录
• 分式的基本概念 • 分式的基本性质 • 分式的约分与通分 • 分式的基本应用 • 分式的扩展知识 • 练习与巩固
01
分式的基本概念
分式的定义
01
02
03
定义
如果A、B表示两个整式 ,并且A、B中至少有一 个不是整式,那么称A/B 叫做分式。

赛课课件_5.1_认识分式

赛课课件_5.1_认识分式

x 4 x2
2
2014年5月4日星期日6时 10分24秒
18
x 4 已知分式 (1) 当x为何值时,分式无意义? x2
2
(2) 当x为何值时,分式有意义?
解: (1)当分母等于零时,分式无意义。
即 x+2=0 ∴x = -2
x2 4 无意义。 x2
(2)由(1)得 当x ≠-2时,分式有意义
(1)(x+2)÷y (2) (2x-1)÷(x2+1) (3) 2x:(y+1)
[强调] 分数线不仅起 除号作用,而且还 兼有括号的作用。
x2 2x 1 2x 解: (1) , (2) 2 , (3) y x 1 y 1
2014年5月4日星期日6时 10分24秒 16
算一算
当 a=1,2时,分别求分式 的值; 解:当 a=1时,原式=
a 1 2a
a 1 11 1 2a 2 1
当 a=2时,原式=
a 1 2 1 3 2a 2 2 4
2014年5月4日星期日6时 10分24秒
17
做一做
已知分式 (1) 当x为何值时,分式无意义 ? (2) 当x为何值时,分式有意义? (3) 当x为何值时,分式的值为零? (4) 当x= 1时,分式的值是多少?
∴当x ≠-2时分式:
x2 4 有意义。 2014年5月4日星期日x 6时 2
10分24秒
19
x2 4 已知分式 , (3) 当x为何值时,分式的值为零? x2
(4) 当x= 1时,分式的值是多少?
(3)当分子等于零而分母不等于零时,分式的值为零。
x 4 0, 且x 2
2400 x 30
2400 x

5.1 认识分式 课件(13张ppt)

5.1 认识分式 课件(13张ppt)

1
• 扩展延伸:
x 4
1、当x= 4 时,分式 x x 4 的值是零。
x2 4
2、当x= 2 时,分式 x 2 的值是零。
3、要使分式
x2 (x 1)(x 2)
有意义,则x满足
x 1且x 2
1
4、要使分式 x2 9 有意义,则x满足 x 3且x 3
5、要使分式
|ห้องสมุดไป่ตู้
2x x | 3
x2 3y2 4
A. 1个
B. 2个 C. 3个
D. 4个
关于分式的几点注意
• 1、满足分数的形式;
• 2、分母含有英文字母;
• 3、分母≠0。
• 4 、分数线有除号和括号的双重作用,如:
x1 x3
可表示为(x
-1)
÷
(x
-3)
.
分式条件
例1、分式
a 1成立的条件是什么? 2a
a≠0
3
例2、若分式 x 1 有意义 ,则x 的取值范围是什么?
2400
(1)原计划完成造林任务需要 x 个月.
2400
(2)实际完成造林任务用了 x 30 个月.
1、上面问题中出现的代数式:
x
1
180 2400 2400
x 8 3m n
t
x
x 30
它们有什么共同特征?类似分数 , 分母中都有英文字母
它们与分数有什么相同点和不同点?
分子 相 同 分数线 点
分母
分数:分子、分母都

为具体数字


这些代数式分子、分母都为整
式,且分母中含有英文字母
分式定义:
一般地,如果A、B表示两个整式,并且B

北师大版数学八年级下册5.1认识分式课件(共19张PPT)

北师大版数学八年级下册5.1认识分式课件(共19张PPT)

1.下列代数式中: 1 x x y y;(2 )x2 3 1 ;(3 )3 x 1 2 ;(4 )x2 x x y y2;(5 )a 3 .b 1 4
中,整式有 (3)(;5)分式有 (1)(( 只2 填)(4序)号)
2.若分式 x 2 的4 值为零,则x的值等于 。 2
x 2
3.当x= 1时,分式 x无 意1 义。
所以当x =2时,分式
| x | 2 2x 4
的值是零.
对于分式 (x+3)(x-1) x21
1、当 x 1时,分式无意义;
2、当 x 时1,分式有意义;
3、当 x 时3,分式值为零。
请你写出一个分式,同时满足下列条件:
1、分式含有字母a;
2、当a=2或-2时,分式无意义;
3、当a=3时,分式的值为0。
当a 1呢?
当 a2时 , a1211 2
2a1 221
当 a1时 , a1 11 0 2a1 2(1)1
2、当a=2或-2时,分式无意义;
(1)无意义?(2) 有意义? (3)分式的值为零?
(1)由分子、分母与分数线构成;
分式无意义 1、当
时,分式无意义;
例2:当x为何值时,分式
的值为零。
分母等于零
北师大版八年级数学下册
第五章 分式与分式方程
1 、认识分式
你能判断下列哪些式子是整式吗?
x2+xyy2
xy
-3x2y3
y
5x-1
a
2
a
m
m 9a 1 3
m
答: x2+xy-y2 -3x2y3 5x-1 a
3
1、十一中到九中的距离为s千米,乘车的速度为30

《认识分式》分式与分式方程PPT课件(第1课时)

《认识分式》分式与分式方程PPT课件(第1课时)

探究新知
(2)既然分式是不同于整式的另一类式子,那么它们统
称为什么呢?
数、式通性
有 整数 理 数 分数
数的 扩充
整式 有 理
分式 式 式的 扩充
探究新知
想一想: 代数式
单项式 整式
多项式 有理式
分式
实数
类比思想
整数 有理数
分数
无理 式
无理数
探究新知
判一判: 下面的式子哪些是分式?
2 bs
4 5b c
037 018
x2 . y
规律是任意一个分式除以前面一个分式恒等于-
x2 .
y
课堂小结 定义
分式
有意义 的条件
值为零 的条件
一个整式 f 除以一个非零整式g(g中
f
含字母)所得的商 g .
f
分式 g 有意义的条件是 g ≠0.
分式
f g
值为零的条件是
f=0且g
≠0.
x -1
A. x>1
B. x≠1
C. x=1
D. x≠0
课堂检测
基础巩固题
1.下列各式中,哪些是整式?哪些是分式?
(1)5x-7;
(2)
(3)3x2-1;
; ; (4)
4 5bc
(5)
b3 2 a 1
(6)x
3 y
;
; . (7)
x2
xy 2 x1
y
2
(8) m(n p) 7
解:整式:(1)(2)(3)(8); 分式:(4)(5)(6)(7).
分式以及第27个分式.
(2)求出这列分式的第2 019个分式除以第2 018个分式所得的
商.并回答把任意一个分式除以前面的一个分式,你发现什么

八年级数学下册 第五章 分式与分式方程 5.1 认识分式(第1课时)课件

八年级数学下册 第五章 分式与分式方程 5.1 认识分式(第1课时)课件

D .x 2 x
第十九页,共三十三页。
★★3.若式子(shì2
x
zi)
1
3y 1
的值.
无意义,求代数式(y+x)(y-x)+x2
解:∵式子 2 x 1无意义,∴3y-1=0,
3y 1
解得y= 1 ,原式=y2-x2+x2=y2= ( 1 ) 2= 1 .
3
39
第二十页,共三十三页。
知识点三 分式(fēnshì)的值(P109例1拓展) 【典例3】下列判断错误的是 ( D ) A.当a≠0时,分式 2有意义
解:(1)∵分式(fēnshì2) x 4 无意义,∴x-1=0,解得x=1.
x 1
(2)∵分式 2 x有 意4 义,∴x-1≠0,即x≠1.
x 1
(3)∵分式 2的x 值4为0,
x 1
∴ 2 x 解4 得0 x, =-2.
xபைடு நூலகம்
1
0,
第三十页,共三十三页。
【母题(mǔ tí)变式】
【变式一】当a取何值时,分式
第三页,共三十三页。
二、分式有无(yǒu wú)意义及值为0的条件
1.当分母 ___不__等__于__零时,分式有意义,即_____时B≠,分0式
A 有意义;
B
2.当分母__等__于__零_时,分式无意义,即____B时=0,分式
A
B
无意义;
第四页,共三十三页。
3.分式等于零的条件(tiáojiàn)有两个:①分子__等__于__零_____,②分 母____不__等__于__零___.
(2)求出这列分式的第2 019个分式除以第2 018个分式所得 的商.并回答把任意一个分式除以前面(qián mian)的一个分式, 你发现什么规律?用语言表示出来.

5.1认识分式1

5.1认识分式1

第五章分式方程1认识分式第1课时分式的概念活动- •-. 创设情境导入新课【课堂引入】(一) 面对日益严重的土地沙化问题,某县决定在一定期限内固沙造林2400 hm2,实际每月固沙造林的面积比原计划多30 hm2,结果提前完成原计划的任务.如果设原计划每月固沙造林x hm2,那么(1) 原计划完成造林任务需要多少个月?(2) 实际完成造林任务用了多少个月?(二) 2019年清明小长假台儿庄古城吸引了成千上万的游客,某一时段内的统计结果显示,前a天日均参观人数5万人,后b天日均参观人数3万人,这(a+b)天日均参观人数为多少万人?(三) 文林书店库存一批图书,其中一种图书的原价是每册a兀,现每册降价x兀销售.当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是多少?找生回答,师板书:(-)⑴2400;(2)駕.5a + 3b(二) a+b .b(三) .a—x议一议:上面问题中出现了代数式2400, 2400,x ' x+ 30和b,它们有什么共同特征?它们与整a+b a—x式有什么不冋?通过同学们身边的生活实例,进一步丰富代数式的实际背景,让学生感受字母表示数的意义,发展他们的付号感,并在这过程中初步感受分式的模型作用,初步体会分式的意义•活动实践探究交流新知思考:2400 2400 「、35a+ 45b 「、b⑴ x ,x + 30;() a+ b ;⑶a—x.对于前面出现的代数式,它们有什么共冋特征?它们与整式有什么不冋?整式A除以整式B,可以表示成A的形式,如果BA整式B中含有字母,那么称A为分式.其中A叫B做分式的分子,B为分式的分母.对于任意一个分式,分母都不能为零.剖析分式概念:形式:与分数一样,分式也是由分子、分母和分数线组成.内容:分数的分子、分母都是整数,分式的分子、分母都是整式.通过观察、类比及小组的讨论,基本能得出分式的定义,对于分式的分母不能为0,有的小组考虑到了,有的没有考虑到,就这一点可以让学生类比分数的分母不能为0加以理解,用起来会更灵活•。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它们有什么共同特征?它们与整式有什么不 同?
7
一个概念
分式定义:整式 A 除以整式B, 可含有以字表母示,成那BA 的么形称式A ,为如分果式除,式其B中中
B
A 称为分式的分子,B 称为分式的分 母。
8
例1 下列各有理式中,哪些是整式?哪些是
分式?
1
x
2 xy 2 x y
(1) (2) (3)
(4)
x
2 x y
3
x
整式:
2
2x 3
y
分母中为 是含什 分有么 式字⑵ ?母和判的⑷断是不的分式
分式: 1
2 xy 分母中不关含键字是母什的么是?整式
x x y
①分子分母都是整式
分式的概念 ②分母中含有字母
③分母不能为零 9
两个应用
一、列分式 例2 把甲、乙两种饮料按质量比
x:y混合在一起,可以调制成一种 混合饮料。调制1千克这种混合饮 料需要多少甲种饮料?
x 千克
x y
10
1.若把x克食盐溶入b克水中,从其中取出m克食盐
mx 溶液,其中含纯盐__x____b__克;
2.路程全长m千米,骑自行车b小时到达,为了提前
m m 1小时到达,自行车每小时应多走b ___1_____b千米.
11
二、分式的求值 例3 当a=1,2时,分别求分式
a 1 的值。
35a 45b ab
5
3. 文林书店库存一批图书,其中一种图 书的原价是每册 a 元,现每册降价 x 元 销售,当这种图书的库存全部售出时, 其销售额为 b 元.降价销售开始时,文 林书店这种图书的库存量是多少?
b a x
6
上面问题中出现了代数式
2 4 0 0 2 4 0 0 35a 45b b x x 30 ab a x
第五章 分式与分式方程
1 认识分式(一)
授课 毛小富
温故而知新
什么是整式?
2
学习目标
1.了解分式的概念,明确分式与整式的区别。 2.能用分式表示现实情境中的数量关系。 3.理解分式有意义、无意义及分式的值为零的条件,
能熟练求出分式有意义、分式的值为零的条件。
3
1. 面对日益严重的土地沙化问题,某县 决定在一定期限内固沙造林 2 400hm2,实 际每月固沙造林的面积比原计划多 30 hm2, 结果提前完成原计划的任务.如果设原计划
| 3 3
=0,则x=______-_3____.
15
课堂小结
①分子分母都是整式
1.分式的概念 ②分母中含有字母
③分母不能为零
2.列分式和分式的求值
3. 分式无意义的条件:分母等于零
分式有意义的条件:分母不等于零 分式的值为零的条件:分子等于零且
分母不等于零
16
课后作业
1.必做题: (1)学案A组题 (2)书P109-110第1-3题. 2.选做题: (1)学案B组题 (2)书P110第4-5题.
17
⑶当x等于何值时,分式的值为零?
分析:当分子等于零且分母不等于零时, 分式的值为零.
14
随堂练习
1.若分_3_.
2.若分式
x x2
3 9
有意义,则x应取何值? 任意实数
3.若分式 x 2 9 =0,则x=______3_____.
x3
4.若分式
|
x x
2a
12
三个条件 1.分式无意义的条件 分母等于零 2.分式有意义的条件 分母不等于零 3.分式的值等于零的条件
分子等于零且分母不等于零
13
例4 对于分式 x 2 4 .
x2
⑴当x等于何值时,分式无意义?
分析:当分母等于零时,分式无意义.
⑵当x等于何值时,分式有意义?
分析:当分母等于零时,分式无意义.
每月固沙造林 x hm2,那么 (1)原计划完成造林任务需要多少个月?
2400
x
(2)实际完成造林任务用了多少个月?
2400
x 30
4
2. 2010年上海世博会吸引了成千上万的 参观者,某一时段内的统计结果显示,前 a 天日均参观人数 35 万人,后 b 天日均 参观人数 45 万人,这(a + b)天日均参 观人数为多少万人?
相关文档
最新文档